Constraints on neutrino masses from cosmological observations

B. Hoeneisen

Universidad San Francisco de Quito Guadeloupe Island, 9-13 March 2020

The galaxy power spectrum

Suppression of $P_{gal}(k) \equiv b^2 P(k)$ due to $\sum m_{\nu}$, and SDSS-III BOSS $P_{gal}(k)$ data.

In the Λ CDM model, P(k) depends on 5 independent parameters: $N^2 \equiv A_s/(4\pi) \equiv \Delta_R^2/(4\pi)$, Ω_m , h, n, $\sum m_{\nu}$, (and the dependent parameter Ω_r that has contributions from photons and neutrinos). So we need \geq 5 measurements to obtain P(k) and σ_8 .

There are two measurements of P(k): (1) the Sachs-Wolfe effect (in the range $-3.1 \leq \log_{10}(k/h \text{ Mpc}^{-1}) \leq -2.7$) that determines N^2 , and (2) σ_8 (in the range $-1.3 \leq \log_{10}(k/h \text{ Mpc}^{-1}) \leq -0.6$). σ_8 is measured with gravitational lensing, and galaxy clusters.

(3) We measure Ω_m with Baryon Acoustic Oscillations (BAO). To reduce the uncertainty, we also include the sound horizon angle θ_* from Planck. (4) We fix n = 1, and take (5) $h = 0.678 \pm 0.009$.

We minimize a χ^2 with respect to N^2 and obtain contours in the $(\sum m_{\nu}, h)$ plane, with 1 degree of freedom.

Contours corresponding to 1, 2, and 3 standard deviations in the $(\sum m_{\nu}, h)$ plane, from Sachs-Wolfe, σ_8 , $h = 0.678 \pm 0.009$ and BAO measurements. Points on the contours have $\chi^2 - \chi^2_{min} = 1, 4$, and 9, respectively, where χ^2 has been minimized with respect to N^2 . n = 1.

Same with $h = 0.72 \pm 0.03$.

Adding information from $P_{qal}(k)$:

We count galaxies in spheres of radii R = 16/h, 32/h, 64/h and 128/h Mpc, and obtain the standard deviations of these counts, and compare with the expected standard deviation calculated from P(k). The galaxy bias *b* is defined as $P_{\text{gal}}(k) \equiv b^2 P(k)$. We allow *b* to depend linearly on R: $b \equiv b_0 + i_s b_s$, with $i_s = 0, 1, 2, 3$ for R = 16/h, 32/h, 64/h and 128/h Mpc respectively. The 4 measured standard deviations therefore add 2 new constraints. So we can free the spectral index slope *n*. Setting $h = 0.678 \pm 0.009$ we are left with 2 degrees of freedom.

Contours corresponding to 1, 2, 3, and 4 standard deviations in the $(\sum m_{\nu}, h)$ plane, from Sachs-Wolfe, σ_8 , 4 σ/\bar{N} , BAO, and $h = 0.678 \pm 0.009$ measurements. Points on the contours have $\chi^2 - \chi^2_{min} = 1, 4, 9$, and 16, respectively, where χ^2 has been minimized with respect to N^2 , n, b_0 , and b_s .

From the Sachs-Wolfe effect, σ_8 , 4 σ/\bar{N} measurements, BAO, and $h = 0.678 \pm 0.009$, minimizing the χ^2 with respect to $\sum m_{\nu}$, N^2 , n, h, b_0 , and b_s , we obtain

$$\sum m_{\nu} = 0.719 \pm 0.312 \text{ (stat)}_{-0.028}^{+0.055} \text{ (syst) eV},$$

$$N^{2} = (2.09 \pm 0.33) \times 10^{-10},$$

$$n = 1.021 \pm 0.075,$$

$$h = 0.678 \pm 0.008,$$

$$b_{0} = 1.751 \pm 0.060,$$

$$b_{s} = -0.053 \pm 0.041,$$

with $\chi^2 = 1.1$ for 2 degrees of freedom.

(1)

	$\sum m_{ u}$	N^2	n	h	b_{O}	b_s
$\sum m_{ u}$	1.000	-0.019	0.856	-0.966	-0.226	0.779
N^2	-0.019	1.000	-0.491	0.018	-0.155	0.428
n	0.856	-0.491	1.000	-0.834	-0.303	0.427
h	-0.966	0.018	-0.834	1.000	0.219	-0.755
b_0	-0.226	-0.155	-0.303	0.219	1.000	-0.037
b_s	0.779	0.428	0.427	-0.755	-0.037	1.000

Parameter correlation coefficients.

New analysis:

- SDSS DR14 galaxies.
- New Sachs-Wolfe measurement, or full Planck to obtain new N^2 .
- New measurements of σ_8 with lensing, and with galaxy clusters.
- New BAO measurement of Ω_m including the $d_{\rm drag}/d_* = 1.0184 \pm 0.0004$ correction.
- Combination of BAO measurement of Ω_m with Planck (using Planck MC chains)

Combination of the Planck 2018 "TT,TE,EE+lowE+lensing" analysis with the directly measured $\Omega_m = 0.2724 \pm 0.0047$. Uncertainties are at 68% confidence. The Planck $\chi^2_P \equiv -2 \cdot \ln \mathcal{L}$ increases from 12956.78 to 12968.64 with this combination. The galaxy $\chi^2_G \equiv (\Omega_m - 0.2724)^2/0.0047^2$.

	Planck	$Planck+\Omega_m$
$\Omega_b h^2$	0.02237 ± 0.00015	0.02265 ± 0.00012
$\Omega_c h^2$	0.1200 ± 0.0012	0.1155 ± 0.0005
$100 heta_*$	1.04092 ± 0.00031	1.04125 ± 0.00022
au	0.0544 ± 0.0073	0.078 ± 0.006
In 10 $^{10}A_s$	3.044 ± 0.014	3.102 ± 0.020
n_s	0.9649 ± 0.0042	0.9726 ± 0.0017
Ω_{Λ}	0.6847 ± 0.0073	0.7147 ± 0.0040
Ω_m	0.3153 ± 0.0073	0.2853 ± 0.0040
h	0.6736 ± 0.0054	0.6990 ± 0.0030
σ_8	0.8111 ± 0.0060	0.8346 ± 0.0054
χ^2_{P}	12956.78	12968.64
χ^2_{G}	83.31	7.53
$\chi^2_{\rm tot}$	13040.09	12976.17

Comparison of the power spectra $l(l+1)C_{TT,l}^S/(2\pi)$ [μ K²] for the Planck 2018 "TT,TE,EE+lowE+lensing" parameters, with the best fit spectra with $\Omega_m = 0.2854$ and $\sum m_{\nu} = 0.06$ eV fixed. The r.m.s. difference is 6.07μ K², corresponding to 0.11% of the first acoustic peak, so the two spectra can not be distinguished by eye. **Tensions** before and after combination:

- *h*: $3.5\sigma \rightarrow 2.1\sigma$
- σ_8 from galaxy clusters: $2.5\sigma \rightarrow 2.3\sigma$
- σ_8 from weak lensing: $1.8\sigma \rightarrow 1.5\sigma$
- Ω_m : $4.9\sigma \rightarrow 2.1\sigma$

References

- R.K. Sachs and A.M. Wolfe, *Astrophys. J.* **147**, 73 (1967)
- Steven Weinberg, Cosmology, Oxford University Press (2008)
- Review of Particle Physics, C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016)
- L. Anderson et al., MNRAS 427, 3435 (2012).
- Blanton, M.R. *et al.*, Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe, The Astronomical Journal, Volume 154, Issue 1, article id. 28, 35 pp. (2017)
- Dawson, K.S., *et al.*, The Baryon Oscillation Spectroscopic Survey of SDSS-III, The Astronomical Journal, Volume 145, Issue 1, article id. 10, 41 pp. (2013)

- Hoeneisen, B. (2017) Study of Baryon Acoustic Oscillations with SDSS DR13 Data and Measurements of Ω_k and $\Omega_{DE}(a)$. International Journal of Astronomy and Astrophysics, **7**, 11-27. https://doi.org/10.4236/ijaa.2017.71002
- Hoeneisen, B. (2018) Constraints on Neutrino Masses from Baryon Acoustic Oscillation Measurements. *International Journal of Astronomy and Astrophysics*, 8, 1-5. https://doi.org/10.4236/ijaa.2018.81001
- Lesgourgues J., and Pastor S., Massive neutrinos and cosmology; Phys. Rep. 429 (2006) 307
- Feldman H.A., Kaiser N., Peacock J.A., 1994, ApJ, 426, 23
- Peebles, P.J.E. 1980, The Large-Scale Structure of the Universe Princeton: Princeton Univ. Press
- Hoeneisen, B. (2000) A simple model of the hierarchical formation of galaxies. arXiv:astro-ph/0009071

- Tanabashi, M., *et al.*, (Particle Data Group) (2018) The Review of Particle Physics. *Physical Review* D, **98**, Article ID: 030001.
- Hoeneisen, B. (2018) Study of Galaxy Distributions with SDSS DR14 Data and Measurement of Neutrino Masses. *International Journal of Astronomy and Astrophysics*, 8, 230-257. https://doi.org/10.4236/ijaa.2018.83017
- Hoeneisen, B.(2018) Measurements of the Cosmological Parameters Ω_m and H_0 . International Journal of Astronomy and Astrophysics, **8**, 386-405. https://doi.org/10.4236/ijaa.2018.84027

Final result:

Combining the direct BAO measurement $\Omega_m = 0.2724 \pm 0.0047$ with the 2018 Planck "TT,TE,EE+lowE+lensing" analysis obtains $\Omega_m =$ 0.2853 ± 0.0040 and $h = 0.6990 \pm 0.0030$, at the cost of an increase of the Planck χ^2_P from 12956.78 to 12968.64.

> $\sum m_{\nu} = 0.27 \pm 0.08 \text{ eV},$ $h = 0.6990 \pm 0.0030,$ $h + 0.020 \sum m_{\nu} = 0.7038 \pm 0.0060.$