Dark Matter search with noble gases

Carla Macolino (Irene Joliot-Curie lab. Orsay/CNRS)

EDSU2020 13.03.2020

The WIMP miracle OM was in full thermal equilibrium with SM particles at sufficiently high temperature T: esenehe $\frac{d m_{\chi}}{d t_{dt}} \times 3 H_{M_{\chi}} = -\langle \langle \langle \rangle \rangle \langle \langle h_{\chi}^2 \rangle - h_{\chi}^2 \rangle \rangle$ **deterie**lhadebyb $\langle \sigma v \rangle$ Increasing $\langle \sigma_{A} v \rangle$ $\sigma_{\langle v \rangle} \dot{v}_{\langle v \rangle} \chi \chi_{\chi} \rightarrow SM M (thermal average)$ **Freeze-out** when annihilation rate falls idate talks bed ata di tiqhentini-" N_{EQ} beyond expansion rate $n_{\rm xeq}$ **leglebleen the**he $\rightarrow a^3 n_{\gamma} \sim const$ **By**layh**e**lielielie x=m/T (time \rightarrow) The abundance of DM related to its cross section Ω_{DM}^{0} Ω_{A}^{0} v > 1weakly interactive massive particle (WIMP) comoving number density matches the one inferred from cosmological observation:

- Weak-scale cross section: $<\sigma v>\simeq 3\cdot 10^{26}cm^3s^{-1}$
- non relativistic particle: mass between 100 GeV and 1 TeV

The direct detection principle

The direct detection principle

Expected rate in a detector :

the expected rate translates in a range of values for the nucleon-WIMP cross section and the WIMP mass (spin-dependent or spin-independent)

Using liquid noble gases

Element	Xenon	Argon	Neon
Atomic Number Z	54	18	10
Atomic mass A	131.3	40.0	20.2
Boiling Point T_b [K]	165.0	87.3	27.1
Liquid Density @ T_b [g/cm ³]	2.94	1.40	1.21
Fraction in Earth's Atmosphere [ppm]	0.09	9340	18.2
Price	\$\$\$\$	\$	\$\$
Scintillator	\checkmark	\checkmark	\checkmark
$W_{ph} (\alpha, \beta) [eV]$	17.9 / 21.6	27.1 / 24.4	
Scintillation Wavelength [nm]	178	128	78
Ionizer	\checkmark	\checkmark	_
W (E to generate e-ion pair) [eV]	15.6	23.6	
Experiments [stopped, running, in preparation]	~ 5	~ 5	1/2

- •Rate increases with A²
- Scintillation wavelength matches PMT transparency window
- High density
- No long lived isotopes (except for Ar)

Improving sensitivity

Spin-independent WIMP-nucleon interaction

6

Improving sensitivity

In this talk I will focus on larger mass WIMP search with nobles gases. For WIMP masses less than 3 GeV/c2 the He based **NEWS-G** experiment is currently under construction at SNOlab. See talk by G. Gerbier on this subject

Single phase / double phase

Spin-independent WIMP-nucleon interaction

S1: Scintillation in theliquid phaseS2: secondary scintillationfrom ionization electronsdrifted to the gas phase

Dual phase TPC advantages

Background rejection: charge to light ratio + fiducialization and multi-scatter id.

S1: prompt scintillation signal in LXe S2: secondary scintillation from drifted e⁻ in GXe

Direct search for WIMPs: status

Spin-independent WIMP-nucleon interaction

The XENON1T detector @ LNGS

The XENON1T TPC

- 3.2 t LXe in total @180K
- 2 t in the TPC
- 97 cm drift, 96 cm diameter
- Drift field ~100V/cm

Highly reflective PTFE walls

EPJC 75 11 (2015)

248 3-inch PMTs

35% QE @ 178nm
Digitize at 100MHz
SPE acceptance
~94%

12

Dark matter search results

UNBLIND + DESALT

- Unbinned Profile likelihood analysis in 3D space (cS1, cS2, R)
- Events passing all selection criteria are shown as pie charts representing the relative PDF from each components for the best-fit model of 200 GeV/c² WIMP and $\sigma_{SI} = 4.7 \cdot 10^{-47} \text{ cm}^2$

Width of pie represents WIMP probability

Dark matter search results

X E N O N Derk Matter Project

- XENON1T is 7 times more sensitive compared to previous experiments (LUX, PandaX-II)
- Most stringent 90% confidence level upper limit on WIMP-Nucleon cross section at all masses above 6GeV

σ_{SI} below 4.1 · 10⁻⁴⁷ cm² at
 30 GeV/c²

XENONnT

- XENONnT TPC currently being assembled
- Commissioning within 2 months
- First data this summer

LZ

The OD

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe ~8.5 MeV γ-rays from thermal neutron capture
- Draw on experience from Daya Bay

See talk by B. Penning "The LZ Outer Detector" DM16 Thu afternoon

The Skin

- 2 tonnes of LXe surrounding the TPC
- 1" and 2" PMTs at the top and bottom of the skin region
- Lined with PTFE to maximize light collection efficiency
- Anti-coincidence detector for γ-rays
- Tag individual neutrons and γ-rays
 Characterize BGs in situ

→ Enables discovery potential

C. Macolino

EDSU2020 Guadeloupe

90% CL minimum of 1.6 x 10^{-48} cm² at 40 GeV/c²

TAUP2019

C. Macolino

LZ Status

EDSU2020 Guadeloupe

DarkSide-50

10⁻⁵

10-6

10⁻⁷

10-8

0

2000

4000

Even

- Underground Ar: low Ar³⁹ activity.
- Extracted from an underground CO₂ field in Cortez, Colorado.
- Purified by a cryogenic distillation column at FNAL. CO_2 , O_2 , N_2 and He all < 10 ppm.
- 155 kg UAr shipped to LNGS.

EDSU2020 Guadeloupe

6000

Phys. Rev. D 93, 081101 (2016) S1_{Late} [PE]

C: Cryostat

F: Fused Silica

8000 10000 12000 14000 16000 18000 20000

PMTs

P:

DarkSide-50

EDSU2020 Guadeloupe

S2-only dark matter search

Future: DARWIN

- XENON1T collected more than 1 tonne*yr exposure and set the most stringent limit on WIMP-nucleon cross section versus WIMP mass
- XENONnT is under construction and is expected to start commissioning in 2020
- nT: an order of magnitude improvement in sensitivity with respect to 1T with 20 tonne*yr exposure

C. Macolino

EDSU2020 Guadeloupe

Future: GADMC Global Argon Dark Matter Collaboration

Study a new layout Lower threshold with dedicated external NR calibration SiPMs and/or new light extraction.

... and increase exposure.

Summary

- A very rich program in the direct dark matter search with noble gases
- TPC detection technology is being pushed at its best performances
- Future detectors based on Xenon and Argon will probe the entire parameter space for WIMPs with mass above 3 GeV/c2 down to the irreducible neutrino background

Backup

26

Background for DARWIN

DARWIN

NR: neutrinos fro neutrino-nucleus

LZ

Expected backgrounds

5.6 tonne fiducial volume, 1000 live-days 1.5-6.5 keVee (6-30 keVnr) single scatters, anti-coincidence with vetoes

Background Source		ER [cts]	NR [cts]	
Detector components		9	0.07	
Dispersed Radionuclides — Rn, Kr, Ar		819	—	
Laboratory and Co	smogenics	5	0.06	
Surface Contamination and Dust		40	0.39	
Physics Backgrounds — 2β decay, neutrinos*		322	0.51	
Total		1195	1.03	
After 99.5% ER discrimination, 50% NR efficiency		5.97	0.51	
* not including ⁸ B and hep D.S. Akerib et al (LZ collaboration) 2018 <u>arXiv:1802.06039</u>				
A. Fan (SLAC)	TAUP2019			

IAUP2019

LZ Status

D.S. Akerib et al (LZ collaboration) 2018 arXiv:1802.06039

2020 Guadeloupe

Outlook

DARWIN

- 29 groups, 12 countries
- Working towards a CDR and a TDR
- DARWIN in the APPEC roadmap
- Construction timeline 2025

www.darwin-observatory.org

Detector

- Demonstrators
- Mechanical mockups
- Screening of new materials
- testing different photosensors technologies

Challenges

- Electron drift over 2.5 meters. HV more than -100 kV for drift field of 0.5 kV/cm
- Background: reduce ²²²Rn (material screening, distillation) and (α,n) from PTFE
- Purification and distillation: need high speed for large quantity of LXe
- Light collection efficiency: 4pi photosensors
- Photosensors: high QE, low dark rate, stability

Solar neutrinos

Solar pp and ⁷Be neutrinos

31

- Continuous recoil spectrum at low energy
- Expected events at 2-30 keV and 30 t fiducial mass:
 - 7.2 cts/day for pp neutrinos
 - 0.9 cts/day for ⁷Be neutrinos
- 2%(1%) stat. precision after 1 year (5 years)

Neutrinos survival probability

DARWIN

- 2850 pp neutrinos/year
- 1% stat. precision with 100 ton x year exposure