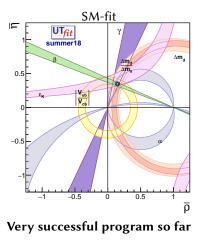
Flavour Summary

Emmanuel Stamou

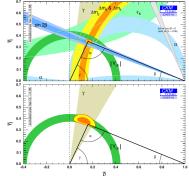
CHICAGO


Workshop for Future Particle Accelerators KAIST, Daejeon, Republic of Korea July 19, 2019

Open questions related to Flavour dynamics

- *"The flavour Puzzle"*Is there a dynamical origin for the observed masses and mixings?
- *"The New Physics flavour Problem"* If New Physics is light it must have non-trivial flavour structure
- "Baryogenesis" Where are the CP violating sources beyond the CKM phase necessary for Baryogenesis?
- "Strong CP Problem"
 Why is the QCD vacuum CP conserving?

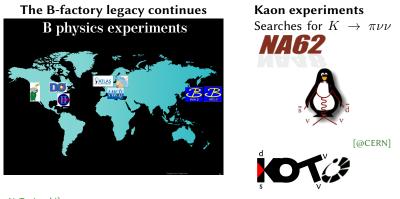
FCNCs & CKM unitarity triangle: Traditional Flavour


- Quark-sector provides multiple observables, overconstrained system
- → test the SM by testing the CKM unitarity triangle

[UTfit 18]

Learned a lot, plenty of room for new physics

- Spectacular progress in last 20 years
- The implications of the consistency of measurements is often overstated
- Larger allowed region if there is NP
- Compare tree-level (lower plot) and loop-dominated measurements
- LHCb: constraints in the *B_s* sector (2nd–3rd gen.) caught up with *B_d*



• $\mathcal{O}(20\%)$ NP contributions to most loop-level processes (FCNC) are still allowed

[talk by Z. Ligeti]

- Still not sensitive to many observables (FCNCs/CP-violation with τ 's, $B_q \rightarrow ee/\tau\tau, ...$)
- Experimental efforts continue

Flavour physics: past and future

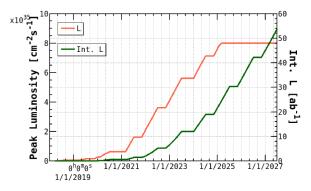
[talk by N. Taniguchi]

[@J-PARC]

Flavour program at a future Z-factory, FCC-ee, CEPC?

(Few sensitivity studies, ongoing progress, but flavour community busy with LHCb upgrades and Belle2)

LHCb — LHC at CERN


	LHC era			HL-LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
ATLAS, CMS	25 fb ⁻¹	150 fb ⁻¹	300 fb ⁻¹	\rightarrow	$3000 \ fb^{-1}$
LHCb	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	*300 fb ⁻¹

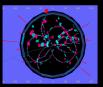
* assumes a future LHCb upgrade to raise the instantaneous luminosity to $2x10^{34}$ cm⁻²s⁻¹

- Major LHCb upgrade in LS2 (raise instantaneous luminosity to $2 \times 10^{33}/cm^2/s$) Major ATLAS and CMS upgrades in LS3, for HL-LHC
- LHCb, 2017, Expression of Interest for an upgrade in LS4 to $2 \times 10^{34}/cm^2/s$ To me, this is obviously an integral part of the full exploitation of the LHC

[talk by Z. Ligeti]

Belle II — SuperKEKB at Tsukuba

- First collisions 2018 (unfinished detector), with full detector starting spring 2019 Goal: 50 × the Belle and nearly 100 × the BABAR data set [See: N. Taniguchi's talk, Thursday]
- Discussions started about physics case and feasibility of a factor ~ 5 upgrade, similar to LHCb Phase-II upgrade aiming 50/fb \rightarrow 300/fb, in LHC LS4


[talk by Z. Ligeti]

Complementarity of LHCb and Belle 2

[talk by N. Taniguchi]

electron -positron collider $e^-e^+ \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

proton -ptoron collider (7-14 TeV) b quarks produced by gluon fusion

Exclusive production $B_d \bar{B_d}$

$$\sigma_{bb} \sim 1 \text{nb}$$
; $\sim 1 \times 10^6 \ b\bar{b} \ \text{pairs/fb}^{-1}$

low multiplicity and clean environment

B mesons almost at rest in lab frame asymmetric beam energies boost for decay vertex separation

Hermetic 4π detector

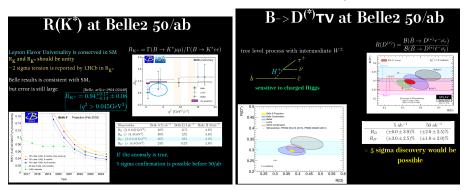
All b-hadron varieties produced B_d, B_s, B_c, Λ_b

 $\sigma_{bb} \sim \mathcal{O}(100) \mu \mathrm{b}$; $\sim 1 \times 10^{11} \ b\bar{b} \ \mathrm{pairs/fb}^{-1}$

high multiplicity and not clean environment

Highly boosted topology gives excellent decay vertex separation.

Longitudinally boosted bb pairs


Advantage in modes including γ, π^0, ν (missing)

Advantage in charged particles modes and Bs decays

different systematics

Two experiments are required to establish NP

• Belle 2 will shed light in present anomalies $(R_{K^{(*)}}, R_{D^{(*)}})$

[talk by N. Taniguchi]

- $> 5\sigma$ discoveries possible
- typically, "deviation" implies a NP scale, example $R_K \rightarrow Z'$ with mass 2 TeVZ'
- confirmation of these or any new deviations can inform the discussion for future colliders

Going beyond: flavour at Z factories (FCC-ee/CEPC)

Tera-Z at FCC-ee or CEPC

- production of 10¹² Z's
- ✓ no phase-space limitations like at Belle-2
- ✓ LEP environment, less hadronic activity than at LHCb
- **X** larger \sqrt{s} than at Belle-2, more hadronic activity
- ✓ decay products of Z more boosted than at Belle 2 more separation in lab-frame, better experimental resolution?

It is **not clear (and process specific)** whether the combination of higher **hadronic activity** but larger **boost** is **beneficial** for the tera-Z. Input and dedicated studies needed.

Tera- Z	vs Bel	le 2 and	LHCb

Particle	@ Tera- Z	@ Belle II		@ LHCb
b hadrons				
B^+	$6 imes 10^{10}$	3×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	3×10^{13}
B^0	$6 imes 10^{10}$	3×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	3×10^8	$(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}			1×10^{13}
Λ_b	1×10^{10}			1×10^{13}
c hadrons		l. h		
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	$3 imes 10^{10}$			
$D_s^+ \ \Lambda_c^+$	$2 imes 10^{10}$			
τ^+	3×10^{10}	5×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	

From CEPC's CDR using fragmentation ratios from Amhis et al, 17

- Similar statistical sample of $B^{0,\pm}$, τ 's at Belle 2 and a tera-Z
- Two orders of magnitude more B_s at tera-Z wrt to Belle 2
- b-baryon physics possible
- Limited possibilities for charm physics at Belle 2

Flavour at a tera-Z factory: summary [from CEPC CDR]

Observable	Current sensitivity	Future sensitivity	Tera- ${\cal Z}$ sensitivity
$BR(B_s \rightarrow ee)$	$2.8 \times 10^{-7} (\text{CDF}) [10]$	$\sim 7\times 10^{-10}~({\rm LHCb})~[18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s \to \mu \mu)$	$0.7 \times 10^{-9} \ (LHCb) \ [8]$	$\sim 1.6\times 10^{-10}~({\rm LHCb})~[18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s\to\tau\tau)$	$5.2 \times 10^{-3} \ (LHCb) \ [9]$	$\sim 5\times 10^{-4}~({\rm LHCb})~[18]$	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%$ (LHCb) [5, 4]	${\sim} {\rm few\%}$ (LHCb/Belle II) [18, 40]	$\sim {\rm few}~\%$
${\rm BR}(B\to K^*\tau\tau)$	_	$\sim 10^{-5}~({\rm Belle~II})~[40]$	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	$4.0\times 10^{-5}~({\rm Belle})~[44]$	$\sim 10^{-6}$ (Belle II) [40]	$\sim 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$1.0 \times 10^{-3} \; ({\rm LEP}) \; [15]$	-	$\sim 10^{-6}$
$BR(\Lambda_b \to \Lambda \nu \bar{\nu})$	_	_	$\sim 10^{-6}$
${\rm BR}(\tau \to \mu \gamma)$	$4.4 \times 10^{-8} \ ({\rm BaBar}) \ [24]$	$\sim 10^{-9}~({\rm Belle~II})~[40]$	$\sim 10^{-9}$
${\rm BR}(\tau\to 3\mu)$	$2.1 \times 10^{-8} \ ({\rm Belle}) \ [37]$	$\sim {\rm few} \times 10^{-10}~({\rm Belle~II})~[40]$	$\sim {\rm few} \times 10^{-10}$
$\frac{BR(\tau \rightarrow \mu \nu \bar{\nu})}{BR(\tau \rightarrow e \nu \bar{\nu})}$	$3.9 \times 10^{-3} \ ({\rm BaBar}) \ [23]$	$\sim 10^{-3}$ (Fylle II) [40]	$\sim 10^{-4}$
${\rm BR}(Z\to \mu e)$	$7.5\times10^{-7}~(\mathrm{ATLAS})~[3]$	$\sim 10^{-8} (\text{ATLAS/CMS})$	$\sim 10^{-9} - 10^{-11}$
$BR(Z \to \tau e)$	$9.8 \times 10^{-6} \; ({\rm LEP}) \; [17]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-11}$
${\rm BR}(Z\to\tau\mu)$	$1.2\times 10^{-5} \; ({\rm LEP}) \; [13]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-10}$

- At the moment mostly based on rescaling limits from LEP
- Important to perform (non-trivial) sensitivity studies, including backgrounds and detector simulation. (FCC-ee and CEPC advocates should combine efforts)

Flavour at a tera-Z factory: highlights

- Simulation-wise the study of flavour at FCC-ee or CEPC has only just begun
- Given the statistics, the tera-Z will compete well with both Belle-2 and LHCb
- But in some cases tera-Z is expected to outperform both:
 - τ Physics BRs and lifetime, lepton-flavour violating decays [FCC-ee study by M. Dam]
 - lepton flavour violating Z decays [FCC-ee study by M. Dam, and CEPC CDR]
 - $lacksymbol{B} B_0 o K^* au au$ and $B_s o au au$ [FCC-ee study by Kamenik et al 17]
 - $b \rightarrow s\nu\nu$ transition access to $B_s \rightarrow \phi\nu\nu$ and $\Lambda_b \rightarrow \Lambda\nu\nu$ [ongoing CEPC study]

B_c physics

so far uncharted territory, determination of V_{cb} , relation to R_{D^*} anomaly

[ongoing CEPC study]

• The full potential is not yet explored, significant work still required.

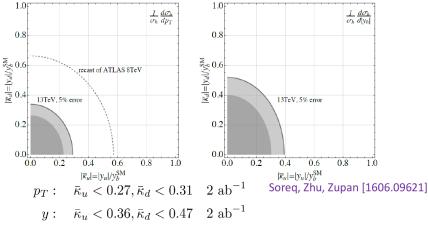
"The flavour of Higgs", a new era for Flavour

Flavour is more than the test of CKM unitarity

or $\sqrt{\kappa_v \frac{m_v}{v}}$ Mass-coupling ATLAS Preliminary √s = 13 TeV, 36.1 - 79.8 fb⁻¹ degeneracy wellm_H = 125.09 GeV, |y_µ| < 2.5 --- SM Higgs boson supported by 10 Higgs data 10^{-2} - Nevertheless. should continue 10⁻³ hcc (?), hµµ, program as far as hss, hdd, huu, hee? we can go and 10^{-4} cover all SM 10^{-1} 10^{2} 10 fermions possible Particle mass [GeV]

- Test the SM by probing the flavour and CP properties of the Higgs
- ➔ A new "unitarity triangle"

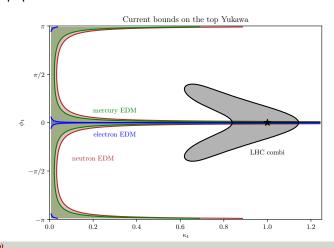
[[]talk by F. Yu]


Probing Higgs Yukawas: beyond standard approaches I

- Search for exclusive Higgs decays, $H \to J/\psi\gamma, H \to \phi\gamma,...$
 - 70% b-tagging 20%1.25% Directly measure in gg decays c-tagging I 13%19% 0.5%c-tagging II 20%30% 0.5% Use bottom and charm tagging in c-tagging III 20%50%0.5%tandem, profile over enhanced *c* content in Higgs decays LHC run II and HL-LHC LHC run II and HL-LHC 2.0med. b-tag+c-tag Profiling @ 95% CL $[fb^{-1}]$ 2×300 2×3000 --- 2×300 fb⁻¹ $\kappa_{b} \in [0.7, 7.2] \in [0.9, 1.6]$ - 2×3000 fb⁻¹ < 5.61.5 μ_{b} 1.0 κ_b 0.5Profiling med. b-tag+c-tag I $[fb^{-1}]$ 2×300 2×3000 --- 2×300 fb⁻¹ $\Delta \mu_b = 0.2$ =0.1 2×3000 fb =5.60.0 10 2040 60 -60-40-200 μ_c Perez, Soreg, Stamou, Tobioka [1505.06689]

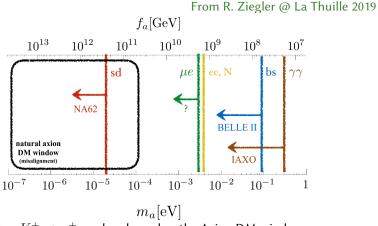
 $\epsilon_b \quad \epsilon_c \quad \epsilon_l$

Probing Higgs Yukawas: beyond standard approaches II


- Probe light-quark Yukawas in Higgs distributions
- Use normalized $p_{T, h}$ and y_h distributions
 - Continuing theory calculations needed to push uncertainties

[talk by F. Yu]

CP properties of the Higgs Yukawas


- EDM measurements sensitive to CP violation in Higgs Yukawas
- Complementarity of high-energy and high-intensity frontier
- Probing models for eletroweak Baryogenesis Example: top-quark

Flavour and light New Physics

Often emphasis is laid on testing high-energy scales for NP

• Flavour also probes light-NP scenarios that weakly interact with SM particles **Example: probing the QCD axion via flavour-violating coupling**

• Kaon sector, $K^+ \rightarrow \pi^+ \nu \nu$ already probes the Axion DM window

Improvements expected in the future (Belle 2, NA62, KOTO)

E. Stamou (U Chicago)

Conclusions and Outlook

Traditional Flavour (FCNCs)

- FCNC processes probe scales $\gg 1$ TeV
- Rich ongoing and planned experimental program (20% NP effects still possible)
- Tensions in data will be resolved, 5σ discoveries possible
- ➔ useful input for decision on future colliders

Flavour is more than FCNCs

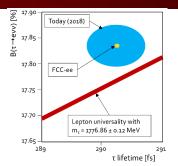
Higgs Flavour

- Large NP effects may be hiding in Higgs Yukawas
- Important target measurements for LHC and future colliders
- Probe flavour and CP structure, complementary info from high-intensity data (FCNCs, EDMs)

Flavour and light NP

- FCNCs probe also light but weakly interacting NP scenarios (example QCD axion)
- Improvements expected from Belle 2, NA62, ..., but tera-Z would probe new relevant channels

- Without tensions/deviations from the SM the scale of BSM Flavour dynamics is unknown
- → Models most useful in order to correlate predictions in light of anomalies
- Future-collider discussion should learn but not heavily rely on current tensions in data
- Prioritize i) probing weakly constrained channels, ii) identifying new experimental methods/observables, and iii) pursuing reliable theory predictions

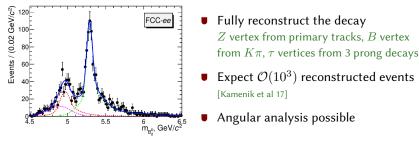

Evidence for BSM?		FLAVOR		
		yes	no	
ATLAS & CMS	yes	complementary information	distinguish models	
	no	tells us where to look next	flavor is the best microscope	

Zoltan's flowchart

Appendix

au's and LFV at the tera-Z

- lifetime measurement, 3 orders of magnitude better than LEP
- Lepton flavour universality tests


- Z limits from rescaling LEP, 3 orders of magnitude improvement
- t limits 1-2 orders of magnitude improvement [FCC-ee study by M. Dam]

Decay	Present bound	FCC-ee sensitivity	Signal side	Signal side
$Z \rightarrow \mu e$	$0.75 imes 10^{-6}$	$10^{-10} - 10^{-8}$	y Y	Jigha side
$\mathbf{Z} \to \tau \mu$	12×10^{-6}	10^{-9}	T	τ*
$\mathrm{Z} \to \tau \mathrm{e}$	$9.8 imes 10^{-6}$	10^{-9}		T
$\tau \to \mu \gamma$	4.4×10^{-8}	2×10^{-9}	π. Tag side	π π Tag side
$\tau \to 3 \mu$	2.1×10^{-8}	10^{-10}	ν τ	π

[FCC-ee study by M. Dam with some simulation, see also CEPC-CDR]

$B_0 \rightarrow K^* \tau \tau$ at the tera-Z

- Expected sensitivities from LHCb and Belle II far from SM expectations
- Important test of LFU violation given present R_K and R_{K^*} tensions
- $B
 ightarrow K^* au au$ a golden mode for the tera-Z

- Thus $B_s \rightarrow \tau \tau$ also accessible for the first time at the tera-Z
- Together with $B_s \to \phi \nu \nu$ and $\Lambda_b \to \Lambda \nu \nu$ possible to disentangle chiral-structure of operators

Origin of axion-fermion couplings

- axion couples to PQ current
- PQ basis \neq mass basis

$$C_{u_i,u_j}^{V,A} = (V_{UL}^{\dagger} \mathsf{PQ}_q V_{UL})_{ij} \pm (V_{UR}^{\dagger} \mathsf{PQ}_u V_{UR})_{ij}$$

If PQ charge non-universal →flavor violating couplings
 e.g., non-universal DFSZ models
 [Celis et al 14; di Luzio et al 17]
 e.g., PQ = FN ("axiflavon"/"flaxion")
 [Wilczek 82; Calibbi et al 16; Ema et al 16]

→Flavor violating couplings offer another way to search for the QCD axion

→Need (often neglected) dedicated analyses