

Manqi Ruan

Higgs @ LHC

S/B ~ 1:1E10 !!!

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

Higgs @ Electron Positron Higgs Factories

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)*Br(H\rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments					
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)					
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings					

Multiple e+e- Higgs factories are proposed

ILC (a): TDR released in 2013 FCC (b): CDR released in 2019 CEPC (c): CDR released in 2018 CLIC (d): CDR released in 2013

10/07/19

Comparison: Linear & Circular

From A. Blondel's presentation at CEPC Oxford WS

summary of national priorities and interests for large future HEP projects :

country	item #	e+e- e-w,H, (ILC,)	e+e- incl. ttbar (FCC-ee)	e+e- incl. HH (ILC+,CLIC)	hh beyond LHC	hh he-LHC	hh FCC	eh	accel. R&D	R&D magnets FCC,he-LHC	R&D novel PWA,μ+μ-	non- accelerator (DM,ndbd)	neutrino physics	intensity frontier	nuclear (FAIR,EIC)	astro- particle
Α	108	1			3				2			√			٧	√
В	122	1		_												
CH	142	1	1		3		3		2	2	3		٧	٧	٧	٧
CZ	88	3		3	2	2	2		1	1	1		٧		4	
D	33	1		1	3	3	3		2	2	2	4	٧	٧	٧	٧
DK	61	3	3		3		3		2	2	2	1	>	٧	٧	٧
E	31	1	3	1	3	3	3		2	2	4		٧		٧	٧
F	15,116,155	1	٧	٧	3		3	٧	2	2	٧	٧	V	٧	٧	√
FIN	55	1		1									٧		٧	٧
I	26,138	1	1		3		3		2	2	2	٧	>	٧		√
IL	34	٧			V							٧	V	٧		
N	43	1		1					3		3	٧			٧	٧
NL	166	1	3	2	3		3		2	2	3	٧	V	٧		٧
PL	125	1	٧	٧					2							
RO	73												٧	٧		
S	127	1		1					2	2	٧	٧	٧	3		٧
SLO	78															
UK	134,144	1		1	2		2	2	3	3	٧	٧	٧		٧	
tota	l score:	13,67	3	6,83	3,67	1,17	3,33	0,5	6,67	5,33	3,75					

1...4: priority 1 to priority 4;

mentioned without (clear) assignment of priority

total score: $=\Sigma(1/priority)$ where given: \forall not counted

Notes: - table reflects status of inputs submitted by Dec. 2018

- intended for overview of physics or projects priorities

– see disclaimers on previous and following pages!

Summary of National Inputs

S. Bethke (MPP Munich)

ESPP Symposium, Granada, 15 May 2019

- clear <u>preference</u> for an e+e- collider as the next h.e. collider:
 - as H-factory and for precision e.w. measurements (ILC, CEPC, FCC-ee, CLIC)
 - significant demands for upgradeability to access tt (ILC, CEPC, FCC-ee, CLIC) and also HH and ttH final states (ILC+; CLIC)

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings

Low Energy Booster (0.4Km)

- Searching for exotic Higgs decay modes (New Physics)
- Z & W factory: 100M W Boson, 100B 1 Tera Z boson
 - Precision test of the SM
- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
 - ...
- Heavy ion, e-p collision...

Complementary

e+ e- Linac (240m)

IP3

Physics Requirements

Detector:

To reconstruct all the physics objects with high efficiency, purity & resolution Homogenous & Stable enough to control the systematic

Requirements on the physics object

Low-level

- VTX: allows a precise flavor tagging & b/c-baryon reconstruction
- Tracks;
 - threshold < 150 MeV (for D*, K* cascade reconstruction),
 - momentum resolution < 0.1% for H->mumu reconstruction
- Clusters;
 - Ensure pi0 reconstruction at Z->tautau, Z pole, and potentially high energy runs

Final State Particle

- Lepton: Isolated, high energy muon/electrons: eff > 99% && mis-id < 1% for the Higgs recoil
- Photon;
- Charged/Neutral Hadrons;
- High Level Objects
 - Simple composited: Pi0, Ks, converted photons;
 - Tau;
 - Jets Massive bosons fragment into jets: BMR < 4%

CEPC Baseline Detector

An ILD-like detector at the CEPC

- Different collision environments/rates:
 - MDI design & Implementation: CEPC-SIMU-2017-001
 - The CEPC Event rate is significantly higher than linear colliders, charged kaon id can strongly enhance the CEPC flavor physics program
 - TPC Feasibility: JINST-12-P07005 (2017)
 - Pid using TPC dEdx and ToF: Eur. Phys. J. C
 (2018) 78:464

No power pulsing at CEPC detector

- A significant reduction of the readout channel, especially the Calorimeter Granularity: JINST-13-P03010 (2018)
- HCAL Optimization

3 Tesla Solenoid: requested by the Accelerator/MDI

CEPC Baseline Software

Generators (Whizard & Pythia)

Data format & management (LCIO & Marlin)

Simulation (MokkaC)

Digitizations

Tracking

PFA (Arbor)

Single Particle Physics Objects Finder (LICH)

Composed object finder (Coral)

Tau finder

Jet Clustering (FastJet)

Jet Flavor Tagging (LCFIPLus)

Event Display (Druid)

General Analysis Framework (FSClasser)

Fast Simulation (Delphes + FSClasser)

CEPC-SIMU-2017-001, CEPC-SIMU-2017-002, (DocDB id-167, 168, 173) 10/07/19

General Software

ILCSoft

ILCSoft +
Development

Developments

Tracking: via high precision, low mass tracker

Reconstruction of $Ks(\Lambda)$ at Z pole (Preliminary)

Table 3: K_s^0 and Λ reconstruction performance.

Particle	K_S^0	Λ
ε_{R}	79.7%	65.1%
ε_{T}	39.8%	25.5%
P	89.7%	87.9%
$\varepsilon_{R} \cdot P$	0.715	0.572
$\varepsilon_{\mathrm{T}} \cdot P$	0.357	0.224

Statistic uncertainty of the mass/life time ~ 1 keV/0.3 ps Taifan Zhen

Leptons: every subsystem

BDT method using 4 classes of 24 input discrimination variables.

Test performance at: Electron = E_likeness > 0.5; Muon = Mu_likeness > 0.5 Single charged reconstructed particle, for E > 2 GeV: lepton efficiency > 99.5% && Pion mis id rate ~ 1%

Eur. Phys. J. C (2017) 77: 591

Kaon: tracker dEdx, + timing (via calo)

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Eur. Phys. J. C (2018) 78:464

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF)
Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Traing@KAIST

20

Photons: ECAL, but appreciate low-mass tracker

In the barrel region: Roughly 6-10% of the photons converts before reaching the Calorimeter.

For the unconverted photon: A critical energy of 200 MeV is observed.

Photon: resolution - ECAL

Yuqiao Shen & CEPC CDR

Before correction

The geometry defects correction could be efficiently corrected (Preliminary)

10² Energy [GeV]

After correction

Clustering – Separation - ECAL

Critical energy to separate an evenly decay π_0 : 30 GeV

Hang Zhao. CEPC CDR

Tau finding: Tracker & ECAL at hadronic events

TAURUS (Tau Reconstruction tools):

an overall efficiency*purity higher than 70% is achieved for qqtt, and qqtv events

Zhigang Wu, CEPC CDR

JETS: Tracker + Calorimeter - BMS of 3.8% reached, massive bosons separated

Peizhu Lai & CEPC CDR

WW sample: using µvqq sample, Plot: the visible mass without the muon CEPC-RECO-2017-002 (DocDB id-164), CEPC-RECO-2018-002 (DocDB id-171),

Jet Energy Scale & Resolution

- JES ~ with 1% of the unity (without correction)
- JER ~ 3.5% 5.5% for E ~ 20 100 GeV Jets
- Both Superior to LHC experiments by 3-4 times

Peizhu LAI

10/07/19 Traing@KAIST 26

Separation of full hadronic WW-ZZ event

- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response

Hadronic WW/ZZ separation: need not only good detector, but also good color singlet identification algorithms...

Equal mass condition |M12 - M34| < 10 GeV: At the cost of half the statistic, the overlapping ratio can be reduced from 58%/53% to 40%/27% for the Reco/Genjet

Flavor Tagging: every subsystem, but essentially relies on vertex detector

- Using LCFIPlus Package from ilcsoft
- At Higgs->2 jet samples:
 - Clear separation between different decay modes
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%

Physics Objects

10/07/19 Traing@KAIST

Applied on Higgs physics, et.al

Precision Higgs Physics at CEPC

Initial assessments of Higgs physics potential at the CEPC based on the white paper (to be submitted)

Chinese Physics C Vol. XX, No. X (201X) 010201

Precision Higgs Physics at the CEPC*

Fenfen An^{4,21} Yu Bai⁹ Chunhui Chen²¹ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²⁰ Yuanning Gao⁵ Shao-Feng Ge^{15,27} Jiayin Gui³ Fangyi Guo^{1,4} Jun Guo^{10,11} Tao Han^{5,29} Shuang Han⁴ Hong-Jian He^{10,11} Xianke He¹⁰ Xiao-Gang He^{10,11} Jifeng Hu¹⁰ Shih-Chieh Hsu²⁰ Shan Jin⁸ Maoqiang Jing^{4,7} Ryuta Kiuchi⁴ Chia-Ming Kuo¹⁹ Pei-Zhu Lai¹⁹ Boyang Li⁵ Congqiao Li³ Gang Li⁴ Haifeng Li¹² Liang Li¹⁰ Shu Li^{10,11} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang⁴ Libo Liao⁴ Bo Liu^{4,21} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{24,28} Xinchou Lou^{4,6,31} Lianliang Ma¹² Bruce Mellado¹⁷ Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²² Zhuoni Qian¹⁸ Nikolaos Rompotis²⁰ Manqi Ruan⁴ Alex Schuy³⁰ Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²³ Dayong Wang³ Jing Wang⁴ Lian-Tao Wang²⁵ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,11} Weiming Yao²⁶ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴

https://arxiv.org/pdf/1810.09037.pdf

Pheno-studies: EFT & Physics reach

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

Training program: objectives

- Understand the information flow of the phenosimulation study
- 1st hand experiences on the software tools
 - Generator & Delphes
 - G4 Simulation Reconstruction
 - Basic analysis
 - Display
- Promote your own studies

Theory- Pheno: by Felix, Horge & Zhen

Detector-Analysis: by Dan & Manqi

CEPC Baseline Software

A short cut via Fast simulation is very efficiency: need the validation of full simulation

Training

- 7.10 Felix & MQ, Dan
 - Briefing
 - Pheno exercise: Generator & Fast Simulation Delphes (Felix)
 - Installation of the virtual machine (20 min)
- 7.11 Dan
 - Verification of Installation
- 7.12 Felix
 - Generator & Fast simulation

Training

- 7.15 Dan & MQ
 - Simulation of Single Particle event, the corresponding reconstruction & display
- 7.16 Dan & MQ
 - Full detector performance study: Boson Mass Resolution
 - Benchmark analysis of Higgs recoil
- 7.17 Zhen
 - Higgs Kappa Fit
- 7.18 Jorge
 - EFT Fit

Bring-home msgs

- Electron Positron Higgs factories: a must for the future HEP exploration
- Pheno-Simulation study: the standard methods to
 - Explore the physics potential
 - Benchmark the detector Design/optimize, and software development
 - Pheno study provides the benchmark and interpretation;
 - Simulation bridges the theory/pheno and the detector... and talk also to the accelerator
- HEP experiments need high efficiency, high purity, and high accuracy of the reconstruction of key physics objects
- The CEPC requirement is properly addressed by its baseline detector design

backup

Jet confusion: the leading term

- Separation be characterized by
- Final state/MC particles are clustered into Reco/Genjet with ee-kt, and paired according to chi2
- overlapping ratio = $\sum_{bins} min(a_i, b_i)$

$$\chi^2 = \frac{(M_{12} - M_B)^2 + (M_{34} - M_B)^2}{\sigma_B^2}$$

- WW-ZZ Separation at the inclusive sample:
 - Intrinsic boson mass/width lower limit: Overlapping ratio of 13%
 - + Jet confusion Genjet: Overlapping ratio of 53%
 - + Detector response Recojet: Overlapping ratio of 58%

Performance at the CDR baseline

- Determined by
 - Detector design
 - Reconstruction algorithm
- Characterized at
 - Physics Objects
 - Higgs Signal
 - Benchmark Physics Analyses

Requirements on the physics object

Low-level

- VTX: allows a precise flavor tagging & b/c-baryon reconstruction
- Tracks;
 - threshold < 150 MeV (for D*, K* cascade reconstruction),
 - momentum resolution < 0.1% for H->mumu reconstruction
- Clusters;
 - ensures pi0 reconstruction at Z->tautau, Z pole, and potentially high energy runs
- Final State Particle
 - Lepton: Isolated, high energy muon/electrons: eff > 99% && mis-id < 1% for the Higgs recoil
 - Photon;
 - Charged/Neutral Hadrons;
- High Level Objects
 - Simple composited: Pi0, Ks/Lambda, converted photons;
 - Tau;
 - Jets Massive bosons fragment into jets: BMR < 4%

Key questions: quantification & control

- Flavor Physics:
 - The physics impact of lowing the thresholds (Pt/energy for charged tracks/photons): essential for flavor physics
 - Object finding inside the jets (for the flavor physics), i.e., tau finding inside a b-jet
 - Requirement for the VTX reconstruction
- Jet Clustering & Color singlet: QCD, Higgs & EW
 - How to count, and match precisely the final state jets
- Further optimization: Optimal configuration
- Requirement on the stability & monitoring: EW precisions
- Many questions can start with CDR sample analysis!

Summary

- CEPC, a super Higgs/W/Z factory, requires high efficiency, purity, and precision reconstruction of all key physics objects
 - Tracker & Calorimeter intrinsic resolution: better is better!
 - BMR < 4% is crucial: di-jet recoil mass at qqH events
- CEPC baseline fulfills the physics requirements especially for the Higgs measurements, a reasonable starting point for future performance & optimization study
 - All key physics objects tamed
 - Clear Higgs signature in all SM Higgs decay modes
 - 0.1% 1% relative error in Higgs coupling measurements
- Future works:
 - To quantify more precisely the requirement on EW, QCD & Flavor: Digest the CDR samples...
 - Specify more benchmarks, and investigate into more innovative designs
 - Your input & contribution

The Sim Group will provide the Full Set of SM Background, For any Traing@KAIST

10/07/19

Two classes of Concepts

- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, Baseline)
 - + Silicon tracking (SiD-like)
- Low Magnet Field Detector Concept (IDEA)
 - Wire Chamber + Dual Readout Calorimeter

10/07/19

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

ard&confld=14816 Traing@KAIST

Status of simulation-performance study

	Geant4- Simulation	Digitization	Reconstructi on	Performance -Object	Performance -Benchmark
IDEA					
Full-Silicon					
APODIS					

Jets at the Higgs Signal

SM Higgs

- 0 jets: 3%
 - $Z\rightarrow II$, vv (30%); $H\rightarrow 0$ jets (~10%, $\tau\tau$, $\mu\mu$, $\gamma\gamma$, $\gamma Z/WW/ZZ\rightarrow leptonic)$
- 2 jets: 30%
 - Z→qq, H→0 jets.
 - Z→II, vv; H→2 jets.
 - Z→II, vv; H→WW/ZZ→semi-leptonic.
- 4 jets: 59%
 - Z→qq, H→2 jets.
 - Z→II, vv; H→WW/ZZ→4 jets.
- 6 jets: 8%
 - Z→qq, H→WW/ZZ→4 jets.

97% of the SM Higgsstrahlung Signal involves Jets

Final state

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z→II, vv (30%); H→0 jets
 - 2 jets: 30%
 - Z→qq, H→0 jets.
 - Z→II, vv; H→2 jets.
 - Z→II, vv; H→WW/ZZ→semi-leptonic.

- 1/3 of the Higgs events
 - Access to all SM Higgs decay modes
 - Doesn't need color singlet identification: at most 1 color singlet thus naturally identified

- 4 jets: 59%
 - Z→qq, H→2 jets.
 - Z→II, vv; H→WW/ZZ→4 jets.
- 6 jets: 8%
 - Z→qq, H→WW/ZZ→4 jets.

- 2/3 of the Higgs events
 - Dominate statistic of H→bb, cc, gg, WW, ZZ, Zγ
 - Color singlet identification potentially a leading systematic, huge impact
- 2/3 of the events need to group the final state particles into Color-Singlet: currently via Jet Clustering-Matching (analyzed in WW/ZZ separation study ~ 50% of 4-jets event have correct pairing)

Physics benchmarks

- Higgs measurement with 2-jet event
 - qqH, Higgs→*ττ*;
 - Percentage level accuracy, sensitive probe to NP
 - qqH, Higgs→invisible;
 - Key measurement for the DM search, significant advantage V.S. LHC
 - vvH, H→bb (W fusion Xsec measurement)
 - Key input & Bottleneck for the Higgs width measurement limitation for Higgs couplings to major decay modes (bb, gg, WW, ZZ, tautau)
- Full Simulation analyses at baseline Detector
- Dedicated Fast simulation tool developed, and validated on Full Simulation result

Key physics performance: BMR

Fig. 8. (color online) Distributions of the reconstructed total visible invariant mass for $H \to bb, cc, gg$ events after event cleaning and fitted by Gaussian functions. The resolutions (sigma/mean) of the fitted results are 3.63% (bb), 3.82% (cc), and 3.75% (gg).

- Boson Mass resolution:
 - Characterized by the Higgs mass resolution with di-gluon final state
- Baseline reaches a BMR of 3.8%
- Fast Simulation: extract 4 momentum of the hadronic system (di-jet), smear its energy according to BMR (jet direction precision ~ 1%, negligible w.r.t energy reconstruction)

qqH, H->tautau

 The recoil mass of the di-jet system is essential for the separation of ZZ background

qqH, H->tautau

 Considering Only ZZ background and Normalize according to full sim result (efficiency, statistics, accuracy ~ 0.9% at BMR = 3.8%)

qqH, H->invisible

- Similar behavior as the ZZ is the major background
- Y axis: accuracy at sigma(ZH)*Br(H->inv) = 100 fb

vvH, H->bb & total width

•
$$g^2(HXX) \sim \Gamma_{H \to XX} = \Gamma_{total}^* Br(H \to XX)$$

- Branching ratios: determined simply by
 - $\sigma(ZH)$ and $\sigma(ZH)*Br(H\rightarrow XX)$
- Γ_{total}: determined from:
 - − From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - From $\sigma(ZH)*Br(H\rightarrow bb)$, $\sigma(vvH)*Br(H\rightarrow bb)$, $\sigma(ZH)*Br(H\rightarrow WW)$, $\sigma(ZH)$

A combined accuracy of 2.8% for the Higgs total width measurements; dominated by W fusion measurement (with accuracy of 2.6%)

 $\sigma(vvH)*Br(H->bb)$: major background are ZZ and ZH (Z->vv)

Recoil mass PDF at different BMR

PS: at 240 GeV center of mass energy, the Xsec of ZH, Z->vv is 7 times larger than The W fusion (40/5.4 fb)

vvH, H->bb

- Similar behavior as the ZZ is the major background
- Y axis: accuracy at₁sigma(ZH)*Br(H->inv) = 100 fb

2-jet Higgs benchmarks at 240 GeV

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
σ(qqH, H→inv)	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→ττ)	0.85%	0.9%	1.0%	1.1%

- From qqH, H->inv/tautau: BMR < 4%
- From W fusion: should pursue better BMR even up to 2%...

Separation of full hadronic WW-77 event

The CEPC Baseline could separate efficiently the WW-ZZ with full hadronic final state.

Critical to develop color singlet reconstruction: improve from the naive Jet clustering & pairing.

Quantified by differential overlapping ratio.

Control of ISR photon/neutrinos from heavy flavor jet is important.

Pheno-studies: EFT & Physics reach

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

Pheno-studies: High order corrections

$\sqrt{s} \; (\text{GeV})$		LO (fb)	NLC	NLO Weak (fb)		NNLO mixed electroweak-QCD (fb)			
		$\sigma^{(0)}$	$\sigma^{(\alpha)}$	$\sigma^{(0)} + \sigma^{(\alpha)}$	$\sigma_Z^{(lphalpha_s)}$	$\sigma_{\gamma}^{(\alpha\alpha_s)}$	$\sigma^{(lphalpha_s)}$	$\sigma^{(0)} + \sigma^{(\alpha)} + \sigma^{(\alpha\alpha_s)}$	
240	Total	223.14	6.64	229.78	2.42	0.008	2.43	232.21	
	L	88.67	3.18	91.86	0.96	0.003	0.97	92.82	
	\mathbf{T}	134.46	3.46	137.92	1.46	0.005	1.46	139.39	
250	Total	223.12	6.08	229.20	2.42	0.009	2.42	231.63	
	L	94.30	3.31	97.61	1.02	0.004	1.02	98.64	
	${ m T}$	128.82	2.77	131.59	1.40	0.005	1.40	132.99	

Correction at 1% level with NNLO calculation.

Q.Sun, et.al https://arxiv.org/pdf/1609.03995.pdf

Lots of efforts needed to correctly interpret the measurements at CEPC

10/07/19 Traing@KAIST 61

Pi0: efficiency & mass resolution (Preliminary)

Arbor parameter & Photon Id - parameters need further optimization...

Higgs benchmark analyses

