SEARCHING FOR DARK MATTER IN THE LATE UNIVERSE

Variations on a Theme

Sarah Schön McDonald Institute, Queen's University EDSU 2020

MAY YOU LIVE IN INTERESTING TIMES…

HYDROGEN AS DM DETECTORS

DM Sector

heat, cool, ionise or modify chemistry

Hydrogen gas (also He, metals and dust)

Set constraints from gas directly or look from evolved system

EPOCHS OF INTEREST

EPOCHS OF INTEREST

DM DETECTORS IN THE GALACTIC CENTRE

DM DETECTORS IN THE GALACTIC CENTRE

COLD, ATOMIC HI CLOUDS

The Astrophysical Journal $\mathcal{L}_\mathcal{A}$ (for all $\mathcal{L}_\mathcal{A}$ (for all $\mathcal{L}_\mathcal{A}$) $\mathcal{L}_\mathcal{A}$ (for al. $\mathcal{L}_\mathcal{A}$) $\mathcal{L}_\mathcal{A}$ (for all $\mathcal{L}_\mathcal{A}$) $\mathcal{L}_\mathcal{A}$ (for all $\mathcal{L}_\mathcal{A}$) $\mathcal{L}_$

- A soufflé of cold, atomic gas clouds presented as part of the ATCA HI Galactic Centre Survey
	- Likely embedded in a galactic outflow driven by stellar winds or similar mechanism

McClure-Griffiths 2013

 $\mathcal{D}^{\mathcal{A}}$

abundance evolution in a flat cold dark matter universe with h = 0.67, $\mathcal{D}^{\text{max}}_{\text{max}}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$

SETTING BOUNDS

Observe that for fixed metallicity and density, the cooling rate is monotonically decreasing with temperature

П

 Use this upper limit to set conservative limits on DM heating by assuming all heating due to non-standard sources

molecules as function of temperature, for gas having a hydrogen number

respectively. The labels in the plot refer to different amount of metals, for

6 *U. Maio et al.*

MODELLING GAS CLOUDS

ature (T ¯), gas cloud radius, and density (α), and density (α) are taken from McClure-Griths while the metallicity (α) are taken from McClure-Griths while the metallicity (α) are taken from McClure-Griths whi

relative to solar metallicity (*Z/Z*), presence of dust grains in the simulation, ultraviolet (UV)

MODELLING GAS CLOUDS

ULTRA-LIGHT DARK PHOTON DM

- Simple local $U(1)$ extension of the Standard Model
- The additional gauge boson can be treated as a DM candidate

$$
\mathcal{L}=\mathcal{L}_{SM}-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}+m^2A'_\mu A'^\mu-\frac{e}{\left(1+\epsilon\right)^2}\left(A_\mu+\epsilon A'_\mu\right)J_{EM}^\mu,
$$

- **Ultra light dark photons produce an oscillating electric field** through mixing with the SM photon
- **Plasma of free electrons and ions in the gas cloud are accelerated** and eventually heat the gas through subsequent scattering

ULTRA-LIGHT DARK PHOTON DM

DM NUCLEON SCATTERING

- Consider strongly interacting or heavy, composite dark matter \Box
- **For massive candidates, the flux at fixed radii from the galactic** centre decreases and for strongly interacting models the natural overburden of terrestrial experiments limits detectability
- **Dur gas clouds are well suited to constrain these models due to** their size and location

$$
m_x \simeq 3 \times 10^{60} \text{ GeV} \left(\frac{r_g}{10 \text{ pc}}\right)^2 \left(\frac{\rho_x}{10 \text{ GeV/cm}^3}\right) \left(\frac{v}{0.001c}\right) \left(\frac{t_g}{10^6 \text{ yrs}}\right) \left(\frac{10}{N_f}\right).
$$

DM NUCLEON SCATTERING

INTERGALACTIC MEDIUM

Pritchard, 2012

THE FIRST STARS AND GALAXIES

Dark Matter Halos collapse (low mass halos first)

Gas assembles in massive enough halos and begins

The first PopIII stars form

PULLING STRINGS

HALOS AND IMPORTANT UNCERTAINTIES

Halo Mass Profiles

Mass Concentration ArXiv:1706.04327 **Parameter**

ArXiv:1411.3783

ENERGY INJECTION FROM DM

ENERGY INJECTION FROM DM

HEATING THE CGM

DM virializes, producing a potential, with gas in hydrostatic equilibrium

$$
\nabla p_b = -\rho_b \nabla \phi
$$

Assuming adiabatic evolution,

$$
\frac{p_b}{\bar{p}_b} = \left(\frac{p_b}{\bar{\rho}_b}\right)^{\frac{5}{3}}
$$
\n
$$
\frac{p_b}{\bar{p}_b} = \left(\frac{p_b}{\bar{\rho}_b}\right)^{\frac{5}{3}}
$$
\n
$$
\frac{T_{vir}}{\bar{T}} = -\frac{1}{3} m_p \phi / k_b
$$
\n
$$
\frac{\rho_b}{\bar{\rho}_b} = \left(1 - \frac{2}{5} \frac{\mu m_p \phi}{k_b \bar{T}}\right)^{\frac{3}{2}}
$$
\nfor

\n
$$
\bar{T} = \bar{p}_b \mu m_p / k_b \bar{\rho}_b
$$

$$
\delta_b = \frac{\rho_b}{\bar{\rho}_b} - 1 = \left(1 + \frac{6}{5} \frac{T_{vir}}{\bar{T}}\right)^{\frac{3}{2}} - 1
$$

$$
\delta_b = \left(1 + \frac{6}{5} \frac{T_{vir}}{(\bar{T} + \Delta T)}\right)^{\frac{3}{2}} - 1
$$

SUPPRESSION OF GAS INFALL

ALL THE STRINGS

- **To arrive at a self-consistent description must include and** propagate DM energy injection across cosmic history
- **IGM** heating and ionisation, as well as additional radiation field
- **Productions and dissociation of molecular hydrogen**
- modification of stellar evolution П
- potential formation of exotic objects like Dark Stars and \Box direct collapse black holes

POTENTIAL AVENUES OF DETECTION

CONCLUSIONS

- **E** Astrophysical systems are well suited probes of non-gravitational Dark Matter interactions
- **Modification of the galactic and IGM gas's thermo-chemical** properties can be used to set bounds on these interactions
- **Future observations from the Cosmic Dawn may provide DM** signatures that are non-degenerate with the expected baryonic phenomenology
- The usual dark matter-baryon physics detangling caveats apply

Thank You!