Collaboration of Korean HEP community and the capabilities of Korean industry for future experiments

Jul. 11, 2019

Inkyu Park University of Seoul

On behalf of Korea CMS & MECARO

Disclaimer

- □ The original talk titles were
 - o "GEM detector R&D @ Korea CMS"
 - o "GEM detector & industrialization in Korea"
- □ and it was changed accidentally with my agreement
 - Collaboration of Korean HEP community and the capabilities of Korean industry for future experiments"
 - but, the slides are the same anyway, other than the 1st page

LHC Phase 2 upgrade & CMS upgrade

LHC upgrade schedule & Muon!

□3 steps: Energy upgrade & Lumi upgrade

% Charged particles in Muon system

Region	Low Lumi LHC	High Lumi LHC	Phase II
Barrel RPC	10 Hz/cm ²	~ 30 Hz/cm ²	~ 100 Hz/cm ²
Endcap RPC 1, 2, 3, 4 η < 1.6	30 Hz/cm ²	~ 100 Hz/cm ²	~ 300 Hz/cm ²
Expected Charge in 10 years	0.05 C/cm ²	0.15 C/cm ²	0.5 C/cm ²
Endcap RPC 1, 2, 3, 4 η > 1.6	500Hz ~ 1kHz	Few kHz	Few 10s kHz
Expected Charge in 10 years	(0.05-1) C/cm ²	few C/cm ²	Few 10s C/cm ²
	•	•	

GEM was invented for you!

GEM (Gas Electron Multiplier)

Production

- PCB manufacturing techniques: lithography + etching
- Large areas ~1m^2 capability (cost effective)
- Physical structure
 - 50µm Polyimide sheet + 5µm double copper layers
 - Typical hole diameter = $70\mu m$, hole pitch = $140\mu m$,
- □ Working principle: same as the wire chamber
 - High field induces electron acceleration & avalanche

Experiences with GEM

- –Triple-GEM with Ar/CO2 at 5.3 \leq $|\eta| \leq$ 6.5
- -Rate ~ 12MHz/cm2 (1000 x GE1/1 in CMS P2)
 - •No aging effects due to polymerization. No change in material properties

- -Triple-GEM with Ar/CO2
- -Rate ~2.5MHz/cm2 (500 x GE1/1 in CMS P2)
 •No decrease in gain, efficiency, or deterioration of energy resolution or time resolution up till now

LHCb

- -Triple-GEM with Ar/CO2 mixture (45/15/40)
- -Rate ~500 kHz/cm2 (50 x GE1/1 in CMS P2)
 - •No decrease in performance after LHCb years

GEM is it!

Excellent time & spatial resolution: ~5ns, ~100um
 High rate & efficiency: ~1MHz/cm^2, ~ 98%
 Radiation hardness, non-flammable gas (Ar/CO2)

% M. Alfonsi et al. 2004

CMS high η - maximum integrated charge

History of Korea GEM involvement

- **2012:** MOU between Korea CMS and MECARO for the industrialization of GEM foil production
 - Technology transfer agreement with CERN
- □ 2013-2016: 1st 3-year NRF funding (~\$2M) for facility set-up
- □ 2016-2019: 2nd 3-year NRF funding (~\$2M) for the large GEM foil development & test production
- **2019-2022: GE21 & MEo production**

GE21 production in Korea

MEo production in Korea

2 endcaps x 18 sectors x 6 layers = 216 chambers, x 3 foils = 648 foils, + 9 for 3 test chambers + 9 for extra = 666 foils in total

Jul. 11, 2019

KAIST-KAIX Workshop

Industrialization

(site & production facilities)

Industrialization site: MECARO

Jul. 11, 2019

Mecaro Co., Ltd is No.1 Best Semiconductor parts company authorized in parts area by producing optimal semiconductor part of equipment through ceaseless technology development and research for about 15 years.

- Company Name : Mecaro CO., Ltd.
- Foundation Date : 2000. 11
- CEO : Jaejung, Lee
- Business Field : Semiconductor Heater Block, Semiconductor Chemical Source, <u>GEM Foil</u>, Etc.

Eumsung factory

- R&D and Production
- Clean room : 1300 m²
- GEM foil production site

Single-mask vs Double-mask

	Single-mask	Double mask	
Infrastructure	Cheap	Expensive	
Mask alignment	No need (film)	Crucial (Glass only)	
Pros & Cons in size	Large size capable	Limited in size	
Production method	SINGLE MASK	Double MASK	
Production process	Complicate	Simple	
Production time	Long	Fast	
Labor cost	Expensive	Cheap	

Jul. 11, 2019

Cu etching machine

.....

1000

GEM Production Facilities: Production room

Small size etching bath

Mid size etching bath

Large size etching bath

❑Multiple etching baths are ready for various sizes of GEMs −Small: 10cm x 10cm, 30cm x 30cm −Middle: 50cm ~ 1m

-Large: > 1m

Small size leakage current test

Large size leakage current test

Leak current measurement with/without gas system

- -Small: 10cm x 10cm, 30cm x 30cm
- -Middle: 50cm ~ 1m
- -Large: > 1m

UV light system

Optical inspection table

UV curing facility, Semi-automatic Optical inspection

- for all sizes
- fully automatics whole area scanning will be available

Large GEM foil production

Critical obstacle & Breakthrough

- □ hole diameter = 70µm, hole pitch = 140µm over 100m x 50cm ~ 20M holes
 - All top & bottom holes must be perfectly aligned

Top & bottom mask alignment

서울시립대학교

4-view bifocal microscope is used to align the top & bottom masks

Mask alignment results

□ 1,2,3,4,5 are aligned almost perfectly

o residual misalignment is less than 3 micron

hard to identify any misalignment in microscope image.

left

center

right

Jul. 11, 2019

cross-sectional view

QC at MECARO

Final QC before shipping

Optical Inspection

Leakage current measurement

- Outer hole sizes are 68 ~ 72 um. (goal was 70um)
- Inner hole size are 48 ~ 52 um. (goal was 50 um)

SAMPLE NAME	VOLTAGE	IMPEDENCE (HUMIDITY)	LEAKAGE CURRENT	HOLE SIZE (OUTER/INNER)	NB
А	500V	20~21 Gohm (45%)	23~24nA	70u m/ 50u m	
В	500V	24~25 Gohm (45%)	20nA	70u m/ 50u m	
С	500V	27~28 Gohm (45%)	17~18nA	70u m/ 50u m	
D	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
E	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
F	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
G	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
Н	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
I	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
J	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	
К	500V	10~11 Gohm (45%)	45~50nA	70u m/ 50u m	
L	500V	13~15 Gohm (45%)	30~40 nA	70u m/ 50u m	Over Cleaning
М	500V	13~15 Gohm (45%)	30~40 nA	70um/50um	1 Section Defect
Ν	500V	2~3 Gohm (45%)	150~200 nA	70um/50um	1 Section Defect

 Hard cases were used, between GEM sheets and seats, anti-static film, shock absorber and polycarbonate.

Standard size (100 x 100) GEM foil production & tests

Mass production is ready

Packing for a set of 5 GEMs

Chamber assembly & test

*GEM foils produced in 2015

Gain measurement

MECARO foil chamber (3mm:1mm:2mm:1mm)

 \circ **Gain** ~ 10⁴ at $V_{GEM} = 330 V$

CERN foil chamber (2mm:2mm:2mm:2mm)

 $\circ \operatorname{\mathbf{Gain}} \sim 10^4 \ V_{GEM} = 360 \ V$

Rate test

Rate capability is the most important factor of GE11 project, as the GE11 will be installed in high flux region around beam pipe. Maximum expected rate can be $5 \times 10^{1} Hz mm^{-2}$

Jul. 11, 2019

Discharge Prob. vs Gain, 5.5 MeV α

For MIP, discharge Prob. is 1/100 times smaller

gain degradation before/after discharge

During the measurement, we've observed at least 15,000 discharges. However no degradation of chamber performance is observed. 서울시림대학교

Local lab activities (mostly student projects)

Cosmic muon efficiency

Efficiency ~ 80% (>95% with PreAmp) need to fix light shielding, ground, etc. to reach 98%

Student project: Cosmic ray scanner

Double layer
 2D-GEM detector
 2d-strip readout (x,y)
 measuring θ and φ
 prove cos² θ distribution

Jul. 11, 2019

Muon telescope & scanner

□ Aiming for

- volcano scanning for Mt.
 Bakdu
- muon scan for nuclear
 reactor watch

X-ray imaging (using Fe55 source)

1 second 10 second 0.1 second 5mm copper KEMS .30 40 20 50 (RI) 10 20 30 40 50 60 70 80

Jul. 11, 2019

KAIST-KAIX Workshop

□ KCMS + MECARO engineers made a fully functional X-ray imaging GEM camera.

Proton beam monitor □ Work with National Cancer Center of Korea o proton beam QC "꿈의 방사선 양성자치료" • 230 MeV proton beam The Proton Therapy Center That Opens the Future GEM works for proton 사이클로트론 고정범치료기 230 Mevo 2D Matched Count 100 Y strips 양성자빔 전송장치 사이클로트론에서 만들어진 45000 90 양성자빔을 회견조사치료기로 이동시키다. 40000 70 35000 60 30000 50 25000 40 회전빔치료기 암이 발생한 부위에 양성자빔을 20000 조사한다. 30 15000 20 10000 10 국립암센터 양성자치료기 양성자 치료시설에서 양성자빔을 방출하는 사이클로트론, 양성자 빔 전송장치, 그리고 암세포에 양성자 빔을 조사하는 0 90 100 10 20 50 60 70 80 고정범치료기와 회전범치료기가 있습니다. X strips

Jul. 11, 2019

KAIST-KAIX Workshop

Neutron detector (Gd plate converter)

Gd plate cathode o cold neutron sensitive detector

• need neutron source!

backup