

Summary of Open Symposium on European Strategy Upgrade: Accelerators

Moses Chung (Dept. of Physics, UNIST) KAIST-KAIX Workshop for Future Particle Accelerators July 8-19, 2019, Daejeon, Korea

Accelerators summary

Caterina Biscari and Lenny Rivkin, Phil Burrows, Frank Zimmermann Open Symposium towards updating the European Strategy for Particle Physics May 13-16, 2019, Granada, Spain

Accelerators related inputs

About 60 different inputs + national inputs which include accelerators

- e+e- colliders
- hh colliders
- ep colliders
- FCC
- Gamma factories
- Plasma acceleration
- Muon colliders
- Beyond colliders
- Technological developments

Input to speakers:

- Contributions of the community
- Coherent parameters (Integrated luminosity, duty cycle, readiness definition, ...)
- What about costs and time schedule?

Output from speakers

- comprehensive summary of 2-3 slides, including open questions, challenges, opportunities and objectives

Granada Open Symposium

Big Questions

In particular for the Accelerator Science and Technology

- What is the best implementation for a Higgs factory? Choice and challenges for accelerator technology: linear vs. circular?
- Path towards the highest energies: how to achieve the ultimate performance (including new acceleration techniques)?
 - How to achieve proper complementarity for the high intensity frontier vs. the high-energy frontier?
 - Energy management in the age of high-power accelerators?

•

Mon 13/5


State of the art and challenges in accelerator technology - Past and present	Akira Yamamoto 🥝
García Lorca Room, Granada Conference Center	11:10 - 11:45
Future – Path to very high energies	Vladimir Shiltsev 🥝
García Lorca Room, Granada Conference Center	11:45 - 12:20

2 plenary

Wed 15/5

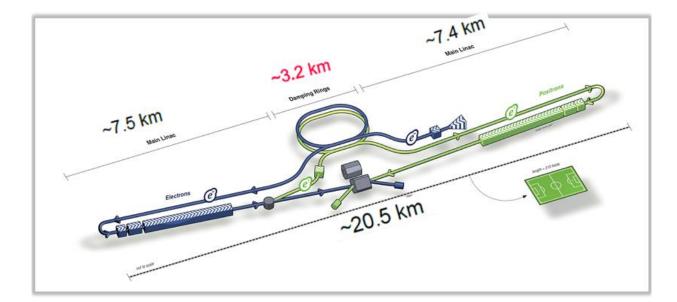
1 s	ummary
García Lorca Room, Granada Conference Center	18:40 - 19:30
Accelerator Science and Technology	Caterina Biscari et al. 🥝

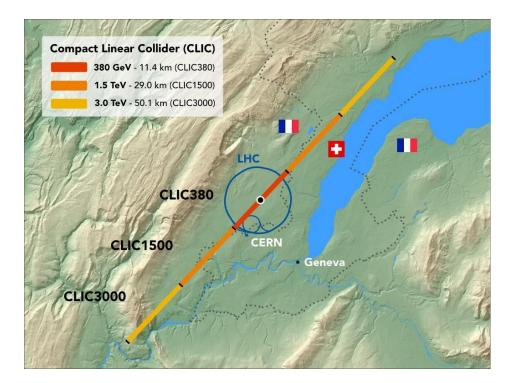
Mon 13/5

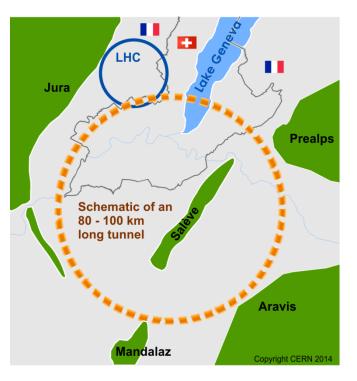
Tue 14/5

Muon collider (20'+10')	Daniel Schulte	Ø
Accelerator beams (20'	r-based Neutrin +10')	0
V	/ladimir Shiltse	2V
Energy efficiency o HEP infrast	Erk Jensen of tructures (20'+1	
Coffee brea	ak	
Picasso Roo Conference	om, Granada Center	
projects (2	isma accelerati 0'+10') la Gschwendtr	
	Wim Leemans	Ø
Challenges acceleratio		
Picasso Roo Conference	om, Granada Center	
Beyond	Mike Lamont	Ø
colliders (20'+10')		
Discussion	I	
	om, Granada	
Conference	Center	

Jie: CepC Young-Kee: Colliders


Patric: Frank: Plasma FCC




LHC HL-LHC

ILC/CLIC CEPC/FCC

Q1: What is the best implementation for a Higgs factory? Choice and challenges for accelerator technology: linear vs. circular?

1 G = 1 Billion = 1,000,000,000

CHF ~ US\$

Comparisons

"ILCU" as the United States dollar as in January 2012

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

D. Schulte

Proposed Schedules and Evolution

	T ₀	+5			+10		+15			+20			+26
ILC	0.5/ab 250 GeV			1.5/a 250 G			1.0/ab 500 GeV	2m					
CEPC	5.6/ 240 (5/ab M _z	2.6 /ab 2M _w								opC =>
CLIC		.0/ab 0 GeV					2.5/ab 1.5 TeV	5.0/ab => unti 3.0 TeV					
FCC	150/ab ee, M _z	10/ab ee, 2M _w	5/al ee, 240				1.7/ab ee, 2m _{top}						i,eh =>
LHeC	0.06/ab			0.2/a	b		0.72/ab						
HE- LHC													
FCC eh/hh	20/ab per experiment in 25y												

Project	Start construction	Start Physics (higgs)	Proposed dates from projects
CEPC	2022	2030	
ILC	2024	2033	Would expect that technically required time to start construction is O(5-10
CLIC	2026	2035	years) for prototyping etc.
FCC-ee	2029	2039 (2044)	
LHeC	2023	2031	2019

Luminosity Challenge

Luminosity cannot be fully demonstrated before the project implementation

- Luminosity is a feature of the facility not the individual technologies
- Have to rely on experiences, theory and simulations
- Foresee margins

FCC-ee and CEPC are based on experience from LEP, DAPHNE, KEKB, PEP II, superKEKB, ...

- Gives confidence that we understand performance challenges
- New beam physics occurs in the designs,
 - e.g. beamstrahlung* is unique feature of FCC-ee and CEPC
 - Identified and anticipated in the design, should be able to trust simulations
- The technologies required are improved versions of those from other facilities

Linear colliders are based on experiences from SLC, FELs, light sources, ...

- Gives confidence that we understand the performance challenges
- Gives us confidence that we can do better than SLC
- Still performance goal more ambitious, e.g. beam size of nm scale
 - Creates additional challenges and requires additional technologies, e.g. stabilisation
- A part of the technologies are improved versions of those from other facilities
- Some had to be purpose-developed for linear colliders

All studies prioritised their work because of limited resources

- Depending on your preference you will see holes in any of them that you find are unacceptable
- Or you will be convinced that this very issue is a mere detail ...

*beamstrahlung (the energy loss caused by radiation of gamma quanta by the incoming electron due to its interaction with the EM field electron (positron) bunch moving in the opposite direction) during the very moment of collision of short bunches

Maturity

• CEPC and FCC-ee, LHeC

- Do not see a feasibility issue with technologies or overall design

 But more hardware development and studies essential to ensure that the performance goal can be fully met

• E.g. high power klystrons, strong-strong beam-beam studies with lattice with field errors, ...

• ILC and CLIC

- Do not see a feasibility issue with technology or overall design
- Cutting edge technologies developed for linear colliders
 - ILC technology already used at large scale
 - CLIC technology in the process of industrialisation

 More hardware development and studies required to ensure that the performance goal can be full met

• e.g. undulator-based positron source, BDS (Beam Delivelry System) tuning, ...

- Do not anticipate obstacle to commit to either CEPC, FCC-ee, ILC or CLIC
 - But a review is required of the chosen candidate(s)
 - More effort required before any of the projects can start construction
- Guidance on project choice is necessary
 - Physics potential
 - Strategic considerations

Higgs Factories

- e+e- linear

 - -CL/C Input #146
- e+e- circular
 - -FCC-ee Input #132

Input #51

Input #120

- –CepC
- µ+µ- circular

–µ-HF

Requirement: high luminosity **O**(10³⁴) at the Higgs energy scale

Usually, compared to the LHC – which is, as a machine :

- 27 km long
- SC magnets (8T)
- 150 MW power total
- ~ 10 years to build

Finding Common Denominators * – Three Factors

* to be further discussed in the Symposium's accelerator sessions

 F1 "Technology
 F2 "Energy Efficiency" Readiness" :

F3 "Cost" :
Green : < LHC
Yellow : 1-2 x LHC
Red : > 2x LHC

🛟 Fermilab

Higgs Factories	Readiness	Power-Eff.	Cost
ee Linear 250 GeV			
ee Rings 240GeV/tt			
μμ Collider 125 GeV			*
Highest Energy			
ee Linear 1-3TeV			
pp Rings HE-LHC			
FCC- <u>hh/SppC</u>			
μμ Coll. 3-14 <u>TeV</u>			*

7-10 YEARS FROM NOW WITH PROPOSED ACTIONS / R&D DONE / TECHNICALLY LIMITED

• ILC:

- Some change in cost (~6-10%)
- All agreements by 2024, then
- **Construction** (2024-2033)

• CLIC:

- TDR & preconstr. ~2020-26
- **Construction** (2026-2032)
- 2 yrs of commissioning

CepC:

- Some change in cost & power
- TDR and R&D (2018-2022)
- **Construction** (2022-2030)

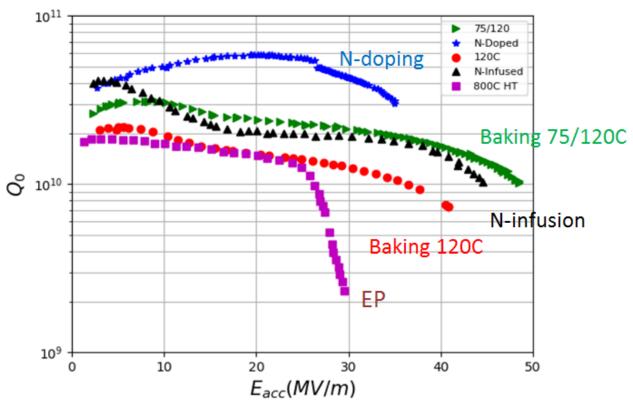
FCC-ee:

- Some change in cost & power
- Preparations 2020-2029
- Construction 2029-2039
- HE-LHC:
 - R&D and prepar'ns 2020-2035
 - Construction 2036-2042
- FCC-hh (w/o FCC-ee stage):
 - 16T magnet prototype 2027
 - Construction 2029-2043
 - μ***-**μ⁻ Collider :
 - CDR completed 2027, cost known
 - Test facility constructed 2024-27
 - Tests and TDR 2028-2035
 Fermilab

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	В [T]	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee)	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh			chnica Collide		enges:				High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
С	00		d magr nanage					10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
C ee			ollide ı ty: Higł		150 – 270 -G (to p	5 repare for (upgrad	de)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L		RF acc. ning	Struct	.: large s	scale, ali	gnment, to	leran	ce, 5- (4)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C ee	- En	ergy n	nanage ())	ement	160 (* 580)	5.9 (for 0.00 ToV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing

*Cost estimates are commonly for "Value" (material) only.


The maximum energy of colliders is determined by practical considerations, of which the first is the size of the facility. For a linear collider, beam energy is product of average accelerating gradient G and length of the linac l:

 $E = eG \cdot l$.

RF technology

- Accelerator Technologies are ready to go forward for lepton colliders (ILC, CLIC, FCC-ee, CEPC), focusing on the Higgs Factory construction to begin in > ~5 years.
- SRF accelerating technology is well **matured** for the realization including cooperation with industry.
- Continuing R&D effort for higher performance is very important for future project upgrades.
 - Nb-bulk, 40 50 MV/m: ~ 5 years for single-cell R&D and the following 5 10 years for 9cell cavities statistics to be integrated. Ready for the upgrade, 10 ~ 15 years.

State of the Art in High-Q and High-G (1.3 GHz, 2K)

N-doping (@ 800C for ~a few min.)

Courtesy: Anna Grassellino

- TTC Meeting, TRIUMF, Feb., 2019

- Q >3E10, G = 35 MV/m
- Baking w/o N (@ 75/120C)
 - Q >1E10, G =49 MV/m (Bpk-210 mT)
- N-infusion (@ 120C for 48h)
 - Q >1E10, G = 45 MV/m
- Baking w/o N (@ 120C for xx h)
 - Q >7E9, G = 42 MV/m
- EP (only)
 - Q >1.3E10, G = 25 MV/m

- High-Q by N-Doping well established, and
- High-G by N-infusion and Low-T baking still to be understood and reproduced, worldwide.

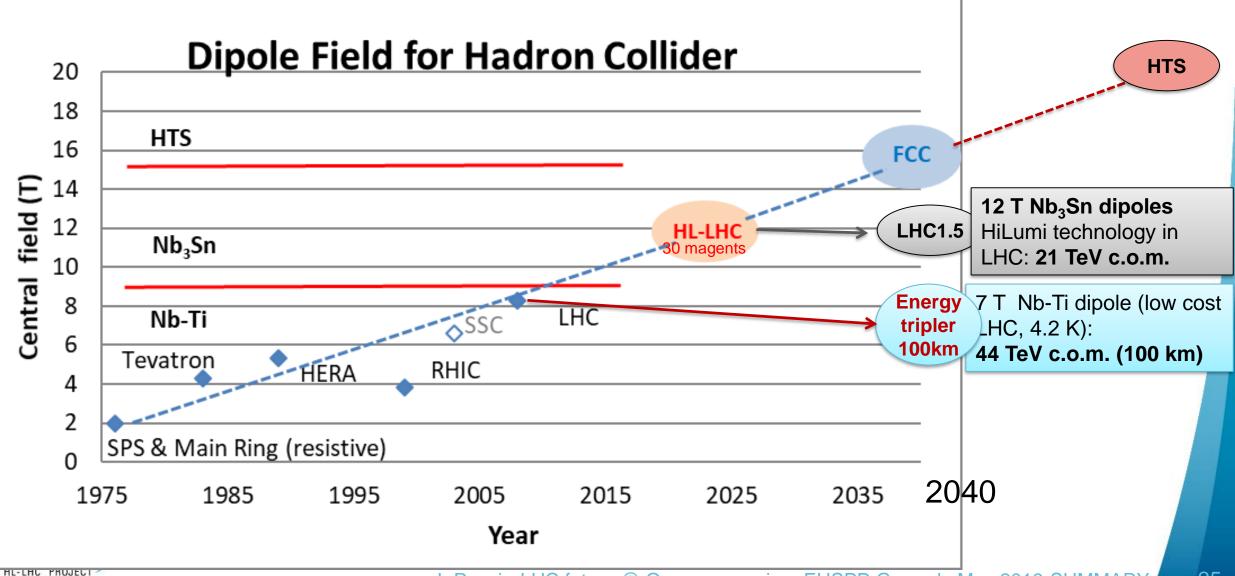
Features of Normal conducting and Superconducting RF

Normal conducting (CLIC)	Superconducting (ILC)
Gradient: 72 to 100 MV/m - Higher energy reach, shorter facility	Gradient: 31.5 to 35 (to 45) MV/m, - Higher efficiency, steady state beam power from RF input
RF Frequency: 12 GHz - High efficiency RF peak power - Precision alignment & stabilization to compensate wakefields	RF Frequency: 1.3 GHz - Large aperture gives low wakefields
Q ₀ : order < 10 ⁵ , - Resistive copper wall losses compensated by strong beam loading – 40% steady state rf-to-beam efficiency	Q ₀ : order 10 ¹⁰ , - High Q - losses at cryogenic temperatures
Pulse structure: 180 ns / 50 Hz	Pulse structure: 700 µs / 5 Hz
Fabrication: - driven by micron-level mechanical tolerances	Fabrication - driven by material (purity) & clean-room type chemistry
 High-efficiency RF peak power production through long-pulse, low freq. klystrons and two-beam scheme 	 High-efficiency RF also from long-pulse, low-frequency klystrons

Q2: Path towards the highest energies: how to achieve the ultimate performance (including new acceleration techniques)?

Technical Challenges in Energy-Frontier Colliders proposed

					•	•••			
		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	В [T]	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee)	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh			chnica Collide	al Chall	n circular colliders, the	TBD e maximum momentum and en ring <i>R</i> and average magnetic fi		_	High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
C	00	•	ld magı nanage		<i>pc</i> = 350	$= eB \cdot R$ or $E[GeV] = 0.3 \cdot B[R]$	[⁻]• <i>R</i> [<i>m</i>].	(7) (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
С ее	• •		ollide ty: Higł		150 – 270 -G (to pi	5 [B\$] repare for u	upgra	20 – (40) (0.65) de)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L		Facc. hing	. Struct	.: large s	scale, ali	gnment, to	leran	ce, 5 - (4)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C cc	- En	ergy r	nanage	ement	160 (580)	5.9 (for 0.09 ToV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing
	A. Yamamoto	o, 190513b				*Cost estimates	are comr	nonly for " Val	ue" (material) only.


*Cost estimates are commonly for "Value" (material) only.

p-p machine CERN

Lucio Rossi – CERN HL-LHC Project Leader

parameter	FCC-	hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100)	27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.7	' 5	26.7	26.7	26.7
beam current [A]	0.5	;	1.1	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	2.2	1.15
bunch spacing [ns]	25	25	25	25	25
synchr. rad. power / ring [kW]	240	0	101	7.3	3.6
SR power / length [W/m/ap.]	28.4	4	4.6	0.33	0.17
long. emit. damping time [h]	0.54	4	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		28	5 (lev.)	1
events/bunch crossing	170 1000		800	132	27
stored energy/beam [GJ]	8.4		1.4	0.7	0.36

High field magnet development

L.Rossi - LHC future @ Open symposium EUSPP-Granada May 2019-SUMMARY

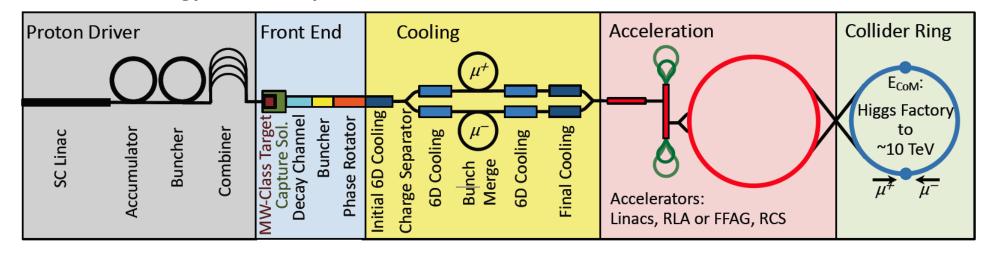
Conclusions

- HiLumi will allow LHC to continue to produce top class HEP till 2035-2040; it is technology drivers and buys time for next project
- A HE-LHC of 27 TeV (16 T dipoles) is probably for 2050...
- A new HEP hadron collider to start in 2040 can be with realism – a LHC1.5 @ 21 TeV, based on 12 T magnets of HiLumi technology and SC. If treated as un upgrade (and not as a full new project, may save time&money (cryogenics and T.I. ...)
- The LHeC machine may be a mid-size project to fill the gap to a very large project (like FCC-hh) or a very appealing complement in case of:
 - LHC used as Injector for FCC-hh (today baseline of FCC study)
 - LHC1.5 at 10.5 TeV/beam (from 2040)
 - HE-LHC at 13.5 TeV/beam (from 2050)

s.c. magnet technology

- Nb₃Sn superconducting magnet technology for hadron colliders, still requires step-bystep development to reach 14, 15, and 16 T.
- It would require the following **time-line** (in my personal view):
 - Nb₃Sn, 12~14 T: 5~10 years for short-model R&D, and the following 5~10 years for prototype/pre-series with industry. It will result in 10 20 yrs for the construction to start,
 - Nb₃Sn, 14~16 T: 10-15 years for short-model R&D, and the following 10 ~ 15 years for protype/pre-series with industry. It will result in 20 30 yrs for the construction to start, (consistently to the FCC-integral time line).
 - NbTi , 8~9 T: proven by LHC and Nb₃Sn, 10 ~ 11 T being demonstrated. It may be feasible for the construction to begin in > ~ 5 years.
- Continuing R&D effort for high-field magnet, present to future, should be critically important, to realize highest energy frontier hadron accelerators in future.

Intensify HTS accelerator magnet development


Personal (A. Yamamoto) View on Relative Timelines

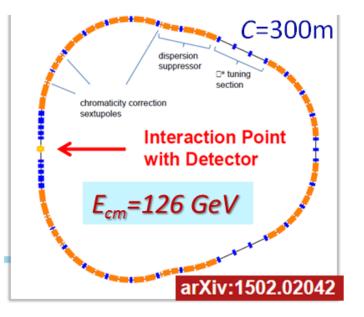
Timeline	~ 5	~ 10	~ 15	~ 20	~ 25	~	30	~ 35						
Lepton Collic	Lepton Colliders													
SRF-LC/CC	Proto/pre- series	Construct	ion	Opera	ation		Upgrade							
NRF—LC	Proto/pre-serie	es Constr	uction	ction Operation			Upgrade							
Hadron Collie	der (CC)													
8~(11)T NbTi /(Nb3Sn)	Proto/pre- series	Construct	ion		Operation									
12~14T Nb ₃ Sn	Short-model R	&D Prot	o/Pre-series	Const	ruction	0	peration	Ì						
14~16T Nb ₃ Sn	Short-m	odel R&D	P	rototype/Pre-	-series	Constru	uction							

Note: LHC experience: NbTi (10 T) R&D started in 1980's --> (8.3 T) Production started in late 1990's, in ~ 15 years

Proton-driven Muon Collider Concept

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.

Short, intense proton bunches to produce hadronic showers

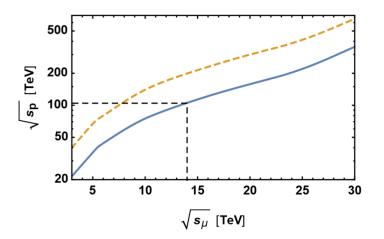

Pions decay into muons that can be captured Muon are captured, bunched and then cooled Acceleration to collision energy

Collision

As a Higgs factory:

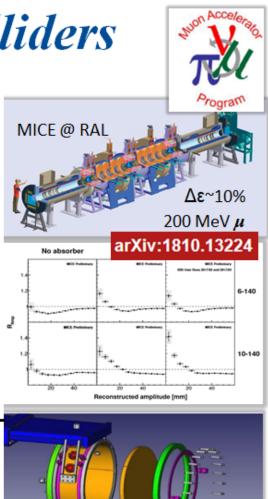
Key facts:

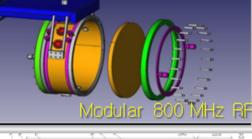
1/100 luminosity requirements (large cross-section in *s*-channel) Half the energy $2 \times 63 \text{ GeV} \ \mu + \mu - \rightarrow H_0$ Small footprint (<10 km) and low cost Small(est) energy spread ~3 MeV Total site power ~200MW (tbd)

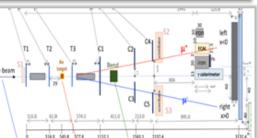


As a High Energy Collider:

Advantages:


- µ's do not radiate / no beamstrahlung→ acceleration in rings → low cost & great power efficiency
- ~ x7 energy reach vs pp


Offer *"moderately conservative - moderately innovative"* path **to cost affordable** energy frontier colliders:



Recent progress: $\mu + \mu$ - Colliders

- Ionization cooling of muons:
 - Demonstrated in MICE @ RAL
 - 4D emittance change O(10%)
- NC RF 50 MV/m in 3 T field
 - Developed and tested at Fermilab
- Rapid cycling HTS magnets
 - Record 12 T/s built and tested at FNAL
- First RF acceleration of muons – J-PARC MUSE RFQ 90 KeV
- US MAP Collaboration → Int'I
- Low emittance (no cool) concept
- 45 GeV $e^++e^- \rightarrow \mu^+\mu^-$: CERN fixed target 15

Answers to the Key Questions

- Can muon colliders at this moment be considered for the next project?
 - Enormous progress in the proton driven scheme and new ideas emerged on positron one
 - But at this moment not mature enough for a CDR, need a careful design study done with a coordinate international effort

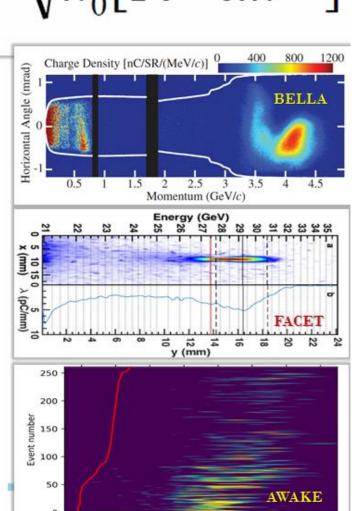
• Is it worthwhile to do muon collider R&D?

- Yes, it promises the potential to go to very high energy
- It may be the best option for very high lepton collider energies, beyond 3 TeV
- It has strong synergies with other projects, e.g. magnet and RF development
- Has synergies with other physics experiments
- Should not miss this opportunity?
- What needs to be done?
 - Muon production and cooling is key => A new test facility is required.
 - Seek/exploit synergy with physics exploitation of test facility (e.g. nuSTORM)
 - A conceptual design of the collider has to be made
 - Many components need R&D, e.g. fast ramping magnets, background in the detector
 - Site-dependent studies to understand if existing infrastructure can be used
 - limitations of existing tunnels, e.g. radiation issues
 - optimum use of existing accelerators, e.g. as proton source
 - R&D in a strongly coordinated global effort

Plasma Wakefield Accelerators

Input #7 Input #109 Input #58 Input #95

Tajima & Dawson (1979)


$E_0 = \frac{m_e c \omega_p}{m_e c \omega_p} \approx 10$	$0[\frac{GeV}{m_0}] \cdot \sqrt{n_0[10^{18}cm^{-3}]}$
e	-m -100 -1200

Key facts:

Three ways to excite plasma (drivers)

laser $dE \sim 4.3 \text{ GeV} (10^{18} \text{ cm}^3 \text{ 9 cm})$ e- bunch $dE \sim 9 \text{ GeV} (\sim 10^{17} \text{ cm}^3 1.3 \text{m})$ p+ bunch $dE \sim 2 \text{ GeV} (\sim 10^{15} \text{ cm}^3 10 \text{m})$ Impressive proof-of-principle demos In principle, feasible for e+e- collisions Collider cost and power will greatly depend on the driver technology:

- lasers, super-beams of electrons or protons

1.6

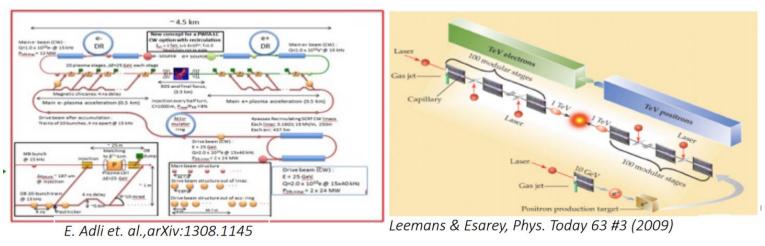
1.4

Energy / GeV

2.0

1.8

1.0


1.2

0.8

Plasma acceleration based colliders

Drive beams Lasers: ~40 J/pulse Electrons: 30 J/bunch Protons: SPS 19kJ/pulse, LHC 300kJ/bunch

Witness beams Electrons: 1010 particles @ 1 TeV ~few kJ

Key achievements in last 15 years in plasma based acceleration using lasers, electron and proton drivers

• Focus is now on high brightness beams, tunability, reproducibility, reliability, and high average power

The road to colliders passes through **applications** that need compact accelerators (Early HEP applications, FELs, Thomson scattering sources, medical applications, injection into next generation storage rings ...)

Many key challenges remain as detailed in community developed, consensus based roadmaps (ALEGRO, AWAKE, Eupraxia, US roadmap,...)

Strategic investments are needed:

- Personnel advanced accelerators attract large numbers of students and postdocs
- Existing facilities (with upgrades) and a few new ones (High average power, high repetition rate operation studies; fully dedicated to addressing the challenges towards a TDR for a plasma based collider)
- High performance computing methods and tools

Status of Today and Goals for Collider Application

	Current	Goal		
Charge (nC)	0.1	1		
Energy (GeV)	9	10		
Energy spread (%)	2	0.1		
Emittance (um)	>50-100 (PWFA), 0.1 (LFWA)	<10-1		
Staging	single, two	multiple		
Efficiency (%)	20	40		
Rep Rate (Hz)	1-10	10 ³⁻⁴		
Acc. Distance (m)/stage	1	1-5		
Positron acceleration	acceleration	emittance preservation		
Proton drivers	SSM, acceleration	Emittance control		
Plasma cell (p-driver)	10 m	100s m		
Simulations	days	Improvements by 10 ⁷		

Achieved Individually And Not Simultaneously

Table 1: Facilities for accelerator R&D in the multi-GeV range relevant for ALIC and with emphasis on specific challenges

Facility	Readiness	ANA technique	Specific Goal	GRO
				9:00
kBELLA	Design study	LWFA	e-, 10 GeV, KHz rep rate	LinEar collider study GROup
EuPRAXIA	Design study	LWFA or PWFA	e-, 5 GeV, reliability	
AWAKE	Operating	PWFA	e ⁻ /p ⁺ collider	
FACET II	Start 2019	PWFA	e ⁻ , 10 GeV boost, beam quality, e ⁺ acceleration	
Flash FWD	Operating	PWFA	e-, 1.5 GeV, beam quality	

Beam-Driven Plasma Acceleration Facilities span a broad range in beam energy, particle species and average power

Courtesy B. Cros, LPGP, Paris, France

Table 3.1: Overview of PWFA facilities

									Line
	AWAKE	CLEAR	FACET-II	FF>>	SparcLAB	EuPR@Sparc	CLARA	MAX IV	
operation start	2016	2017	2019	2018	2017	2022	2020	tbd	
current status	running	running	construction	commissioning	PWFA, LWFA commissioning	CDR ready??	construction	design	
eurone suuds		running	construction	commissioning	commissioning	e Dicioudy !!	construction	avorgii	
		rapid	high energy	MHz rep rate	PWFA with	PWFA with		low emittance,	
unique		access and	peak-current	100kW average power	COMB beam,	COMB beam,	ultrashort	short pulse,	
contribution	protons	operation	electrons,	1 fs resolution	LWFA external	X-band Linac	e ⁻ bunches	high-density	
	*	cycle	positrons	bunch diagn.	injection,	LWFA ext. inj.		e ⁻ beam	
				FEL gain tests	test FEL	test FEL			
		instrumentation	high intensity	high average power	PWFA	PWFA, LWFA,		PWFA,	
research topic	HEP	irradiation	e ⁻ , e ⁺ beam	e ⁻ beam	LWFA	FEL, other	FEL	Soft	
Ĩ		AA technology	driven exp.	driven exp.	FEL	applications		X-FELs	
user facility	no	yes	yes	no	no	yes	partially	no	
drive beam	p ⁺	e-	e-	e	e-	e-	e-	e-	
driver energy	400 GeV	200 MeV	10 GeV	0.4-1.5 GeV	150 MeV	600 MeV	240 MeV	3 GeV	
ext. inject.	yes	no	no/yes	yes??	no	no	no	no	
witness energy	20 MeV	na	tb ugraded	0.4-1.5 GeV	150 MeV	600 MeV	na	3 GeV	
plasma	Rb vapour	Ar, He capillary	Li oven	H, N, noble gases	H, capillary	H, capillary	He, capillary	H, gases	
density [cm ⁻³]	1-10E14	1E16-1E18	1E15-1E18	1E15-1E18	1E16-1E18	1E16-1E18	1E16-1E18	1E15-1E18	
length	10 m	5-20 cm	10-100 cm	1-30 cm	3 cm	> 30 cm	10-30 cm	10-50cm	
plasma tapering	yes	na	yes	yes	yes	yes		yes	
acc. gradient	1 GeV/m average	na	10+ GeV/m peak	10+ GeV/m peak	>1 GeV/m??	>1 GeV/m??	na	10+ GeV/m pea	k
exp. E gain	1 + GeV	na	$\approx 10 \text{GeV}$	$\approx 1.5 \text{GeV}$	40 MeV ??	$> 500 \mathrm{MeV}$	na	3 GeV	

9

Present laser-Driven Plasma Acceleration Facilities can operate at up to 10 PW but lack high average power, high repetition rate capabilities

Table 2.2: Laser facilities (≥100 TW) performing LWFA R&D in Euro	ope.
---	------

E	T	T d	Б	D 1	D (
Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
ELBE [16]	HZDR	Dresden, Ge	30	1	1
GEMINI [17]	STFC, RAL	Didcot, UK	15	0.5	0.05
LLC [18]	Lund Univ	Lund, Se	3	0.1	1
Salle Jaune [19]	LOA	Palaiseau, Fr	2	0.07	1
UHI100 [20]	CEA Saclay	Saclay, Fr	2	0.08	1
CALA* [21]	MPQ	Munchen, Ge	90	3	1
CILEX* [22]	CNRS-CEA	St Aubin, Fr	10-150	1-10	0.01
ELIbeamlines* [23]	ELI	Prague, TR	30	1	10
ILIL* [24]	CNR-INO	Pisa, It	3	0.1	1
SCAPA* [25]	U Strathclyde	Glasgow, UK	8	0.3	5
ANGUS	DESY	Hamburg, Ge	5	0.2	5

KALDERA at DESY will focus on high average power

Table 2.3: Laser facilities (≥ 100 TW) performing LWFA R&D in Asia

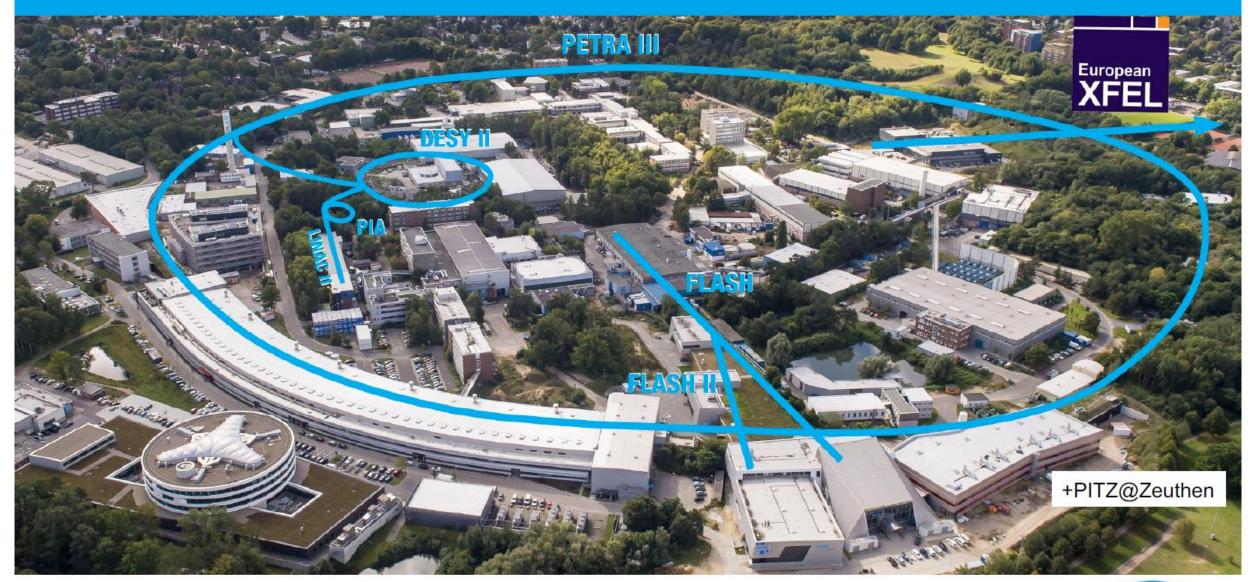

Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
CLAPA	PKU	Beijing, PRC	5	0.2	5
CoReLS [28]	IBS	Gwangju, Kr	20-100	1-4	0.1
J-Karen-P* [29]	KPSI	Kizugawa, Jn	30	1	0.1
LLP [30]	Jiao Tong Univ	Shanghai, PRC	5	0.2	10
SILEX*	LFRC	Myanyang, PRC	150	5	1
SULF* [31]	SIOM	Shanghai, PRC	300	10	1
UPHILL [32]	TIFR	Mumbai, In	2.5	0.1	
XG-III	LFRC	Myanyang, PRC	20	0.7	

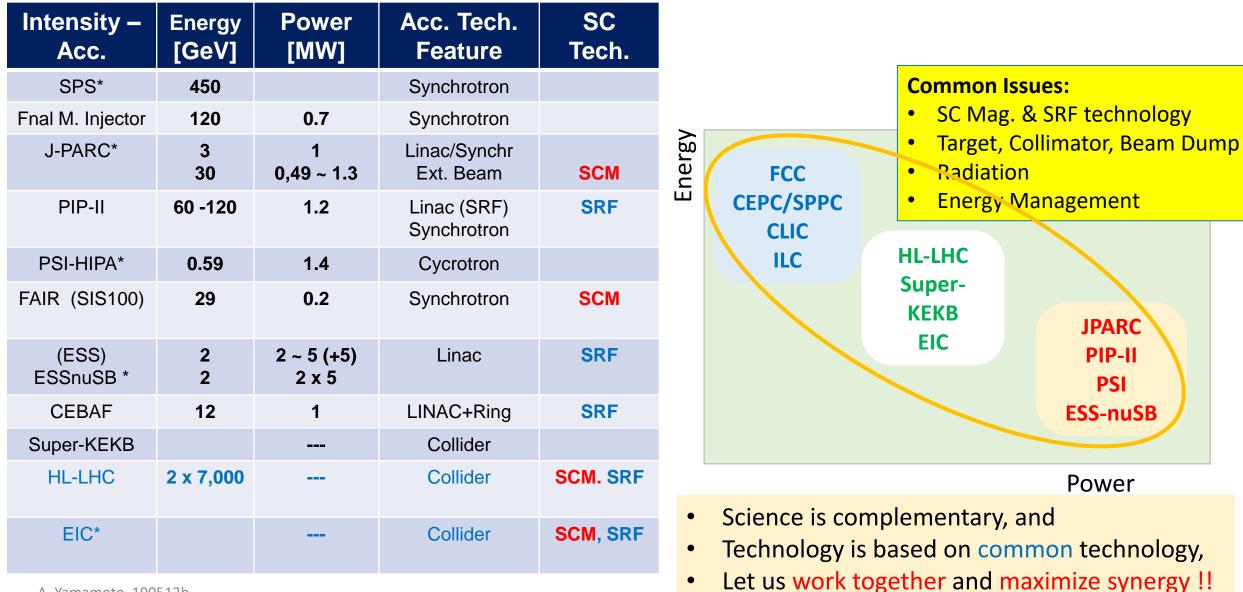
Table 2.1: US laser facilities (>100 TW) performing LWFA R&D.

Facility	Institute	Location	Gain	Energy	Peak power	Rep. rate
			media	(J)	(PW)	(Hz)
BELLA [7]	LBNL	Berkeley, CA	Ti:sapphire	42	1.4	1
Texas PW [8]	U. Texas	Austin, TX	Nd:glass	182	1.1	single-shot
Diocles [9]	U. Nebraska	Lincoln, NE	Ti:sapphire	30	1	0.1
Hercules [10]	U. Michigan	Ann Arbor, MI	Ti:sapphire	9	0.3	0.1
Jupiter [11]	LLNL	Livermore, CA	Nd:glass	150	0.2	single-shot

ALEGRO

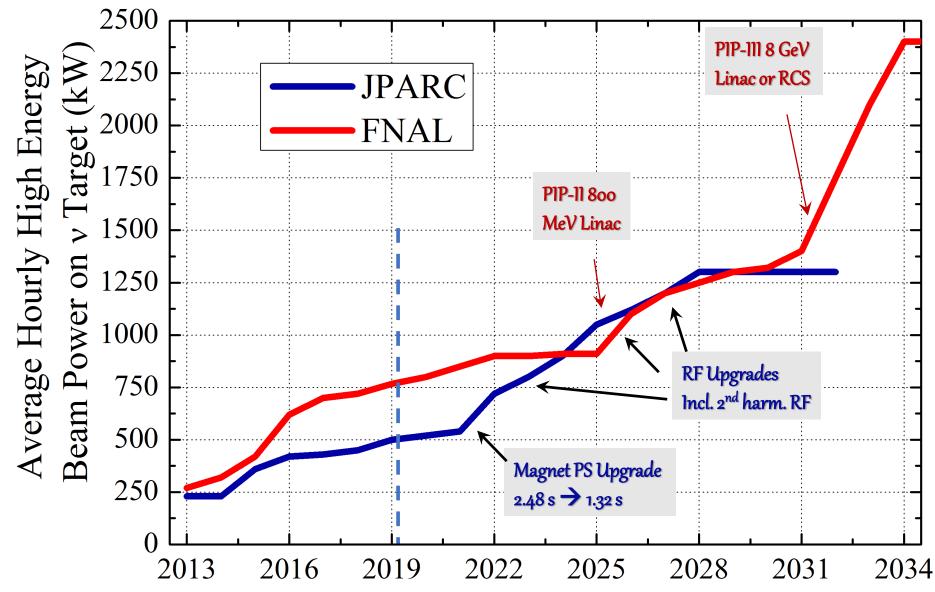
Advanced LinEar collider study GRO

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES 2019 EPPS Granada,| Leemans Wim,May. 14 2019 for FEL lasing? Can we inject into a storage ring?

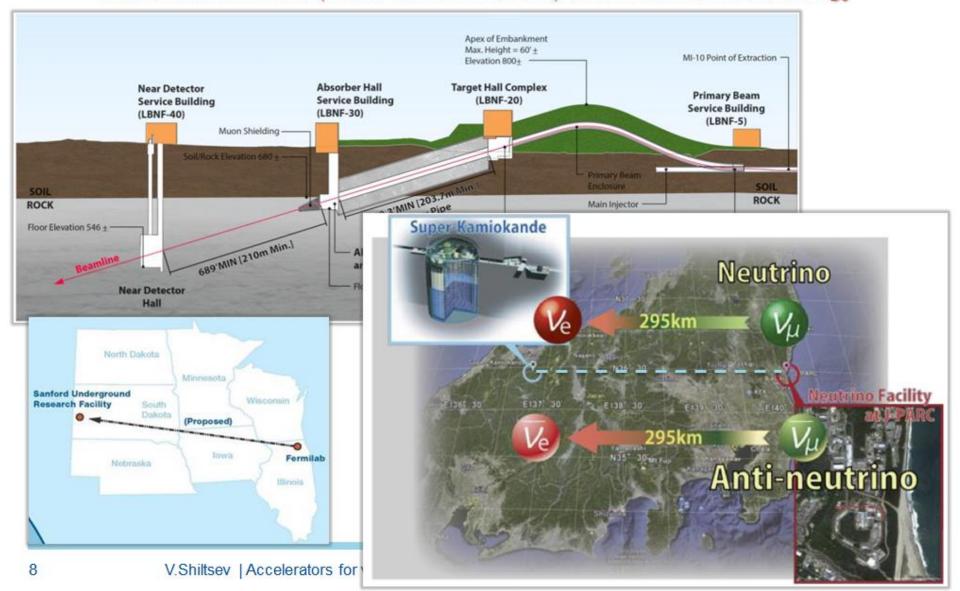

The future is in a muons in plasma Wladi	ccele l mín Workshop on E	erating south of the second se
	24-25 June 2019 Fermilab US/Central timezone	Search
	Overview Scientific Programme Timetable Contribution List Author List Registration L Registration Form	The concept of beam acceleration in solid-state plasma of crystals or nanostructures like CNTs has the promise of ultra-high accelerating gradients <i>O</i> (1-10) TeV/m, continuous focusing and small emittances of, e.g., muon beams and, thus, may be of interest for future high energy physics colliders. This "Workshop on Beam Acceleration in Crystals and Nanostructures" is to assess the progress of the concept over the past two decades and discuss the key issues toward proof-of-principle demonstration and next steps in theory, modeling and experiment. The list of topics include: 1. overview of the past and present theoretical developments toward crystal acceleration, ultimate possibilities of the concept

✓ shiltsev@fnal.gov

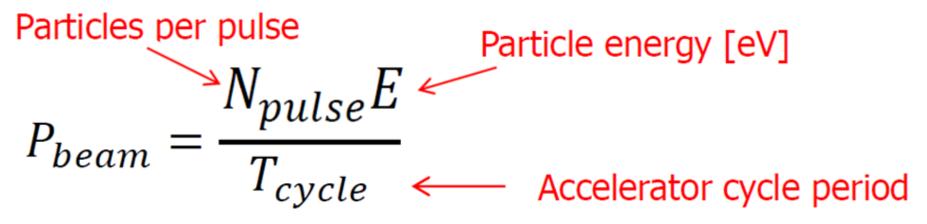
10. possible experiments at FACET, FAST, AWAKE, AWA, or elsewhere


Q3: How to achieve proper complementarity for the high intensity frontier vs. the high-energy frontier?

Intensity frontier vs. Energy Frontier


A. Yamamoto, 190512b

Fermilab and J-PARC: Proton Beam Power on v Target

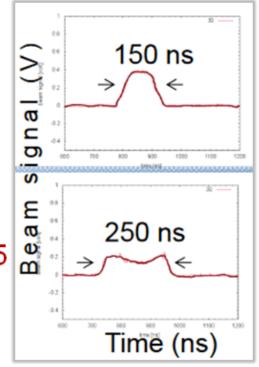


40 kt LAr DUNE @ 2.4 MW & 1000 kt water Hyper-K @ 1.3 MW

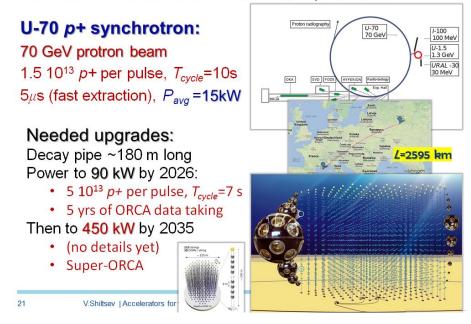
* complimentary in terms of CPV sensitivity because of different v's spectrum, different baseline (1300 km vs 295 km) and detector technology

Ways to Increase Beam Power on Target

Brute force :


9

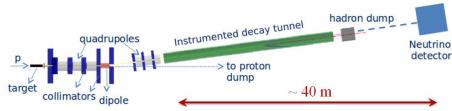
- increase the energy E magnets, RF
- decrease the cycle time T magnets, RF
- key challenge : cost (e.g., J-PARC TPC ~\$1.7B) and power
- Increase PPP (protons per pulse) N_p:
 - key challenges : many beam dynamics issues & cost
- In both cases need reliable horns and targets :
 - key challenge : *lifetime* gets worse with power



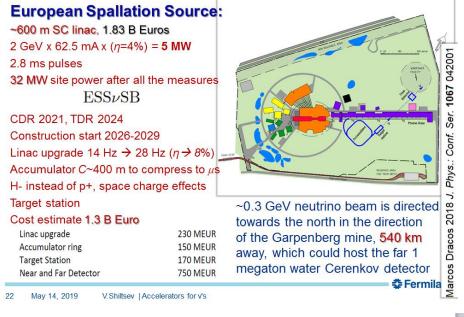
Ways to Increase "Protons per Pulse"

- Increase the injection energy:
 - Gain about $N_p \sim \beta \gamma^2$, need (often costly) linacs
- Flatten the beams (using 2nd harm, RF):
 - Makes peak SC force smaller, Np~x2
- "Painting" beams at injection:
 - To linearize SC force across beams No~x1.5
- Better collimation system beams:
 - From η~80% to ~95% N_p~x1.5
- Make focusing lattice perfectly periodic:
 - Eg P=24 in Fermilab Booster, P=3 in JPARC MR $\rightarrow N_{p} \sim \times 1.5$
- Introduce Non-linear Integrable Optics :
 - Reduces the losses, N_p~x 1.5-2
- Space-Charge Compensation by electron lenses :
- ¹⁵ Electrons focus protons $N_p \sim 1.5 2$

Input #124 Protvino-to-ORKA: L=2590km, E, ~5 GeV


ENUBET : SPS-based Short base-line v's Input #57

• to measure the cross sections as *f*(energy) with much better precision


SPS at CERN (max CNGS):

E=400 GeV protron beam 2.25 10¹³ *p*+ per pulse, T_{cycle} =5.8s, 10 μ s (fast extr.) \rightarrow avg. P beam = 510kW 8.5 GeV central energy of secondaries (pions, kaons) 0.5-3.5 GeV neutrino's

ESS Neutrino Super Beams ESS_VSB Input #98

Input #154

2017 JINST 12 P07018 2017 JINST 12 P07020

-0.2 -0.1 0.0 0.1 0.2 0.3

x (m)

Challenge: a) 300 μ mrad emittance \rightarrow

vSTORM

SPS at CERN :

E=100 GeV P beam =156kW 4 10¹³ p+ per pulse T_{cycle} =3.6 s, 2 x 10 μ s (fast extr.)

 μ ± beams 1 GeV/c - 6 GeV/c momentum spread of 16%

Cost est. 160 MCHF @ CERN

iselv known

lavour composition and ${
m v}$ energy spectrum are

0.25

0.20

0.10

0.05

E 0.15

46

Q4: Energy management in the age of high-power accelerators?

Energy Efficiency

Energy efficiency is not an option, it is a must!

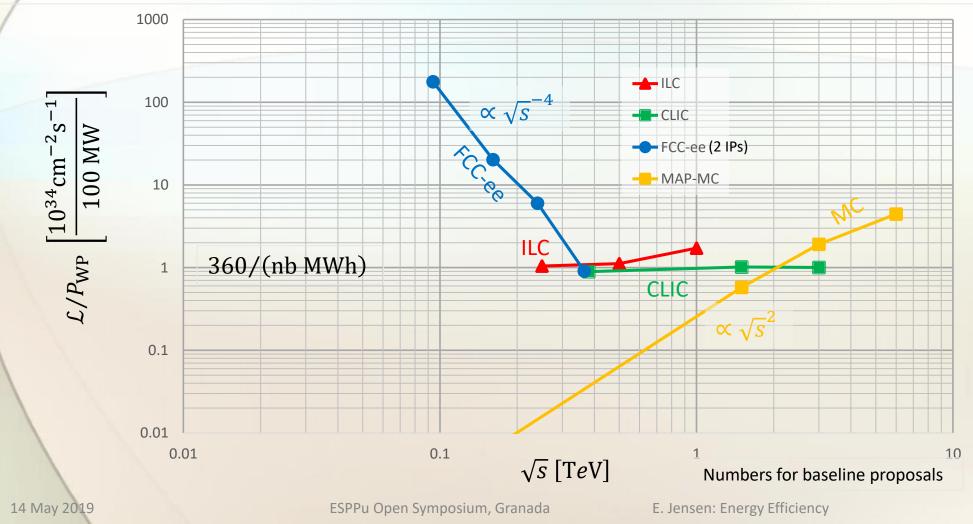
- Proposed HEP projects are using O(TWh/y), where energy efficiency and energy management must be addressed.
- Investing in dedicated R&D to improve energy efficiency pays off since savings can be significant.
- This R&D leads to technologies which serve the society at large.
- District heating, energy storage, magnet design, RF power generation, cryogenics, SRF cavity technology, beam energy recovery are areas where energy efficiency can be significantly be improved.

Sevearl TWh/year

V

위치 : 부산광역시 장안읍 (울산 울주군 : 신고리 3호기)

발전소	산명	노형	설비용량 (Mwe)	상업운전일	발전량 (Mwh/2018년)	이용률 (%/2018년)	가동률 (%/2018년)
	#2		650	`83.7.25	2,861,348	47.9	49.7
고리	#3	경수로	950	`85.9.30	5,801,930	63.4	64.0
	#4		950	`86.4.29	6,541,235	71.5	71.7
	#1	경수로	1,000	`11.2.28	7,377,798	80.7	81.1
신고리	#2	377	1,000	`12.7.20	7,229,539	79.0	80.0
	#3	신형경수로	1,400	`16.12.20	6,340,766	48.7	49.8


위치 : 경북 경주시 양남면

발전소	소명	노형	설비용량 (Mwe)	상업운전일	발전량 (Mwh/2018년)	이용률 (%/2018년)	가동률 (%/2018년)
	#1		679	`83.4.22	0	0.0	0.0
월성	#2	중수로	700	`97.7.1	4,635,316	83.3	82.1
20 20	#3	3-7-2-	700	`98.7.1	4,280,157	73.6	73.4
	#4		700	`99.10.1	4,682,551	83.1	83.9
시위서	#1	경수로	1,000	`12.7.31	7,379,097	80.4	81.0
신월성	#2	경수로	1,000	`15.7.24	7,091,934	77.2	77.4

Figure of merit for proposed lepton colliders

Disclaimers:

- 1. This is not the only possible figure of merit
- 2. The presented numbers have different levels of confidence/optimism; they are still subject to optimisations

European Strategy Update

Summary

Expect Shortage of Expert Accelerator Workforce

- "Oide Principle": 1 Accelerator Expert can spend intelligently (only) ~1 M\$ a year
- + it takes significant time to get the team together (XFEL, ESS)
- Scale of the team: 10B\$/10 years=1 B\$/yr → need

K.Oide (KEK)

1000 experts ← world's total now ~4500

Proposed Schedules and Evolution

	T ₀	+5			+10		+15		+20		 +26
ILC	0.5/ab 250 GeV			1.5/a 250 G			1.0/ab 500 GeV	0.2/ab 2m _{top}	3/ab 500 GeV		
CEPC	5.6/ 240 (5/ab M _z	2.6 /ab 2M _w						opC =>
CLIC		.0/ab 0 GeV					2.5/ab 1.5 TeV		5.0/a	b => ur 3.0 Te\	
FCC	150/ab ee, M _z	10/ab ee, 2M _w	5/al ee, 240				1.7/ab ee, 2m _{top}				,eh =>
LHeC	0.06/ab			0.2/a	b		0.72/ab				
HE- LHC											
FCC eh/hh	C 20/ab per experiment in 25y										

Project	Start construction	Start Physics (higgs)	Proposed dates from projects
CEPC	2022	2030	
ILC	2024	2033	Would expect that technically required time to start construction is O(5-10
CLIC	2026	2035	years) for prototyping etc.
FCC-ee	2029	2039 (2044)	
LHeC	2023	2031	2019

1 G = 1 Billion = 1,000,000,000

Comparisons

"ILCU" as the United States dollar as in January 2012

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

CHF ~ US\$

Evaluating a Tactical Decision Very Accurate BEST ACCEPTABLE ACCEPTABLE ACCURACY WORST Not Accurate Immediately Too Late TIME

(C) 2013 The Illinois Model

Thank you for your attention !