Vision of Future Colliders

Yifang Wang Institute of High Energy Physics, CAS KAIST-KAIX, July 8, 2019

- The following is only my personal view
- I am not representing my organization, nor my country

Why Future Colliders ?

- Science
 - Fundamental questions:
 - Space, time, Universe, Big bang, elementary particles, unification,...
 - Immediate questions:
 - Higgs properties, EW, QCD, flavors, searches for SUSY, extra-D, compositeness, dark matter, sterile/seasaw neutrinos, ...
 - Evaluation: directly or indirectly related to fundamental problems ? single or multiple purpose ? (concrete) searches or measurements ? new search territory ? sensitivity ?
 - Don't forget about the gut feeling and luck
- Other benefits:
 - Technology, education and personal Training, etc.

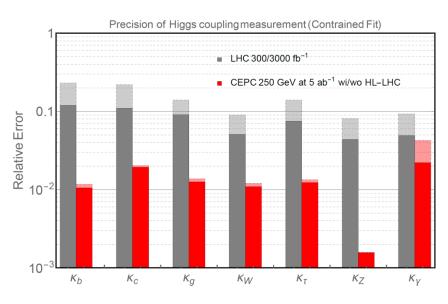
What colliders to choose from?

- e⁺e⁻
 - Linear Collider:
 - ILC: 250 GeV, 1×10^{34} cm⁻²s⁻¹, ~7B\$, ~2025/2035
 - CLIC: 380 GeV, $1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, ~7B\$, ~2030/2040
 - Circular Collider
 - FCC-ee: 90-350 GeV, 8×10³⁴ cm⁻²s⁻¹, ~10B\$, ~2030/2040
 - CEPC: 90-250 GeV, 5×10³⁴ cm⁻²s⁻¹, ~5B\$, ~2022/2030
- PP
- FCC-hh: 100 TeV, ~1×10³⁵ cm⁻²s⁻¹, ~20B\$, ~2050/2060
- FCC-hh(Low), 40 TeV, ~1×10³⁵ cm⁻²s⁻¹, ~10+5B\$, ~2030/2040
- SPPC: 100 TeV, ~1×10³⁵ cm⁻²s⁻¹, ~10B\$, ~2040/2050
- ep
- μ⁺μ⁻
- Proton driver: muon cooling ?
- e⁺: enough intensity ?
- wake-field acceleration
 - Beam quality, power efficiency, ...
 - may be used by CEPC(ILC & CLIC ?) as injectors

Sciences

- No guaranteed discoveries
- At the turning point
- Best approach?
 - "small cost" to look for hints. If yes, go for direct searches
 - My favorite:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i} \qquad \delta \sim c_i \frac{v^2}{M^2}$$


No signal at LHC:

Direct searches: M ~ 1 TeV 10% precision: M ~ 1 TeV Look for signals at CEPC/FCC-ee: 1% precision → M ~10 TeV

m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)²!?

10 TeV: 10^{-4} New Physics < 10 TeV ?

Technology & Innovation

- New machine should have new technologies
 - New technologies for our own advancement
 - SC technologies, SRF cavities, ...
 - We need to ask for enough advancement
 - bring something new to the society, to gain public support
 - WWW, SC magnet for MRI, accelerator applications,...
 - It is hard to plan, but we should try
- New to balance feasibility, cost and aggressiveness
- Realistic possibilities ?
 - High Tc super-conducing technologies: cables, magnet, ...
 - SPPC's choice: Iron-based HTC, 3-5\$/(KA·m)
 - Table-top accelerators: laser/plasma accelerators
 - CEPC injector
 - SRF cavities: quantum computing ?

— ...

Money?

- Too expensive, we can only afford 1 machine in the world ?
 - The US spending(as a fraction of GDP) is less than that of 60's

BEPC:Cost/4yrs/GDP of China 1984 \approx 0.0001SSC:Cost/10yrs/GDP of US 1992 \approx 0.0001LEP:Cost/8yrs/GDP of EU 1984 \approx 0.0002LHC:Cost/10yrs/GDP of EU 2004 \approx 0.0003ILC:Cost/8yrs/GDP of JP 2018 \approx 0.0002CEPC:Cost/8yrs/GDP of China 2020 \approx 0.00005SppC:Cost/8yrs/GDP of China 2036 \approx 0.0001

- Now, Asia stands for ~40% of the world economy, can we double(%GDP of 60's in the US+EU) the world HEP spending ?
- Asia countries should
 - Propose new machines, support each other, and build regional centers
 - Enhance investment in HEP from all Asia countries
 - coordinate national plans

Find new money, spend it wisely

How to get a project?

- Science & Cost: performance-cost ratio
- Feasibility: Technology, Schedule, man power, etc.
- International issues
 - Cooperation
 - A must
 - Competition
 - Also a must
 - Lessons from SSC & ILC
 - Non-science perturbation:
 - Relations between countries
 - deals between counties/regions,...
 - Personality of leaders
- We need to have some luck

Strategy: My Personal View

- Highest priority: Higgs coupling to 1%
 - FCC-ee and CEPC should proceed in parallel until one is approved:
 - Competition can enhance the chance for both
 - Higgs factory is too important to miss
 - Try to get one of the ILC and CLIC
 - Linear technology can not be ignored
 - High energy lepton collider(~10 TeV) will be needed, if new physics is discovered
 - Continue to lobby for ILC, and continue the CLIC effort
 - Only ILC/CLIC is not enough, multi-detectors needed anyway: we should forget about the push-pull option
- Major R&D effort for pp collider:
 - Aiming for (iron-based) HTC magnet(~ 10-15 yrs): FCC-hh/SPPC
 - Low energy FCC-hh(40 TeV) option lacks the technology impact
- Maintain R&D effort for $\mu^+\mu^-$ and wake-field acceleration

Welcome criticism

My view on all choices

	Science	Upgradability	Technology maturity	Low cost ?	Available now ?
ILC	* * * *	*	* * * *	* * * *	* * * * *
CLIC	****	**	***	* * *	* * * *
CEPC	****	* * * *	***	* * * * *	* * * * *
SppC	****	*	*	**	*
FCC-ee	****	* * * *	* * * *	* * * *	* * * * *
FCC-pp	****	*	**	*	**
VLHC(40 TeV)	***	**	***	* * *	* * * * *
Muon collider	* * * * *	**	?	?	?
Plasma	* * * * *	**	??	* * *	?