
Jorge de Blas 
University of Padova & INFN-Sezione di Padova

CERN Open Symposium on the ESU: 
Summary of the EW/Higgs session

KAIST-KAIX Workshop for Future Particle Accelerators 

Daejeon, July 8, 2019



Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Introduction

• The main outcome of the LHC physics program may be the discovery of 
the Higgs and a first exploration of its properties.


• We have experimental evidence (Dark Matter, Neutrino masses, …) and 
solid arguments (e.g. Hierarchy problem) to expect the presence of new 
physics beyond the Standard Model:


EW hierarchy/Naturalness ⇒ Solutions expected to leave imprint on the 
interactions of the EW/Higgs sector 

• Therefore, a key component of the physics program at future colliders 
has revolved around the possible improvements on the knowledge of 
properties Higgs and, to less extent, the EW gauge bosons…


• … including physics that will remain largely beyond the reach of the (HL-) 
LHC, e.g. a measurement of the Higgs self-coupling
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Executive Summary

The Large Hadron Collider determines the energy frontier of experimental collider physics for the next two
decades. Following the current luminosity upgrade, the LHC can be further upgraded with a high energy,
intense electron beam such that it becomes a twin-collider facility, in which ep operates concurrently with
pp. A joint ECFA, CERN and NuPECC initiative led to a detailed conceptual design report (CDR) [1] for
the Large Hadron Electron Collider (LHeC) published in 2012. The LHeC uses a novel, energy recovery
linear (ERL) electron accelerator which enables TeV energy electron-proton collisions at high luminosity,
exceeding that of HERA by nearly three orders of magnitude. The discovery of the Higgs boson and the
surprising absence of BSM physics at LHC demand to extend the experimental base of particle physics
suitable to explore the energy frontier, beyond pp collisions at the LHC. Following a mandate of the CERN
Directorates and guided by an International Advisory Committee, this motivated representatives of more
than 100 institutes to proceed, as sketched here, with the development of the accelerator, physics and
detector prospects for the LHeC with the intention to publish an update of the CDR in early 2019 [2].

The very high luminosity and the substantial extension of the kinematic range in deep inelastic scattering
(DIS) compared to HERA, make the LHeC a uniquely powerful TeV energy collider, which rests on a
maximal exploitation of the LHC infrastructure. Realising an “Electrons for LHC” [3] programme would
create the cleanest, high resolution microscope accessible to the world, one may term a “CERN Hubble
Telescope for the Micro-Universe”. It is directed to unravel the substructure of matter encoded in the
complex dynamics of the strong interaction, a necessary input for future hadron colliders, including HL-
LHC. Being complementary to the LHC and a possible future e+e� machine, the LHeC would scrutinise the
Standard Model (SM) deeper than ever before, and possibly discover new physics in the electroweak and
chromodynamic sectors. Adding ep transforms the LHC into an outstanding, high precision Higgs facility.
Through the extension of the kinematic range by about three orders of magnitude in lepton-nucleus (eA)
scattering, the LHeC is the most powerful electron-ion research facility one can build in the next decades, for
elucidating the chromodynamic origin of the Quark-Gluon-Plasma and clarifying the partonic substructure
and dynamics inside nuclei for the first time.

The LHeC physics programme reaches far beyond any specialised goal, it complements and sustains
the physics at HL-LHC by providing new discovery potential in its final phase of operation. The LHeC
represents a unique opportunity for CERN and its associated laboratories to build a full, new accelerator
using modern technology. The ERL has major future applications, with ep at HE-LHC and FCC-eh, as an
injector for FCC-ee, as a �� Higgs facility [4, 5] or, beyond particle physics, as the highest energy XFEL of
hugely increased brightness [6]. The main LHeC innovation is the first ever high energy application of energy
recovery technology, based on high quality superconducting RF developments, a major contribution to the
development of green collider technology. A novel ep experiment enables modern detection technology, such
as HV CMOS Silicon tracking, to be further developed and exploited in a new generation, 4⇡ acceptance,
no pile-up, high precision collider detector in the decade(s) hence.

This paper focuses on physics providing also an overview on the machine. It is complemented by an
Addendum describing further aspects of the LHeC project such as the operation and timelines for the
accelerator and the detector. The development of multi-turn, high current, 802 MHz ERL technology,
required for the LHeC, is described in an accompanying, separate strategy contribution of the PERLE
Collaboration [7] on a 500MeV ERL facility at Orsay, based on its CDR [8] published in 2017.
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Large E reach ⇒ Direct searches

Mass reach limited by PDF
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Sensitivity to NP with strong interactions

Limited E reach for direct searches

Clean environment ⇒ precision measurements

Sensitivity to NP with EW interactions

A mix of the two (both pros and cons)
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Figure 1. Time line of various collider projects starting at time T0. Given are the luminosity values and energies, also shown
in Table 1. For the clarification of the meaning of a year of running, see the caption to Table 1. Figure 13 in the appendix
reworks this figure using the earliest possible start date (i.e. the calendar date of T0) given by the proponents.

At the heart of the Higgs physics programme is the question of how the Higgs boson couples to Standard Model elementary
particles. Within the SM itself, all these couplings are uniquely determined. But new physics beyond the SM (BSM) can modify
these couplings in many different ways. The structure of these deformations is in general model-dependent. One important
goal of the Higgs programme at the future colliders is to identify, or least constrain, these deformations primarily from the
measurements the Higgs production cross section, s , times decay branching ratio, BR)2. Ultimately, these studies will be used
to asses the fundamental parameters of the new physics models. For the time being, in the absence of knowledge of new physics,
we need to rely on a parametrisation of our ignorance in terms of continuous deformations of the Higgs boson couplings.
Different assumptions allow to capture different classes of new physics dynamics. First, in the so-called k-framework [13, 14],
often used to interpret the LHC measurements, the Higgs couplings to the SM particles are assumed to keep the same helicity
structures as in the SM. While it offers a convenient exploration tool that does not require other computations than the SM
ones and still captures the dominant effects of well motivated new physics scenarios on a set of on-shell Higgs observables,
the k-framework suffers from some limitations that will be discussed later and it includes some biases that will prevent to
put the Higgs programme in perspective with other measurements, see e.g. the discussion in Ref. [15] and at the beginning
of Section 3. An alternative approach, based on Effective Field Theory (EFT), considers new Higgs couplings with different
helicity structures, with different energy dependence or with different number of particles. They are not present in the SM but
they can potentially generated by new heavy degrees of freedom.

Furthermore, the sensitivity of the data to the Higgs self-coupling is analysed based on single-Higgs and di-Higgs production
measurements by future colliders. Due to lack of access to the simulated data of the collaborations, in particular differential
kinematical distributions, it is not possible in this case to perform a study with similar rigor as the analysis of the single-Higgs-
coupling presented above.

The Higgs width determination is also discussed as is the possible decay of the Higgs bosons into new particles that are
either "invisible" (observed through missing energy - or missing transverse energy) or "untagged", to which none of the Higgs
analyses considered in the study are sensitive. Rare decays and CP aspects are also discussed.

All colliders have provided extensive documentation on their Higgs physics programme. However, sometimes different
choices are made e.g. on which parameters to fit for and which to fix, what theoretical uncertainties to assume, which operators
to consider in e.g. the EFT approach. This would lead to an unfair comparison of prospects from different future colliders,
with consequent confusing scientific information. In this report, we aim to have a clear, reasonable and unique approach to the
assumptions made when comparing the projections for the future.

In general, one should not over-interpret 20% differences between projected sensitivities for partial widths of different
future projects. In many cases, these are likely not significant. For instance, CEPC and FCC-ee at

p
s = 240 GeV expect

2The Higgs couplings could be constrained less directly from processes with no Higgs in the final state or without even a non-resonant Higgs. But the main
focus of the study presented in this report will be on the information obtained from the measured s ⇥BR. Still, note that, at lepton colliders, the ZH associated
production can be measured without the decay of the decay of the Higgs.
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C Inputs

In this section we report some information relative to the inputs to the strategy process. Fig. 13 shows the start date and extent
of the runs of proposed future projects, using the earliest start time provided in the submitted documentation.

Figure 13. Sketch of timeline of various collider projects starting at the "earliest start time" stated in the respective documents.
For FCC-eh/hh this figure assumes that it is not preceeded by FCC-ee. If it comes after FCC-ee it would start in the early 2060s.

The uncertainties on inputs for all the colliders used in our analysis are listed in Tables 19-23. In all cases the relative
uncertainty on the measurement is given corresponding to a Gaussian 1s uncertainty.

Table 19. Inputs used for CEPC and FCC-ee projections. All uncertainties are given as fractional 68% CL intervals and are
taken to be symmetric. The upper limits are given at 68% CL.

FCC-ee240 FCC-ee365 CEPC
dsZH 0.005 0.009 0.005
d µZH,bb 0.003 0.005 0.003068
d µnnH,bb 0.031 0.009 0.029991
d µZH,cc 0.022 0.065 0.0326
d µZH,gg 0.019 0.035 0.0127
d µZH,WW 0.012 0.026 0.0098
d µZH,ZZ 0.044 0.12 0.0509
d µZH,tt 0.009 0.018 0.0082
d µZH,gg 0.09 0.18 0.0684
d µZH,µµ 0.19 0.40 0.171
d µZH,Zg 0.1568
d µnnH,cc 0.10
d µnnH,gg 0.045
d µnnH,ZZ 0.10
d µnnH,tt 0.08
d µnnH,gg 0.22
BRBSM

H,inv <0.0015 <0.003 <0.0015
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Earliest start time in ESU documents

Starting time at T0

Note: Different definitions of “Year”: ILC 1.6 x 107 sec, FCC-ee/CLIC: 1.2 x 107 sec, CEPC: 1.3 x 107 sec

Future Particle Colliders
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• Meeting prepared to present and discuss the inputs presented by the 
different future experimental projects to the Update of the European 
Strategy for Particle Physics
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Session 1:  
Talk 1: Prospects for Higgs and EW measurements at HL-LHC (P. Azzi, INFN Padova)  
Talk 2: QCD uncertainties on Higgs and EWK measurables (F. Caola, Oxford)  
Talk 3: Theoretical Perspective on direct and indirect searches for new physics (R. Rattazzi, EPFL) 

Session 2:  
Talk 4: Overview and technical challenges of proposed Higgs factories (D. Schulte, CERN)  
Talk 5: Capability of future machines for precision Higgs physics (M. Cepeda, CIEMAT)  
Discussion  

Session 3:  
Talk 6: Electroweak Precision Measurements at future experiments (M. Lancaster, Manchester)  
Talk 7: Precision Electroweak calculations (Giga-Z,WW, Higgs BRs, etc) (S. Dittmaier, Freiburg)  
Talk 8: The Higgs potential and its cosmological histories (G. Servant, DESY)  

Session 4:  
Talk 9: Path towards measuring the Higgs potential (E. Petit, CPPM Marseille)  
Talk 10: Interpretation of Higgs and EWK data in EFT framework (J. de Blas, Padova)  
Discussion 

The Open symposium on the ESU: EW/Higgs session 
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EW/Higgs studies for the ESU
• Most quantitative results from preliminary version of:
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M. Cepeda (CIEMAT)  Open Symposium on the Update of European Strategy for Particle Physics  

Higgs@Future Colliders Report 
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arXiv:1905.03764
To be updated in the coming weeks including the input from the discussion at the 

Open Symposium at Granada
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• Higgs projections from HL-LHC, EWPO/WW from LEP/SLD: 

- Precision ~few percent 
- Controlled in many cases by TH and Sys 

(assumes ~2 better than LHC Run 2) 
- Model-dependent: ratios, no couplings

• Measuring the Higgs couplings is an integral part of the physics 
program of the LHC/HL-LHC: 

• Expected precision ~few/several percent (κ framework) 

• but not model-independent (either ratios or need extra 
assumptions: e.g. No exotic decays) 

• FCC can push the precision below 1% plus more model-independent 

Jorge de Blas 
INFN - University of Padova

Physics at FCC: Overview of the Conceptual Design Report 
CERN, March 5, 2019

Global Fits to Higgs observables
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Fig. 30: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the coupling modifier parameters for ATLAS (blue) and CMS (red). The filled coloured
box corresponds to the statistical and experimental systematic uncertainties, while the hatched grey area
represent the additional contribution to the total uncertainty due to theoretical systematic uncertainties.
(right) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic uncer-
tainties) on the coupling modifier parameters for the combination of ATLAS and CMS extrapolations.
For each measurement, the total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.

level of Lagrangians. Here we will discuss the interpretation of the  factors within the electroweak chiral
Lagrangian (EWChL or HEFT). Within this EFT, the contributions to processes with a single Higgs, in
the unitary gauge, are [184, 185, 183]

Lfit = 2cV

⇣
m2

W W+
µ W�µ

+
1
2m2

ZZµZµ
⌘ h

v
�

X

 

c m  ̄ 
h

v

+
e2

16⇡2 c�Fµ⌫F
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v
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µ⌫ h

v
+

g2
s

16⇡2 cgtr
⇥
Gµ⌫G

µ⌫⇤h
v
,

(8)

where mi is the mass of particle i,  2 {t, b, c, ⌧, µ}, and the ci describe the modifications of the Higgs
couplings. The previous Lagrangian differs from a naive rescaling of Higgs couplings, even though
superficially it might seem to be equivalent. In particular, the Standard Model is consistently recovered
in eq. (8) for

cSM
i =

(
1 for i = V, t, b, c, ⌧, µ

0 for i = g, �, Z�.
(9)

This Lagrangian, taken in isolation, leads to a theory with a parametrically low cutoff: it has therefore
to be thought as part of a bigger EFT: the EWChL [186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203]. This is a bottom-up EFT, constructed with the particle content
and symmetries of the SM. These are the same requirements adopted in the construction of the SMEFT.
The main difference between both EFTs concerns the Higgs field. In the EWChL, the Higgs boson, h, is
included as a scalar singlet, with couplings unrelated to the ones of the Goldstone bosons of electroweak
symmetry breaking (EWSB). Therefore, h is not necessarily part of an SU(2) doublet and consequently
(contrary to the SMEFT) the leading-order Lagrangian is already an EFT, leading potentially to O(1)
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- Precision in many cases at per mile level 
- SM TH ≪ Exp. Uncertainties  

- HL-LHC: MW, mt, MH, weak mixing angle 
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• Studies prepared using 2 frameworks: 

3.1 The kappa framework

3.1.1 Choice of parametrization

The kappa framework, described in detail in Ref. [?, ?], facilitates the characterisation of Higgs coupling properties in terms of
a series of Higgs coupling strength modifier parameters ki, which are defined as the ratios of the couplings of the Higgs bosons
to particles i to their corresponding Standard Model values. The kappa framework assumes a single narrow resonance so that
the zero-width approximation can be used to decompose the cross section as follows

(s ·BR)(i ! H ! f ) =
si ·G f

GH
, (1)

where si is the production cross section through the initial state i, G f the partial decay width into the final state f and GH the
total width of the Higgs boson. The k parameters are introduced by expressing each of the components of Eq. (1) as their SM
expectation multiplied by the square of a coupling strength modifier for the corresponding process at leading order:

(s ·BR)(i ! H ! f ) =
sSM

i k2
i ·GSM

f k2
f

GSM
H k2

H
! µ f

i ⌘ s ·BR
sSM ·BRSM

=
k2

i ·k2
f

k2
H

, (2)

where µ f
i is the rate relative to the SM expectation (as given in Tables 17 and 18) and k2

H is an expression that adjusts the SM
Higgs width to take into account of modifications ki of the SM Higgs coupling strengths:

k2
H ⌘ Â

j

k2
j GSM

j

GSM
H

. (3)

When all ki are set to 1, the SM is reproduced. For loop-induced processes, e.g. H ! gg , there is a choice of either resolving the
coupling strength modification in its SM expectation, i.e. kg(kt ,kW ) or keeping kg as an effective coupling strength parameter.
For the results presented in the document, we choose to describe loop-induced couplings with effective couplings, resulting in a
total of 10 k parameters: kW , kZ , kc, kb, kt , kt , kµ , and the effective coupling modifiers kg , kg and kZg . The couplings ks,kd ,ku
and ke that are only weakly constrained from very rare decays are not included in the combined k-framework fits presented in
this section, their estimated limits are discussed separately in Section 5. We note the parameter kt is only accessible above
the tH threshold as the processes involving virtual top quarks are all described with effective coupling modifiers (kg,kZg ,kg ),
hence standalone fits to low-energy (lepton) colliders have no sensitivity to kt in the k-framework fits considered here.3

3.1.2 Modeling of invisible and untagged Higgs decays

The k-framework can be extended to allow for the possibility of Higgs boson decays to invisible or untagged BSM particles.
The existence of such decays increases the total width GH by a factor 1/(1�BRBSM), where BRBSM is the Higgs branching
fraction to such BSM particles. Higgs boson decays to BSM particles can be separated in two classes: decays into invisible
particles, which are experimentally directly constrained at all future colliders (e.g ZH,H ! invisible), and decays into all other
’untagged’ particles.

Reflecting this distinction we introduce two branching fraction parameters BRinv and BRunt so that:

GH =
GSM

H ·k2
H

1� (BRinv +BRunt)
, (4)

where k2
H is defined in Eq. (3).

For colliders that can directly measure the Higgs width, BRunt can be constrained together with ki and BRinv from a joint fit to
the data. For standalone fits to colliders that cannot, such as the HL-LHC, either an indirect measurement can be included, such
as from off-shell Higgs production, or additional theoretical assumptions must be introduced. A possible assumption is |kV |1
(V = W,Z), which is theoretically motivated as it holds in a wide class of BSM models but suffers some exceptions [?] (for
more details see [?], Section 10).

3.1.3 Fitting scenarios

To characterise the performance of future colliders in the k-framework, we defined four benchmark scenarios, which are listed
in Table 2. The goal of the kappa-0 benchmark is to present the constraining power of the k-framework under the assumption
that there exist no light BSM particles to which the Higgs boson can decay. The goal of benchmarks kappa-1,2 is to expose the

3 At high Higgs/jet pT , gg ! H becomes directly sensitive to kt . However, high-pT regions are not separately considered in the k-framework fits reported
here. Furthermore, there is no sensitivity to the sign of the k parameters as the loop-induced processes with sensitivity to the sign have all been described with
effective modifiers. Single top production is sensitive to the sign but not used in the k fits presented here (but used in the CP studies). Finally, note that, for
vector-boson-fusion, the small interference effect between W- and Z boson fusion is neglected.
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κ-framework

-Compact parameterization of NP in 

single Higgs processes

-Does not require any BSM calculation per se

-Info easily applicable to several interesting

 NP scenarios (e.g. CH, MSSM)


- Not usable beyond single Higgs processes

- Only for total rates, no kinematics 

(Energy, angular dependence), no polarization 

-Does not distinguish the source of NP 

(interpreted only as mod. of SM-like H couplings)

SMEFT-framework

Low Energy observables:

Parity Violation: QW (
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3 E↵ective Lagrangian description of New Physics:

Equations
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4 New Particles

3

-Theoretically robust framework

-Describes correlations between EW/Higgs/VV/Top/…

-Easy to interpret within general classes of (decoupling)

 new physics

-Many parameters (2499 to dimension 6)

-Requires extension to apply to not-heavy 

new physics

Pros 

Pros 

Cons 

Cons 
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Results in the κ-framework

-WARNING: Hadron collider results assume |kV|<1 
No assumption needed when including a lepton collider

Allowing for extra invisible or other exotic (untagged) H decays

|kV|<1

|kV|<1

Free kV

Free kV
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Results in κ-framework: Improvement wrt HL-LHC

Improvements w.r.t. HL-LHC

17

Kappa-framework EFT-framework

prel.
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Precision Higgs Physics at Lepton vs. Hadron Collider 
HIGGS MEASUREMENTS
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Figure 4.2: Left: A schematic view, transverse to the detector axis, of an e
+
e
� ! HZ event with

Z! µ+µ� and with the Higgs boson decaying hadronically. The two muons from the Z decay are
indicated. Right: Distribution of the mass recoiling against the muon pair, determined from the total
energy-momentum conservation, with an integrated luminosity of 5 ab

�1 and the CLD detector design.
The peak around 125 GeV (in red) consists of HZ events. The rest of the distribution (in blue and pink)
originate from ZZ and WW production.

the Higgs boson at the loop level. Under the assumption that the coupling structure is identical in form
to the SM, this cross section is proportional to the square of the Higgs boson coupling to the Z, gHZZ.

Building upon this powerful measurement, the Higgs boson width can then be inferred by counting
the number of HZ events in which the Higgs boson decays into a pair of Z bosons. Under the same
coupling assumption, this number is proportional to the ratio �HZ⇥�(H ! ZZ)/�H, hence to g4

HZZ/�H.
The measurement of gHZZ described above thus allows �H to be extracted. The numbers of events with
exclusive decays of the Higgs boson into bb̄, cc̄, gg, t+t�, µ+µ�, W

+
W

�, gg, Zg, and invisible Higgs
boson decays (tagged with the presence of just one Z boson and missing mass in the event) measure
�HZ ⇥ �(H ! XX)/�H with precisions indicated in Table 4.1.

With �HZ and �H known, the numbers of events are proportional to the square of the gHXX cou-
pling involved. In practice, the width and the couplings are determined with a global fit, which closely
follows the logic of Ref. [63]. The results of this fit are summarised in Table 4.2 and are compared to
the same fit applied to HL-LHC projections [60] and to those of other e

+
e
� colliders [64–66] exploring

the 240-to-380 GeV centre-of-mass energy range. Table 4.2 also shows that the extractions of �H and
of gHWW from the global fit are significantly improved by the addition of the WW-fusion process atp

s = 365 GeV, as a result of the correlation between the HZ and nn H processes.
In addition to the unique electroweak precision measurement programme presented earlier, the

FCC-ee, among the e
+
e
� collider projects at the EW scale, provides the best model-independent preci-

sions for all couplings accessible from Higgs boson decays. With larger luminosities delivered to several
detectors at several centre-of-mass energies (240, 350, and 365 GeV), the FCC-ee improves over the
model-dependent HL-LHC precisions by an order of magnitude for all non-rare decays, and is there-
fore able to test the Higgs boson at the one-loop level of the SM, without the need of a costly e

+
e
�

centre-of-mass energy upgrade. The FCC-ee also determines the Higgs boson width with a precision of
1.6%, which in turn allows the HL-LHC measurements to be interpreted in a model-independent way

DRAFT - NOT FOR DISTRIBUTION
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Fig. 30: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the coupling modifier parameters for ATLAS (blue) and CMS (red). The filled coloured
box corresponds to the statistical and experimental systematic uncertainties, while the hatched grey area
represent the additional contribution to the total uncertainty due to theoretical systematic uncertainties.
(right) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic uncer-
tainties) on the coupling modifier parameters for the combination of ATLAS and CMS extrapolations.
For each measurement, the total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.

level of Lagrangians. Here we will discuss the interpretation of the  factors within the electroweak chiral
Lagrangian (EWChL or HEFT). Within this EFT, the contributions to processes with a single Higgs, in
the unitary gauge, are [184, 185, 183]

Lfit = 2cV

⇣
m2

W W+
µ W�µ
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1
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⌘ h

v
�

X
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µ⌫⇤h
v
,

(8)

where mi is the mass of particle i,  2 {t, b, c, ⌧, µ}, and the ci describe the modifications of the Higgs
couplings. The previous Lagrangian differs from a naive rescaling of Higgs couplings, even though
superficially it might seem to be equivalent. In particular, the Standard Model is consistently recovered
in eq. (8) for

cSM
i =

(
1 for i = V, t, b, c, ⌧, µ

0 for i = g, �, Z�.
(9)

This Lagrangian, taken in isolation, leads to a theory with a parametrically low cutoff: it has therefore
to be thought as part of a bigger EFT: the EWChL [186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203]. This is a bottom-up EFT, constructed with the particle content
and symmetries of the SM. These are the same requirements adopted in the construction of the SMEFT.
The main difference between both EFTs concerns the Higgs field. In the EWChL, the Higgs boson, h, is
included as a scalar singlet, with couplings unrelated to the ones of the Goldstone bosons of electroweak
symmetry breaking (EWSB). Therefore, h is not necessarily part of an SU(2) doublet and consequently
(contrary to the SMEFT) the leading-order Lagrangian is already an EFT, leading potentially to O(1)
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Hadron Collider Higgs Lepton Collider Higgs

O(1-10%) precision but  
model-dependent (BRNP=0) 

Ratios, no absolute couplings

Recoil mass method: absolute 
measurement of σZH

Translates ratios into couplings
(only possible at lepton colliders)



Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Single Higgs couplings

�15

The Higgs width

M. Cepeda (CIEMAT)  Open Symposium on the Update of European Strategy for Particle Physics  

Higgs Width
•Three avenues explored for HL:


• Diphoton interference studies can only provide constraints ~ 8-22xSM. 

• Fits in the kappa framework: subjected to theoretical constraints (eg: |KV|<1 and Bunt=0). 

• HZZ on-shell and off-shell: 20% precision, but very model dependent


•Measurements in Lepton colliders:  


• mass recoil: measure the inclusive cross-section of the ZH without assumption on the 
Higgs BR’s 


• mild model dependence
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Higgs Width
•Three avenues explored for HL:


• Diphoton interference studies can only provide constraints ~ 8-22xSM. 

• Fits in the kappa framework: subjected to theoretical constraints (eg: |KV|<1 and Bunt=0). 

• HZZ on-shell and off-shell: 20% precision, but very model dependent


•Measurements in Lepton colliders:  


• mass recoil: measure the inclusive cross-section of the ZH without assumption on the 
Higgs BR’s 


• mild model dependence

�23

From recoil mass method
From H rates

• Hadron colliders: 

• Diphoton interference studies ~8-22 x SM


• κ-fit requires extra constraints (e.g. |κV|<1)


• HZZ on-shell vs off-shell: ~20% precision but model-dependent


• Lepton colliders: absolute measurement of couplings increases model 
independence

κ-framework



Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Single Higgs couplings

�16

gHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZgHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZgHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZ

10-1

1

10

102

10-4

10-3

10-2

10-1
δg

i/g
i[%

]

δg
aT
G
C

HL-LHC HL+LHeC HL+HELHC
HL+ILC500

HL+CLIC3000

HL+CEPC

HL+FCCee/eh/hh

HL+ILC250
HL+CLIC1500 HL+FCCee365
HL+CLIC380 HL+FCCee240

SMEFTND fit

gHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZgHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZgHZZeff gHWWeff gHγγeff gHZγeff gHggeff gHtteff gHcceff gHbbeff gHττeff gHμμeff δg1 Z δκγ λZ
10-1
1
10
102

1
10
102
103

δg
i/g

i[%
]

δg
aT
G
CImprovement wrt. HL-LHC

Results in the SMEFT-framework (Higgs/aTGC)

EF
T 

re
su

lts
 p

ro
je

ct
ed

 in
to

 e
ffe

ct
iv

e 
H

ig
gs

 c
ou

pl
in

gs
 a

nd
 a

TG
C

op
er
at
or

D
⇢
�
† D

⇢
�
G

µ
⌫
G

µ
⌫
w
h
ic
h
si
m
p
ly

co
m
es

w
it
h
co
e�

ci
en
t
⇠

g2 s
/m

4 ⇤.
O
n
e
ca
n
th
en

ea
si
ly

se
e
th
at

w
h
en

th
e
ex
p
er
im

en
ta
l
ac
cu
ra
cy

in
th
e
m
ea
su
re
m
en
t
of

gg
!

H
H

is
w
or
se

th
an

O
(y

2 t
/1
6⇡

2
),
th
e
se
n
si
ti
vi
ty

on
m

⇤
is

d
om

in
at
ed

by
th
e
d
im

-8
op

er
at
or
.

A
lt
h
ou

gh
th
e
p
ar
ti
cu
la
r
st
ru
ct
u
re

of
th
e
p
re
vi
ou

s
L
ag
ra
n
gi
an

is
n
ot

fu
ll
y
ge
n
er
al
,
it
p
ro
vi
d
es

a
th
eo
re
ti
ca
ll
y

so
u
n
d
b
en
ch
m
ar
k
to

in
te
rp
re
t
th
e
re
su
lt
s
of

ou
r
st
u
d
ie
s
fr
om

a
m
or
e
B
S
M
-o
ri
en
te
d
p
er
sp
ec
ti
ve
.
T
h
e
co
nt
ri
b
u
-

ti
on

s
fr
om

th
e
d
i↵
er
en
t
S
IL
H

W
il
so
n
co
e�

ci
en
ts

in
th
e
L
ag
ra
n
gi
an

(1
3)

to
th
e
p
ar
am

et
er
s
of

th
e
H
ig
gs

b
as
is

ca
n
b
e
fo
u
n
d
in

[?
].

1
.2

R
e
s
u
lt
s
f
r
o
m

t
h
e
E
F
T

f
r
a
m
e
w
o
r
k
s
t
u
d
ie
s

In
th
e
p
re
vi
ou

s
se
ct
io
n

w
e
h
av
e
d
et
ai
le
d

th
e
co
u
nt
in
g
of

th
e
d
eg
re
es

of
fr
ee
d
om

th
at

en
te
r
in

th
e
d
i↵
er
en
t

S
M
E
F
T

fi
t
sc
en
ar
io
s
u
si
n
g
th
e
so
-c
al
le
d
H
ig
gs

b
as
is
.
W

h
il
e
p
hy

si
ca
l
re
su
lt
s
d
o
n
ot

d
ep

en
d
on

th
e
ch
oi
ce

of
b
as
is
,
in

so
m
e
ca
se
s
a
p
ar
ti
cu
la
r
b
as
is

m
ay

b
e
co
nv

en
ie
nt

fo
r
co
m
p
u
ta
ti
on

al
,
p
re
se
nt
at
io
n
or

in
te
rp
re
ta
ti
on

al
p
u
rp
os
es

(n
ot
e
th
at

th
e
p
hy

si
ca
l
in
te
rp
re
ta
ti
on

of
ea
ch

d
im

en
si
on

-s
ix

op
er
at
or

d
oe
s
d
ep

en
d
on

th
e
b
as
is
).

F
ro
m

th
e
p
oi
nt

of
vi
ew

of
th
e
re
su
lt
s
p
re
se
nt
ed

in
th
is

se
ct
io
n
,
h
ow

ev
er
,
w
e
ar
e
m
os
tl
y
in
te
re
st
ed

in
co
m
p
ar
in
g
th
e

se
n
si
ti
vi
ty

to
d
ef
or
m
at
io
n
s
w
it
h
re
sp
ec
t
to

th
e
S
M

in
th
e
H
ig
gs

co
u
p
li
n
gs

at
th
e
d
i↵
er
en
t
fu
tu
re

co
ll
id
er

p
ro
je
ct
s.

T
o
as
se
ss

th
es
e
d
ef
or
m
at
io
n
s
w
it
h
re
sp
ec
t
to

th
e
S
M

in
a
b
as
is
-i
n
d
ep

en
d
en
t
w
ay

on
e
ca
n
p
r
o
je
c
t
th
e
re
su
lt
s
of

th
e
S
M
E
F
T

fi
t
on

to
a
se
t
of

on
-s
h
el
l
p
ro
p
er
ti
es

of
th
e
H
ig
gs

b
os
on

,
vi
a
th
e
fo
ll
ow

in
g
H
ig
g
s
e
↵
e
c
ti
v
e
c
o
u
p
li
n
g
s
:

g
e
↵

2

H
X

⌘
�

H
!

X

�
S
M

H
!

X

.
(1
4)

B
y
d
efi
n
it
io
n
,
th
es
e
qu

an
ti
ti
es
,
co
n
st
ru
ct
ed

fr
om

p
hy

si
ca
l
ob

se
rv
ab

le
s,
ar
e
b
as
is
in
d
ep

en
d
en
t.

T
h
es
e
d
efi
n
it
io
n
s

ar
e
al
so

co
nv

en
ie
nt

to
co
m
p
ar
e
in

a
st
ra
ig
ht
fo
rw

ar
d
m
an

n
er

th
e
S
M
E
F
T

re
su
lt
s
w
it
h
th
os
e
of

th
e

fr
am

ew
or
k

fo
r
th
e
si
n
gl
e
H
ig
gs

co
u
p
li
n
gs
.
S
u
ch

d
efi
n
it
io
n
is
,
h
ow

ev
er
,
n
ot

p
h
en
om

en
ol
og
ic
al
ly

p
os
si
b
le

fo
r
th
e
to
p
-H

ig
gs

co
u
p
li
n
g
an

d
th
e
H
ig
gs

se
lf
-i
nt
er
ac
ti
on

.
F
or

th
e
p
re
se
nt

re
p
or
t
w
e
w
il
l
si
d
es
te
p
th
es
e
is
su
es

by
:
(1
)
d
efi
n
in
g
th
e

e↵
ec
ti
ve

to
p
co
u
p
li
n
g
in

a
si
m
il
ar

w
ay

to
al
l
ot
h
er

fe
rm

io
n
s;
(2
)
to

co
n
n
ec
t
an

d
co
m
p
ar
e
w
it
h
al
l
cu

rr
en
t
st
u
d
ie
s

of
th
e
H
ig
gs

se
lf
-i
nt
er
ac
ti
on

,
w
e
w
il
l
d
efi
n
e
g h

h
h
⌘

�
3
/�

S
M

3
.

N
ot
e
th
at
,
at

th
e
d
im

en
si
on

-s
ix

le
ve
l
an

d
tr
u
n
ca
ti
n
g
th
e
p
hy

si
ca
l
e↵

ec
ts

at
or
d
er

1/
⇤
2
on

e
ca
n
al
w
ay
s
ex
p
re
ss

th
e
p
re
vi
ou

s
e↵

ec
ti
ve

co
u
p
li
n
gs

in
te
rm

s
of

th
e
d
im

en
si
on

-s
ix

op
er
at
or
s
vi
a
a
li
n
ea
r
tr
an

sf
or
m
at
io
n
.
P
ro
vi
d
ed

on
e
h
as

a
la
rg
e
en
ou

gh
se
t
of

su
ch

e↵
ec
ti
ve

co
u
p
li
n
gs
,
on

e
ca
n
th
en

m
ap

th
e
e↵

ec
ti
ve

co
u
p
li
n
g
re
su
lt
in
to

W
il
so
n

co
e�

ci
en
ts
,
an

d
vi
ce
ve
rs
a
(o
f
co
u
rs
e,

th
e
fo
rm

er
ar
e
n
ot

a
b
as
is

p
er

se
an

d
th
e
co
n
n
ec
ti
on

is
on

ly
w
el
l-
d
efi
n
ed

at
a
fi
xe
d
or
d
er

in
p
er
tu
rb
at
io
n
th
eo
ry

an
d
in

th
e
E
F
T

ex
p
an

si
on

).
T
h
e
si
n
gl
e
H
ig
gs

co
u
p
li
n
gs

p
lu
s
g h

h
h
ar
e

h
ow

ev
er

n
ot

en
ou

gh
to

m
at
ch

th
e
nu

m
b
er

of
fr
ee

p
ar
am

et
er
s
in

th
e
S
M
E
F
T

fi
ts
,
ev
en

in
th
e
si
m
p
li
fi
ed

sc
en
ar
io

S
M
E
F
T

P
E
W

in
eq
.
(1
1)
.
In

p
ar
ti
cu
la
r,
th
e
on

-s
h
el
l
co
u
p
li
n
gs

ge
↵

H
Z
Z
,H

W
W

in
eq
.
(1
4)

d
o
n
ot

ca
p
tu
re

al
l
p
os
si
b
le

li
n
ea
r
co
m
b
in
at
io
n
s
of

th
e
d
i↵
er
en
t
ty
p
es

of
E
F
T

in
te
ra
ct
io
n
s
co
nt
ri
b
u
ti
n
g
to

th
e
H
Z
Z

an
d
H
W

W
ve
rt
ic
es
.4

F
or

th
at

re
as
on

w
e
w
il
l
al
so

p
re
se
nt

ou
r
re
su
lt
s
by

ad
d
in
g
th
e
p
re
d
ic
ti
on

s
fo
r
th
e
(p
se
u
d
o)

ob
se
rv
ab

le
aT

G
C

ob
ta
in
ed

fr
om

th
e
d
i-
b
os
on

an
al
ys
is
.
T
h
es
e
ex
tr
a
p
ar
am

et
er
s
o↵

er
a
m
ea
su
re

of
th
e
H
ig
gs

co
u
p
li
n
gs

to
ga
u
ge

b
os
on

w
it
h
a
n
on

-S
M

L
or
en
tz

st
ru
ct
u
re
.
A
s
lo
n
g
as

w
e
re
st
ri
ct

th
e
an

al
ys
is

to
ob

se
rv
ab

le
s
ar
ou

n
d
th
e
H
ig
gs

m
as
s
sc
al
e,
th
is
ap

p
ro
ac
h
w
it
h
on

-s
h
el
le
↵
ec
ti
ve

co
u
p
li
n
gs

an
d
aT

G
C
is
p
er
fe
ct
ly

ap
p
ro
p
ri
at
e.

W
h
en

h
ig
h
-e
n
er
gy

ob
se
rv
ab

le
s
ar
e
co
n
si
d
er
ed
,
li
ke

in
S
ec
ti
on

1.
2.
2,

it
w
ou

ld
h
av
e
to

b
e
re
vi
si
te
d
.
(I
n
th
at

se
ct
io
n
,
h
ow

ev
er
,
w
e

w
il
l
p
re
se
nt

th
e
re
su
lt
s
d
ir
ec
tl
y
in

te
rm

s
of

th
e
W

il
so
n
co
e�

ci
en
ts
,
fo
r
ea
si
er

in
te
rp
re
ta
ti
on

in
te
rm

s
of

B
S
M

sc
en
ar
io
s.
)
E
ve
n
af
te
r
ad

d
in
g
th
e
aT

G
C
,
in

th
e
S
M
E
F
T

P
E
W

sc
en
ar
io

w
h
er
e
�m

⌘
0
th
e
ge

↵

H
Z
Z
,H

W
W

co
u
p
li
n
gs

ar
e
n
ot

in
d
ep

en
d
en
t,
an

d
th
er
ef
or
e
w
e
w
il
l
p
re
se
nt

th
e
re
su
lt
s
re
p
or
ti
n
g
on

ly
th
e
co
u
p
li
n
g
to

Z
b
os
on

s.
In

th
e
gl
ob

al
fi
t
sc
en
ar
io
s
S
M
E
F
T

F
U

an
d
S
M
E
F
T

N
D
,
w
h
er
e
w
e
al
so

ad
d
th
os
e
co
m
b
in
at
io
n
s
of

op
er
at
or
s

th
at

ca
n
co
nt
ri
b
u
te

to
E
W

P
O
,
ex
tr
a
in
fo
rm

at
io
n
n
ee
d
s
to

b
e
ad

d
ed

to
il
lu
st
ra
te

th
e
co
n
st
ra
in
ts

on
th
e
d
i↵
er
en
t

d
eg
re
es

of
fr
ee
d
om

in
cl
u
d
ed

in
th
e
fi
t.

S
in
ce

�m
is

n
ow

a
fr
ee

p
ar
am

et
er
,
w
e
re
p
or
t
se
p
ar
at
el
y
th
e
ge

↵

H
Z
Z
,H

W
W

co
u
p
li
n
gs
.
F
ol
lo
w
in
g
a
si
m
il
ar

ap
p
ro
ac
h
as

fo
r
th
e
H
ig
gs

co
u
p
li
n
gs
,
on

e
ca
n
re
p
or
t
th
e
se
n
si
ti
vi
ty

to
m
od

ifi
ca
ti
on

s
in

th
e
e↵

ec
ti
ve

co
u
p
li
n
gs

of
th
e
Z

to
fe
rm

io
n
s,

w
h
ic
h
ca
n
b
e
d
efi
n
ed

fr
om

th
e
Z
-p
ol
e
m
ea
su
re
m
en
ts

of
th
e
Z

d
ec
ay
s
an

d
as
ym

m
et
ri
es
,
e.
g.

�
Z
!

e
+
e
�

=
↵

M
Z

6
s
i
n

2
✓
w

c
o
s
2
✓
w

(|
g
e L
|2

+
|g

e R
|2
),

A
e
=

|g
e L
|2
�

|g
e R
|2

|g
e L
|2
+

|g
e R
|2
.

(1
5)

In
w
h
at

fo
ll
ow

s,
w
e
d
is
cu
ss

th
e
re
su
lt
s
of

th
e
S
M
E
F
T

fi
t
fr
om

th
e
p
oi
nt

of
vi
ew

of
th
e
ex
p
ec
te
d
se
n
si
ti
vi
ty

to
m
od

ifi
ca
ti
on

s
of

th
e
H
ig
gs

co
u
p
li
n
gs

in
th
e
sc
en
ar
io
s
S
M
E
F
T

F
U
an

d
S
M
E
F
T

N
D
.
A
s
it
w
as

d
on

e
in

th
e
fi
ts

in

4
W

e
n
ot
e,

h
ow

ev
er
,
th

at
,
fr
om

th
e
p
oi
n
t
of

v
ie
w

of
th

e
in
te
rp

re
ta
ti
on

in
te
rm

s
of

m
ot
iv
at
ed

sc
en

ar
io
s
li
k
e
th

o
se

d
es
cr
ib
ed

b
el
ow

E
q
.
(1
3
),

th
e
co

n
tr
ib
u
ti
o
n
s
to

su
ch

in
te
ra
ct
io
n
s
a
re

d
o
m
in
a
te
d
o
n
ly

b
y
c
�
,
u
n
le
ss

g
?

⇠
4
⇡
.

10



Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Single Higgs couplings

�17

Results in SMEFT-framework: Improvement wrt HL-LHC

EF
T 

re
su

lts
 p

ro
je

ct
ed

 in
to

 e
ffe

ct
iv

e 
H

ig
gs

 c
ou

pl
in

gs
 a

nd
 a

TG
C

op
er
at
or

D
⇢
�
† D

⇢
�
G

µ
⌫
G

µ
⌫
w
h
ic
h
si
m
p
ly

co
m
es

w
it
h
co
e�

ci
en
t
⇠

g2 s
/m

4 ⇤.
O
n
e
ca
n
th
en

ea
si
ly

se
e
th
at

w
h
en

th
e
ex
p
er
im

en
ta
l
ac
cu
ra
cy

in
th
e
m
ea
su
re
m
en
t
of

gg
!

H
H

is
w
or
se

th
an

O
(y

2 t
/1
6⇡

2
),
th
e
se
n
si
ti
vi
ty

on
m

⇤
is

d
om

in
at
ed

by
th
e
d
im

-8
op

er
at
or
.

A
lt
h
ou

gh
th
e
p
ar
ti
cu
la
r
st
ru
ct
u
re

of
th
e
p
re
vi
ou

s
L
ag
ra
n
gi
an

is
n
ot

fu
ll
y
ge
n
er
al
,
it
p
ro
vi
d
es

a
th
eo
re
ti
ca
ll
y

so
u
n
d
b
en
ch
m
ar
k
to

in
te
rp
re
t
th
e
re
su
lt
s
of

ou
r
st
u
d
ie
s
fr
om

a
m
or
e
B
S
M
-o
ri
en
te
d
p
er
sp
ec
ti
ve
.
T
h
e
co
nt
ri
b
u
-

ti
on

s
fr
om

th
e
d
i↵
er
en
t
S
IL
H

W
il
so
n
co
e�

ci
en
ts

in
th
e
L
ag
ra
n
gi
an

(1
3)

to
th
e
p
ar
am

et
er
s
of

th
e
H
ig
gs

b
as
is

ca
n
b
e
fo
u
n
d
in

[?
].

1
.2

R
e
s
u
lt
s
f
r
o
m

t
h
e
E
F
T

f
r
a
m
e
w
o
r
k
s
t
u
d
ie
s

In
th
e
p
re
vi
ou

s
se
ct
io
n

w
e
h
av
e
d
et
ai
le
d

th
e
co
u
nt
in
g
of

th
e
d
eg
re
es

of
fr
ee
d
om

th
at

en
te
r
in

th
e
d
i↵
er
en
t

S
M
E
F
T

fi
t
sc
en
ar
io
s
u
si
n
g
th
e
so
-c
al
le
d
H
ig
gs

b
as
is
.
W

h
il
e
p
hy

si
ca
l
re
su
lt
s
d
o
n
ot

d
ep

en
d
on

th
e
ch
oi
ce

of
b
as
is
,
in

so
m
e
ca
se
s
a
p
ar
ti
cu
la
r
b
as
is

m
ay

b
e
co
nv

en
ie
nt

fo
r
co
m
p
u
ta
ti
on

al
,
p
re
se
nt
at
io
n
or

in
te
rp
re
ta
ti
on

al
p
u
rp
os
es

(n
ot
e
th
at

th
e
p
hy

si
ca
l
in
te
rp
re
ta
ti
on

of
ea
ch

d
im

en
si
on

-s
ix

op
er
at
or

d
oe
s
d
ep

en
d
on

th
e
b
as
is
).

F
ro
m

th
e
p
oi
nt

of
vi
ew

of
th
e
re
su
lt
s
p
re
se
nt
ed

in
th
is

se
ct
io
n
,
h
ow

ev
er
,
w
e
ar
e
m
os
tl
y
in
te
re
st
ed

in
co
m
p
ar
in
g
th
e

se
n
si
ti
vi
ty

to
d
ef
or
m
at
io
n
s
w
it
h
re
sp
ec
t
to

th
e
S
M

in
th
e
H
ig
gs

co
u
p
li
n
gs

at
th
e
d
i↵
er
en
t
fu
tu
re

co
ll
id
er

p
ro
je
ct
s.

T
o
as
se
ss

th
es
e
d
ef
or
m
at
io
n
s
w
it
h
re
sp
ec
t
to

th
e
S
M

in
a
b
as
is
-i
n
d
ep

en
d
en
t
w
ay

on
e
ca
n
p
r
o
je
c
t
th
e
re
su
lt
s
of

th
e
S
M
E
F
T

fi
t
on

to
a
se
t
of

on
-s
h
el
l
p
ro
p
er
ti
es

of
th
e
H
ig
gs

b
os
on

,
vi
a
th
e
fo
ll
ow

in
g
H
ig
g
s
e
↵
e
c
ti
v
e
c
o
u
p
li
n
g
s
:

g
e
↵

2

H
X

⌘
�

H
!

X

�
S
M

H
!

X

.
(1
4)

B
y
d
efi
n
it
io
n
,
th
es
e
qu

an
ti
ti
es
,
co
n
st
ru
ct
ed

fr
om

p
hy

si
ca
l
ob

se
rv
ab

le
s,
ar
e
b
as
is
in
d
ep

en
d
en
t.

T
h
es
e
d
efi
n
it
io
n
s

ar
e
al
so

co
nv

en
ie
nt

to
co
m
p
ar
e
in

a
st
ra
ig
ht
fo
rw

ar
d
m
an

n
er

th
e
S
M
E
F
T

re
su
lt
s
w
it
h
th
os
e
of

th
e

fr
am

ew
or
k

fo
r
th
e
si
n
gl
e
H
ig
gs

co
u
p
li
n
gs
.
S
u
ch

d
efi
n
it
io
n
is
,
h
ow

ev
er
,
n
ot

p
h
en
om

en
ol
og
ic
al
ly

p
os
si
b
le

fo
r
th
e
to
p
-H

ig
gs

co
u
p
li
n
g
an

d
th
e
H
ig
gs

se
lf
-i
nt
er
ac
ti
on

.
F
or

th
e
p
re
se
nt

re
p
or
t
w
e
w
il
l
si
d
es
te
p
th
es
e
is
su
es

by
:
(1
)
d
efi
n
in
g
th
e

e↵
ec
ti
ve

to
p
co
u
p
li
n
g
in

a
si
m
il
ar

w
ay

to
al
l
ot
h
er

fe
rm

io
n
s;
(2
)
to

co
n
n
ec
t
an

d
co
m
p
ar
e
w
it
h
al
l
cu

rr
en
t
st
u
d
ie
s

of
th
e
H
ig
gs

se
lf
-i
nt
er
ac
ti
on

,
w
e
w
il
l
d
efi
n
e
g h

h
h
⌘

�
3
/�

S
M

3
.

N
ot
e
th
at
,
at

th
e
d
im

en
si
on

-s
ix

le
ve
l
an

d
tr
u
n
ca
ti
n
g
th
e
p
hy

si
ca
l
e↵

ec
ts

at
or
d
er

1/
⇤
2
on

e
ca
n
al
w
ay
s
ex
p
re
ss

th
e
p
re
vi
ou

s
e↵

ec
ti
ve

co
u
p
li
n
gs

in
te
rm

s
of

th
e
d
im

en
si
on

-s
ix

op
er
at
or
s
vi
a
a
li
n
ea
r
tr
an

sf
or
m
at
io
n
.
P
ro
vi
d
ed

on
e
h
as

a
la
rg
e
en
ou

gh
se
t
of

su
ch

e↵
ec
ti
ve

co
u
p
li
n
gs
,
on

e
ca
n
th
en

m
ap

th
e
e↵

ec
ti
ve

co
u
p
li
n
g
re
su
lt
in
to

W
il
so
n

co
e�

ci
en
ts
,
an

d
vi
ce
ve
rs
a
(o
f
co
u
rs
e,

th
e
fo
rm

er
ar
e
n
ot

a
b
as
is

p
er

se
an

d
th
e
co
n
n
ec
ti
on

is
on

ly
w
el
l-
d
efi
n
ed

at
a
fi
xe
d
or
d
er

in
p
er
tu
rb
at
io
n
th
eo
ry

an
d
in

th
e
E
F
T

ex
p
an

si
on

).
T
h
e
si
n
gl
e
H
ig
gs

co
u
p
li
n
gs

p
lu
s
g h

h
h
ar
e

h
ow

ev
er

n
ot

en
ou

gh
to

m
at
ch

th
e
nu

m
b
er

of
fr
ee

p
ar
am

et
er
s
in

th
e
S
M
E
F
T

fi
ts
,
ev
en

in
th
e
si
m
p
li
fi
ed

sc
en
ar
io

S
M
E
F
T

P
E
W

in
eq
.
(1
1)
.
In

p
ar
ti
cu
la
r,
th
e
on

-s
h
el
l
co
u
p
li
n
gs

ge
↵

H
Z
Z
,H

W
W

in
eq
.
(1
4)

d
o
n
ot

ca
p
tu
re

al
l
p
os
si
b
le

li
n
ea
r
co
m
b
in
at
io
n
s
of

th
e
d
i↵
er
en
t
ty
p
es

of
E
F
T

in
te
ra
ct
io
n
s
co
nt
ri
b
u
ti
n
g
to

th
e
H
Z
Z

an
d
H
W

W
ve
rt
ic
es
.4

F
or

th
at

re
as
on

w
e
w
il
l
al
so

p
re
se
nt

ou
r
re
su
lt
s
by

ad
d
in
g
th
e
p
re
d
ic
ti
on

s
fo
r
th
e
(p
se
u
d
o)

ob
se
rv
ab

le
aT

G
C

ob
ta
in
ed

fr
om

th
e
d
i-
b
os
on

an
al
ys
is
.
T
h
es
e
ex
tr
a
p
ar
am

et
er
s
o↵

er
a
m
ea
su
re

of
th
e
H
ig
gs

co
u
p
li
n
gs

to
ga
u
ge

b
os
on

w
it
h
a
n
on

-S
M

L
or
en
tz

st
ru
ct
u
re
.
A
s
lo
n
g
as

w
e
re
st
ri
ct

th
e
an

al
ys
is

to
ob

se
rv
ab

le
s
ar
ou

n
d
th
e
H
ig
gs

m
as
s
sc
al
e,
th
is
ap

p
ro
ac
h
w
it
h
on

-s
h
el
le
↵
ec
ti
ve

co
u
p
li
n
gs

an
d
aT

G
C
is
p
er
fe
ct
ly

ap
p
ro
p
ri
at
e.

W
h
en

h
ig
h
-e
n
er
gy

ob
se
rv
ab

le
s
ar
e
co
n
si
d
er
ed
,
li
ke

in
S
ec
ti
on

1.
2.
2,

it
w
ou

ld
h
av
e
to

b
e
re
vi
si
te
d
.
(I
n
th
at

se
ct
io
n
,
h
ow

ev
er
,
w
e

w
il
l
p
re
se
nt

th
e
re
su
lt
s
d
ir
ec
tl
y
in

te
rm

s
of

th
e
W

il
so
n
co
e�

ci
en
ts
,
fo
r
ea
si
er

in
te
rp
re
ta
ti
on

in
te
rm

s
of

B
S
M

sc
en
ar
io
s.
)
E
ve
n
af
te
r
ad

d
in
g
th
e
aT

G
C
,
in

th
e
S
M
E
F
T

P
E
W

sc
en
ar
io

w
h
er
e
�m

⌘
0
th
e
ge

↵

H
Z
Z
,H

W
W

co
u
p
li
n
gs

ar
e
n
ot

in
d
ep

en
d
en
t,
an

d
th
er
ef
or
e
w
e
w
il
l
p
re
se
nt

th
e
re
su
lt
s
re
p
or
ti
n
g
on

ly
th
e
co
u
p
li
n
g
to

Z
b
os
on

s.
In

th
e
gl
ob

al
fi
t
sc
en
ar
io
s
S
M
E
F
T

F
U

an
d
S
M
E
F
T

N
D
,
w
h
er
e
w
e
al
so

ad
d
th
os
e
co
m
b
in
at
io
n
s
of

op
er
at
or
s

th
at

ca
n
co
nt
ri
b
u
te

to
E
W

P
O
,
ex
tr
a
in
fo
rm

at
io
n
n
ee
d
s
to

b
e
ad

d
ed

to
il
lu
st
ra
te

th
e
co
n
st
ra
in
ts

on
th
e
d
i↵
er
en
t

d
eg
re
es

of
fr
ee
d
om

in
cl
u
d
ed

in
th
e
fi
t.

S
in
ce

�m
is

n
ow

a
fr
ee

p
ar
am

et
er
,
w
e
re
p
or
t
se
p
ar
at
el
y
th
e
ge

↵

H
Z
Z
,H

W
W

co
u
p
li
n
gs
.
F
ol
lo
w
in
g
a
si
m
il
ar

ap
p
ro
ac
h
as

fo
r
th
e
H
ig
gs

co
u
p
li
n
gs
,
on

e
ca
n
re
p
or
t
th
e
se
n
si
ti
vi
ty

to
m
od

ifi
ca
ti
on

s
in

th
e
e↵

ec
ti
ve

co
u
p
li
n
gs

of
th
e
Z

to
fe
rm

io
n
s,

w
h
ic
h
ca
n
b
e
d
efi
n
ed

fr
om

th
e
Z
-p
ol
e
m
ea
su
re
m
en
ts

of
th
e
Z

d
ec
ay
s
an

d
as
ym

m
et
ri
es
,
e.
g.

�
Z
!

e
+
e
�

=
↵

M
Z

6
s
i
n

2
✓
w

c
o
s
2
✓
w

(|
g
e L
|2

+
|g

e R
|2
),

A
e
=

|g
e L
|2
�

|g
e R
|2

|g
e L
|2
+

|g
e R
|2
.

(1
5)

In
w
h
at

fo
ll
ow

s,
w
e
d
is
cu
ss

th
e
re
su
lt
s
of

th
e
S
M
E
F
T

fi
t
fr
om

th
e
p
oi
nt

of
vi
ew

of
th
e
ex
p
ec
te
d
se
n
si
ti
vi
ty

to
m
od

ifi
ca
ti
on

s
of

th
e
H
ig
gs

co
u
p
li
n
gs

in
th
e
sc
en
ar
io
s
S
M
E
F
T

F
U
an

d
S
M
E
F
T

N
D
.
A
s
it
w
as

d
on

e
in

th
e
fi
ts

in

4
W

e
n
ot
e,

h
ow

ev
er
,
th

at
,
fr
om

th
e
p
oi
n
t
of

v
ie
w

of
th

e
in
te
rp

re
ta
ti
on

in
te
rm

s
of

m
ot
iv
at
ed

sc
en

ar
io
s
li
k
e
th

o
se

d
es
cr
ib
ed

b
el
ow

E
q
.
(1
3
),

th
e
co

n
tr
ib
u
ti
o
n
s
to

su
ch

in
te
ra
ct
io
n
s
a
re

d
o
m
in
a
te
d
o
n
ly

b
y
c
�
,
u
n
le
ss

g
?

⇠
4
⇡
.

10



• Comparison of capabilities to measure the H3 coupling 

Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

The Higgs self-coupling

�1802/23/12     
 Path towards measuring the Higgs potential                    Elisabeth Petit, CPPM, AMU/CNRS/IN2P3 8

How to measure deviations of λ
3

di-Higgs single-H

exclusive

global

1. di-H, excl.
• Use of σ+HH,             

 • only deformation of κλ

3. single-H, excl.
• single Higgs processes at higher order
• only deformation of κλ                          

2. di-H, glob.
• Use of σ+HH,                                                  
• deformation of κλ + of the single-H couplings
+a, do not consider the effects at higher order 

of κλ to single H production and decays
+b,  these higher order effects are included    

4. single-H, glob.
• single Higgs processes at higher order
• deformation of κλ + of the single Higgs 

couplings

 The Higgs self-coupling can be assessed using di-Higgs production and 
single-Higgs production

 The sensitivity of the various future colliders can be obtained using four 
different methods:

*

λ
g�

g
*

gmin

1

0
4π

λ = √gmin g*
─

λ = gmin

FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

10

Hadron collider Lepton collider

e� �e

�̄ee+
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h

h
h

h

h

h

W

W

W

W

W

W

W

h

Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of

120
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Single-Higgs couplings (1)

 Higgs self-interaction via one-loop corrections of the single-Higgs production
– κ

λ
-dependent corrections to the tree-level cross-sections

 pp colliders:

ZH

ννH

VBF

ttH

VH

 ee colliders:

 ex. for κ
λ 
= 2:

– σ(pp→ttH) modified by 3%
– σ(ee → ZH) modified by 1%

ggF

Lepton 
Colliders

Hadron 
Colliders
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Figure 11. Sensitivity at 68% probability on the Higgs cubic self-coupling at the various FCs. All the numbers reported
correspond to a simplified combination of the considered collider with HL-LHC which is approximated by a 50% constraint on
k3. The numbers for Method(1), i.e. "di-H excl.", correspond to the results given by the future collider collaborations. For
Methods "di-H glob." (2a), "single-H excl." (3) and "single-H glob." (4) we report the results computed by the Higgs@FC
working group. For the leptonic colliders, the runs are considered in sequence. For the colliders with

p
s . 400 GeV, Methods

(1) and (2.a) cannot be used, hence the dash signs. No sensitivity was computed along Method (2.a) for HE-LHC and CLIC3000
but our initial checks do not show any difference with the sensitivity obtained for Method (1). Due to the lack of results
available for the ep cross section in SMEFT, we do not present any result for LHeC nor HE-LHeC.

in inclusive direct searches for H ! cc̄ at the LHC has been reported from ATLAS together with a projection for the HL-LHC.
Currently the upper bound on the charm coupling is kc < 104 [67]. With HL-LHC, it is expected to improve to be sensitive to
values of 6-21, while LHCb, with the foreseen detector improvement could reach a sensitivity of 5-10 [10].

Exclusive Higgs decays to a vector meson (V ) and a photon, H !V g , V = r,w,f ,J/y,° directly probe the Higgs bottom,
charm strange, down and up quark Yukawas [68–70]. Within the LHC, the Higgs exclusive decays are the only direct probe
of the u and d Yukawa couplings, while if s-tagging could be implemented at the LHC [70], then the strange Yukawa could
be probed both inclusively and exclusively. On the experimental side, both ATLAS and CMS have reported upper bounds
on H ! J/yg [71, 72], H ! fg and h ! rg [73, 74]. These processes receive contributions from two amplitudes, only one
of which is proportional to the Yukawa coupling. Since the contribution proportional to the Yukawa is smaller, the largest
sensitivity to the Higgs q-quark coupling is via the interference between the two diagrams. The prospects for probing light
quark Yukawas within future LHC runs employing the direct probe from exclusive decays are not competitive with indirect
limits that can be set from production or global fit or inclusive search for c-Yukawa [10, 75]. However, the information coming
from exclusive decays will be relevant regardless of the global fit sensitivity. For example, a limit of |ys/yb|. 50 could be set
HL-LHC [10] and ys/yb . 25 at FCChh [1].

The constraints on invisible BRs to new particles are reported in Table 13, where the SM H ! 4n process (BRSM
inv =

BR(H ! 4n) = 0.11%) is treated as background. Shown are the estimated projections for direct searches for invisible decays
using signatures of missing transverse or total energy, and the results from the kappa-3 fit presented earlier in Table 5. Also
shown is a kappa-fit where all SM BR values are fixed and only BRinv is free in the fit. It is seen that the e+e� colliders
generally improve the sensitivity by about a factor 10 compared to HL-LHC. FCC-hh improves it by another order of magnitude
and will probe values below that of the SM. Comparing the three determination of the BRinv for the various colliders, it is seen
that the kappa-fit improves the direct constraint by up to a factor of two, although in most cases the improvement is modest.
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ee: Indirect ~34%

CLIC:       Direct ~10%

Assuming upgrade to 500 GeV

hh: Direct ~5-10%

Little indirect reach  
w/o  365 GeV run
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Electroweak precision measurements

• Very precise measurements of the Z and W boson properties


• Studies of EWPO included in the global EFT fits prepared for PPG:


• 17 extra EFT directions considered (no fermion universality)


• Studied interplay between Higgs/EW constraints based on inputs to the 
ESU


Tests of Vff interactions:
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Figure 1.1: The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states,
the photon and the Z boson can also be exchanged via the t-channel. The contribution of Higgs
boson exchange diagrams is negligible.
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the effects of photon radiation.
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Tera Z (1012 Z): EWPO (sys dominated)~10-100x better 
than LEP/SLD

Giga Z (109 Z): Z-pole run not in baseline (but possible)

Running at the Z-pole
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The other “half” of the SMEFT fit: EW Zff couplings
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The other “half” of the SMEFT fit: EW Zff couplings
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The other “half” of the SMEFT fit: EW Zff couplings
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Part of the discussion in and post-Granada focused on trying to present a fairer picture of the 

EW capabilities of each machine 

The different lepton collider projects are studying and providing extra projections for EWPO 

Updated analysis coming soon…



Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Sensitivity to NP in EW interactions

�25

Improvement with respect to HL-LHC

-WARNING: CEPC EWPO ~ FCCee EWPO (except 365 GeV: top).  
Difference due to current status of EWPO projections (Flav. Non-univ, sys,…)

Part of the discussion in and post-Granada focused on trying to present a fairer picture of the 

EW capabilities of each machine 

The different lepton collider projects are studying and providing extra projections for EWPO 

Updated analysis coming soon…
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Figure 4. 68% probability reach on Higgs couplings and aTGC at the different lepton colliders from the Global fit SMEFTND,
compared with the results obtained assuming infinite precision for the EWPO (scenario SMEFTPEW ). The difference (partially)
illustrates the impact of the EW constraints on the Higgs results. See text for discussion and caveats on this study.

sets some of the most important constraints in composite Higgs models), this is an issue that should be carefully studied at
hadron colliders, as it will become (even more) relevant at the end of the HL-LHC era.

A meaningful interpretation of these results in terms of a broad class of composite Higgs models can be obtained under the
assumptions leading to the dependence of the Wilson coefficients on new physics coupling, g?, and mass, m?, described in
Eq. (13) and below (i.e. we assume cg,g and cfV,3V are loop suppressed in yt and g?, respectively). In Figure 6 we translate
the results of the fit in Figure 5 in terms of the 95% probability constraints in the (g?,m?) plane under such assumptions, and
setting all O(1) coefficients exactly to 1, i.e.
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?
,
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?
,
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t
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?
,
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t
16p2

1
m2

?
,

cfW,fB

L2 =
g2

?

16p2
1

m2
?
,

c3W,3G

L2 =
1

16p2
1

m2
?
.

(16)

We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show
the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by
the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by
several of the operators in (12) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are
mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar
constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak
precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the
new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing
weakly coupled scenarios. The implications of some of these results will be discussed in detail, and in combination with the
information from direct searches, in Ref. [49].

1.3 Impact of Standard Model theory uncertainties in Higgs calculations

As important as it is to have very precise experimental measurements of the different Higgs processes, it is also fundamental
from the point of view of their physical interpretation to have theoretical calculations for the predictions of such processes
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Assuming LEP precision

Perfect EW measurements

Impact of EWPO (Z pole measurements)  in Higgs coupling sensitivity

Difference due to absence of precise enough EWPO at LC (no Z pole run)
Can be mitigated by using: (1) High-energies  (2) EWPO from radiative return
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Figure 1-32. Dilepton backgrounds and the

clear signal for a LR Z0
at 3 TeV for e+e� pairs

after 3000 fb
�1

.

Figure 1-33. Fully emerged signal for a LR Z0

at 3 TeV, background subtracted for e+e� pairs

after 3000 fb
�1

.

1.5.2 Run 2 of the Future Collider

The beginning of Run 2 started in January of 2030 as expected without any delays. Again, the data
taking went smoothly, and other parallel stories of new physics continued to unfold as theorists struggled to
simultaneously weave the numerous discoveries together into a new and over-arching tapestry explaining the
fundamental laws of the Universe. For the Z 0 story, tertiary measurements of SM couplings in specific decay
channels and even the possible observation of exotic decays, were helping other stories understand their
signal better as data was being recorded. As run two ended in 2034, pile-up had continued to be a battle,
but continually worked on and understood to bring an impressive dataset of 3000 fb�1 at

p
s = 33 TeV to

the physics groups for analysis. With this dataset the Z
0 analysis had been able to increase the number of

recorded Z
0 events by an order of magnitude, bringing unprecendented levels of precision to measurements

of width, mass, couplings, and even AFB (see complimentary white paper for in depth analysis [11]). The
physicists remembered how far they had come from the first days of the LHC at

p
s = 14 TeV, seeing a

few events out at high-mass (Figure 1-1) and wondering if it would just turn out to be a fluctuation of the
Standard Model. Now the picture was very di↵erent, physicist’s and indeed the World’s understanding of
the fundamental properties of the Universe had leaped almost unimaginably, and in the Z

0 analysis they
were now presented with a magnificent and clear signal shape (Figures 1-32 to 1-35), and AFB measurement
that put the discovery of a LRM model Z 0 beyond all doubt (Figure 1-36). This new particle was one that
they were almost getting used to, but which still excited even the newest Graduate students because of its
implications and the theory paradigm shifts that had occurred over the last 15 years because of it.

1.5.3 The
p
s = 33 TeV Experiment Aftermath

The achievement of Engineers and Physicists alike was astounding, a new machine had been built to go
up to energies of

p
s = 33 TeV, and over 3000 fb�1 of data had been collected from pp collisions over the

years. The journey was hard at times, and required continual maintenance and understanding of both the
accelerator and the Snowmass detector, due to the incredibly harsh environment both were being subjected
to, and the level of precision required for the physics analyses to thrive. Again we break the fourth wall and

Community Planning Study: Snowmass 2013

Ecoll
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Figure 3.1: Feynman diagrams relevant for the dimension-six effective Lagrangian.

The terms of order 1/M4
V contribute to operators of dimension eight and higher, and will be

neglected in the following. In particular, we see that, as promised, the “nonlinear” terms in LV−SM

do not contribute to the effective Lagrangian up to dimension six, and can be ignored. The result
Eq. (3.2) includes a few operators that are not in the basis introduced in Table 1.8. In order to
compare with previous work, it is convenient to express the result in our basis, performing some
Fierz reorderings and field redefinitions (equivalent to the use of the SM EOM on the dimension-six
operators). The final result can then be written as

LV
6 = −

ηV

2M2
V

(JV
µ )†JV µ =

∑∑∑

i

αi

M2
V

Oi

gψ1ψ2

V gψ3ψ4

V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV

gφ
V gφ

V

M2
V

[Φ† ⊗Dµφ]RV [Dµφ† ⊗Φ]RV

gφ
V gψ1ψ2

V

M2
V

[Φ† ⊗Dµφ]RV [ψ1 ⊗ γµψ2]RV

where Oi are the operators collected in Table 1.8, and αi their dimensionless numerical coeffi-
cients. It is clear from the general expression Eq. (3.2), and also from the Feynman diagrams in
Fig. 3.1, that the terms in the effective Lagrangian can be of three basic forms:

1. Four fermions :
g
ψ1ψ2
V g

ψ3ψ4
V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV .
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95 % C.L. limits on (some) dimension-six interactions
F. del Águila, J.B., Fortsch. Phys. 59 (2011) 1036-1040 (arXiv:1105.6103 [hep-ph])

Four-fermion interactions
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Operator 95% C.L. EW limits
(

lLγµlL
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Model-independent bounds
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The effects of polarization are only sizable along the direction W ⇡ �Y . The impact of polariz-
ation is however much more pronounced in the constraints set by each individual difermion channel, as
shown in Figure 25, and it is only washed out in the global fit due to the complementarity between the
different channels. From the figure it is also apparent that the constraints from the top quark channel,
which is subject to larger systematics and whose statistics is more affected by the different selection
efficiencies, are fairly irrelevant in the global fit. Finally, as shown in the left panel of Figure 26, and it
is expected from the energy dependence of the new physics contributions, the bounds on W and Y are
dominated by the 3 TeV run.

Figure 25: (Left) 95% C.R. in the W -Y plane, profiling over S and T , for the different final fermion
states, assuming the CLIC Baseline scenario. (Right). The same in the scenario assuming CLIC operation
with unpolarized beams.
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Figure 26: (Left) 95% C.R. in the W -Y plane, profiling over S and T , including data only from
p

s =
380, 1500 and 3000 GeV, respectively, and assuming the CLIC Baseline scenario. (Right). 95% C.L.
limit in the g⇤-m⇤ plane assuming CLIC operation with polarized beams and 0.3% systematics.

The results presented above can be interpreted within more definite scenarios, either via match-
ing of the SMEFT with specific UV completions [72–86] or using power-counting rules for classes of
models [17, 51]. For instance, assuming the Higgs originates from a strongly coupled strongly sector
characterized by only one coupling g⇤ and one scale m⇤,

W = 2
g2

g2
⇤

M2
W

m2
⇤

, Y = 2
g0 2

g2
⇤

M2
W

m2
⇤

. (50)

One can therefore translate the bounds on W and/or Y into exclusion regions in the g⇤-m⇤ plane. These
are shown in Figure 26 for �sys = 0.3%, for the cases where the new physics only generates contributions
to one of the 2 parameters, W or Y .
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efficiencies, are fairly irrelevant in the global fit. Finally, as shown in the left panel of Figure 26, and it
is expected from the energy dependence of the new physics contributions, the bounds on W and Y are
dominated by the 3 TeV run.

Figure 25: (Left) 95% C.R. in the W -Y plane, profiling over S and T , for the different final fermion
states, assuming the CLIC Baseline scenario. (Right). The same in the scenario assuming CLIC operation
with unpolarized beams.
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Global fit - CLIC Baseline (δsys=0.3%, δsys,t t_
(A) )

CLIC 380 GeV (1 ab-1)
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Figure 26: (Left) 95% C.R. in the W -Y plane, profiling over S and T , including data only from
p

s =
380, 1500 and 3000 GeV, respectively, and assuming the CLIC Baseline scenario. (Right). 95% C.L.
limit in the g⇤-m⇤ plane assuming CLIC operation with polarized beams and 0.3% systematics.

The results presented above can be interpreted within more definite scenarios, either via match-
ing of the SMEFT with specific UV completions [72–86] or using power-counting rules for classes of
models [17, 51]. For instance, assuming the Higgs originates from a strongly coupled strongly sector
characterized by only one coupling g⇤ and one scale m⇤,

W = 2
g2

g2
⇤

M2
W

m2
⇤

, Y = 2
g0 2

g2
⇤

M2
W

m2
⇤

. (50)

One can therefore translate the bounds on W and/or Y into exclusion regions in the g⇤-m⇤ plane. These
are shown in Figure 26 for �sys = 0.3%, for the cases where the new physics only generates contributions
to one of the 2 parameters, W or Y .
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Universal NP
W & Y parameters

 CLIC~25x better than HL-LHC
Similar to 100 TeV FCC-hh

High Energy probes of new physics:  
e.g. growing with energy-effects in 2 → 2 fermion processes 
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• Example:

Indirect constraints in Composite Higgs models

Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. See text
for details, in particular regarding the CEPC results.

sets some of the most important constraints in composite Higgs models), this is an issue that should be carefully studied at644

hadron colliders, as it will become (even more) relevant at the end of the HL-LHC era.645

A meaningful interpretation of these results in terms of a broad class of composite Higgs models can be obtained under the646

assumptions leading to the dependence of the Wilson coefficients on new physics coupling, g?, and mass, m?, described in647

Eq. (20) and below (i.e. we assume cg,g and cfV,3V are loop suppressed in yt and g?, respectively). In Figure 7 we translate648

the results of the fit in Figure 6 in terms of the 95% probability constraints in the (g?,m?) plane under such assumptions, and649

setting all O(1) coefficients exactly to 1, i.e.650
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1
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?
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?
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?

16p2
1
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?
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1

16p2
1

m2
?
.

(23)

We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show651

the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by652

the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by653

several of the operators in (19) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are654

mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar655

constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak656

precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the657

new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing658

22/58

Simplified CH benchmark: 1 coupling (g*) - 1 scale (m*)

2-σ region

Oϕ,FCCee,365GeV
Oϕ,CLIC3 TeV
OW,FCCee,365GeV
OW,CLIC380GeV
OW,CLIC3 TeV
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Different ways of testing the compositeness scale (via OW,B):  
Low-Energy precision (FCCee) vs High-Energy (CLIC)

CLIC380

FCCee (EWPO)

CLIC3000 
ZHbb, 
~4% Similar sensitivity to same operators via: 

(1) Low-E high precision (EWPO) 
(2) High-E moderate precision (ZH)
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Will SM theory calculations be enough?
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Estimates for SM theory uncertainties used in the ESU studies

S. Heinemeyer et al., arXiv: 1906.05379 [hep-ph]

Table 10: Partial decay widths for the Higgs boson to specific final states and the uncertainties in their cal-
culation [?]. The uncertainties arise either from intrinsic limitations in the theoretical calculation (ThIntr)
and parametric uncertainties (ThPar). The parametric uncertainties are due to the finite precision on the quark
masses, ThPar(mq), on the strong coupling constant, ThPar(↵s), and on the Higgs boson mass, ThPar(MH). The
columns labelled ”partial width” and ”current uncertainty” and refer to the current precision [?], while the pre-
dictions for the future are taken from ref. [?]. For the future uncertainties, the parametric uncertainties assume
a precision of �mb = 13 MeV, �mc = 7 MeV, �mt = 50 MeV, �↵s = 0.0002 and �MH = 10 MeV.

Decay Partial width Projected future unc. ��/� [%]

[keV] ThIntr ThPar(mq) ThPar(↵s) ThPar(mH )

H ! bb̄ 2379 0.2 0.6[ < 0.1] �

H ! ⌧
+
⌧
� 256 < 0.1 � � �

H ! cc̄ 118 0.2 1.0[ < 0.1] �

H ! µ
+
µ

� 0.89 < 0.1 � � �

H ! WW
⇤ 883 . 0.4 � � 0.1‡

H ! gg 335 1.0 � 0.5] �

H ! ZZ
⇤ 108 . 0.3† � � 0.1‡

H ! �� � < 1.0 � � �

H ! Z� 2.1 1.0 � � 0.1‡

†From e
+
e
�

! ZH.
‡For �MH = 10 MeV. Adjusted for Higgs mass precision at CLIC.

[For �mb = 13 MeV, �mc = 7 MeV. (Lattice projection).
]For �↵s = 0.0002. (Lattice projection).

27

Intrinsic TH unc in production
e.g. e+ e-→Z H 

LO to NLO: 5-10%

Missing 2-loop: O(1%)
 Full 2-loop should  

reduce uncertainty to O(0.1%)

Z width effects relevant  
at this level of precision?

Assessment of TH uncertainty  
may require full 2->3 NNLO

In any case, reducible with  
necessary effort from theory side

Hence the choice of presenting  
main results with parametrics only
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Will SM theory calculations be enough?
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Comparison of SM Theory uncertainties in Higgs calculations

Largest effect on HVV couplings 
Differences in other couplings 

mainly due to unc. in production


Exception: Hbb
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Will SM theory calculations be enough?
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Theory requirements for EWPOCentral EW precision (pseudo-)observables at the Z pole
FCC-ee: update of Blondel et al., 1901.02648 (in prep.); ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic theory uncertainty

current ILC FCC-ee current current source prospect

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 α3,α2αs,αα
2
s 0.15

∆ sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 α3,α2αs 1.5

∆Rb[10
−5] 66 14 6 11 α3,α2αs 5

∆Rℓ[10
−3] 25 3 1 6 α3,α2αs 1.5

Theory requirements for Z-pole pseudo-observables:

• needed: ⋄ EW and QCD–EW 3-loop calculations

⋄ 1 → 2 decays, fully inclusive

• problems: ⋄ technical: massive multi-loop integrals, γ5

⋄ conceptual: pseudo-obs. on the complex Z-pole

↪→ Enormous challenge, but feasible (anticipating progress + support!)

Stefan Dittmaier, Precision Electroweak Calculations Symposium on the European Strategy, Granada, May 2019 – 7

Prospects: Extrapolation assuming EW & QCD 3-loop corrections are known

Current: Full 2-loop corrections ⇒ Not enough for future Exp. precision

Technically challenging but feasible (with enough support)

⇩
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Comparison of κ-framework results
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Number of largely improved H couplings (κ-framework): 12 quantities total 

# of “largely” improved H couplings (kappa)
Factor ≥2 Factor ≥4 Factor ≥7 Years from T0

CLIC380 5 2 2 7
FCC-ee240 6 4 3 9
CEPC 7 4 4 10
ILC250 6 4 3 11
LHeC 4 2 0 15
FCC-ee365 9 7 4 15
CLIC1500 7 4 2 17
HE-LHC 4 0 0 20
ILC500 9 6 3 22
CLIC3000 8 4 2 28
FCC-ee/eh/hh 12 10 6 >50

23

12 quantities in total

Initial 
Run ee

2nd/3rd
Run ee

eh or hh

ee,eh & hh

NB: number of seconds/year differs: ILC 1.6x107, FCC-ee & CLIC: 1.2x107, CEPC: 1.3x107

Note: Different definitions of “Year”: ILC 1.6 x 107 sec, FCC-ee/CLIC: 1.2 x 107 sec, CEPC: 1.3 x 107 sec
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Comparison of EFT results

�35

# of “largely” improved H couplings (EFT)
Factor ≥2 Factor ≥5 Factor ≥10 Years from T0

CLIC380 9 6 4 7
FCC-ee240 10 8 3 9
CEPC 10 8 3 10
ILC250 10 7 3 11
FCC-ee365 10 8 6 15
CLIC1500 10 7 7 17
HE-LHC 1 0 0 20
ILC500 10 8 6 22
CLIC3000 11 7 7 28
FCC-ee/eh/hh 12 11 10 >50

22

13 quantities in total

Initial 
run

2nd/3rd
Run ee

ee,eh & hh

NB: number of seconds/year differs: ILC 1.6x107, FCC-ee & CLIC: 1.2x107, CEPC: 1.3x107

hh

Number of largely improved H couplings (EFT): 13 quantities total 

Note: Different definitions of “Year”: ILC 1.6 x 107 sec, FCC-ee/CLIC: 1.2 x 107 sec, CEPC: 1.3 x 107 sec



• Motivated by the Higgs factory option, there seems to be a consensus that a 
future lepton collider must be the next step in particle collider experiments:


• Model-independent determination of H couplings


• Near per-mille level precision in some H couplings. O(10-30%) in H3


• But rare channels limited by stats ⇒ need Hadron collider afterwards


• Beyond Higgs: possibility of improving knowledge in EW interactions


• Which lepton collider? Not so clear. From the point of view of CERN experiments:


• Option 1: build lepton collider (FCC-ee/CLIC) and, later, a high-E pp machine


• Option 2: lepton collider somewhere else (CEPC/ILC) and focus on high-E pp


• Other options? 

Conclusions
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General considerations from discussion at Granada

Low Energy FCC? 
6 T Magnets in 100 Km tunnel ⇒ 37.5 TeV pp collider ? 

(To be extended later on to 100 TeV)
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General considerations from discussion at Granada

Low Energy FCC? 
6 T Magnets in 100 Km tunnel ⇒ 37.5 TeV pp collider ? 

(To be extended later on to 100 TeV)

Updated studies including the input from discussion at Granada coming soon…
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Single Higgs couplings
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Kappa-0: No BSM Width

�15

Zooming in for visibility - different x ranges per parameter  κ fit: No extra Higgs decays



• The dimension 6 SMEFT: 

• LO new physics effects “start” at dimension 6: 


• SMEFT describes correlations of new physics effects in different types of 
observables, e.g.


• Focus on EW/Higgs: Assume CP-even. 4-Fermion and dipole operators 
tested better by other processes (no EW/Higgs) and are neglected.


Λ: Cut-off of the EFT

February 16, 2018

EFT analyses with FCC precision

J. de Blasa†

aINFN, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy

Abstract

Materials for the talk presented at the FCC physics meeting on Feb. 19 2018.
EFT: E↵ects suppressed by �

q

⇤

�d�4

q = v, E < ⇤

1 Expected precision for EWPO at FCC-ee

Observable Expected uncertainty (Relative uncertainty)

MZ [GeV] 10
�4

(10
�6

)

�Z [GeV] 10
�4

(4 ⇥ 10
�5

)

�
0
had [nb] 5⇥10

�3
(10

�4
)

Re 0.006 (3 ⇥ 10
�4

)

Rµ 0.001 (5 ⇥ 10
�4

)

R⌧ 0.002 (10
�4

)

Rb 0.00006 (3 ⇥ 10
�4

)

Rc 0.00026 (15 ⇥ 10
�4

)

Table 1: Expected sensitivities to Z-lineshape parameters and normalized partial decay widths.

†E-mail: Jorge.DeBlasMateo@roma1.infn.it
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EFT: E↵ects suppressed by �

q

⇤

�d�4

q = v, E < ⇤

1 Expected precision for EWPO at FCC-ee

Observable Expected uncertainty (Relative uncertainty)

MZ [GeV] 10
�4

(10
�6

)

�Z [GeV] 10
�4
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�5
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�4
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)

Rµ 0.001 (5 ⇥ 10
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)

R⌧ 0.002 (10
�4

)

Rb 0.00006 (3 ⇥ 10
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)

Rc 0.00026 (15 ⇥ 10
�4

)

Table 1: Expected sensitivities to Z-lineshape parameters and normalized partial decay widths.
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SMEFT: Bottom-Up approach

�40

O�WB = �†�a�B
µ⌫W a

µ⌫

v2Bµ⌫W 3
µ⌫

Modifies neutral gauge 

boson self-energies EWPT

EWSB

(dim 4)

vhBµ⌫W 3
µ⌫ h ! ZZ, �� Higgs phys.

(dim 5)
⇒ Use global EW/Higgs fits to estimate sensitivity to NP effects
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59 B & L preserving operators  
(2499 counting flavor) 

We also restrict the analysis to flavour preserving processes/interactions


