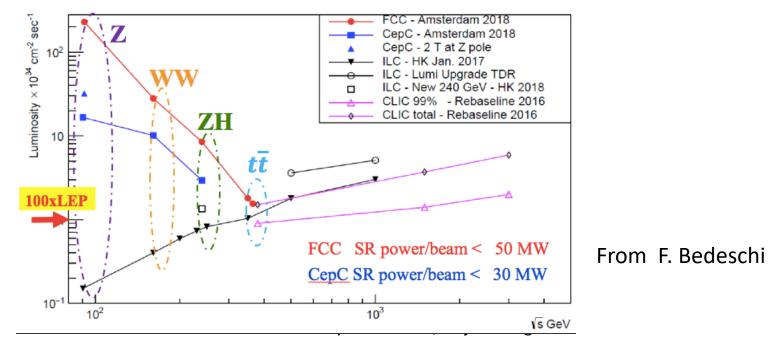


Institute of High Energy Physics Chinese Academy of Sciences

Electroweak Physics at CEPC

Zhijun Liang

Institute of High Energy Physics , Chinese Academy of Science


KAIST-KAIX workshop for Future Particle Accelerators

Introduction to CEPC

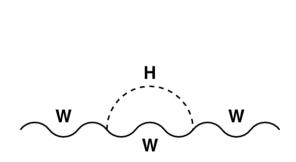
- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory(E_{cms}~91GeV) ,electroweak precision physics at Z pole.
 - **baseline** L=1.6 X 10^{35} cm⁻²s⁻¹, Solenoid =3T, 3X10¹¹ Z boson, two years

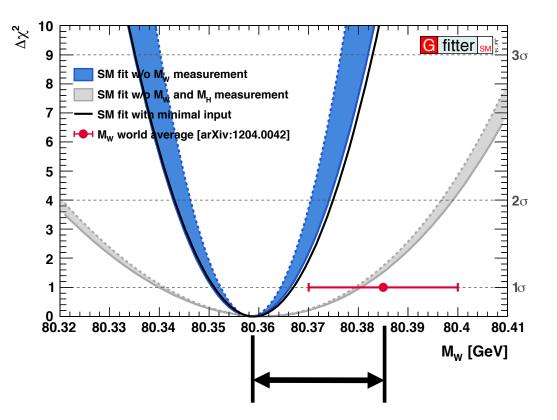
L= 3.2 X 10^{35} cm⁻²s⁻¹ , Solenoid =2T , 6X10¹¹ Z boson

- Assuming Z cross section with ISR correction : 32 nb
- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

e⁺e⁻ Collider Luminosities

Electroweak global fit

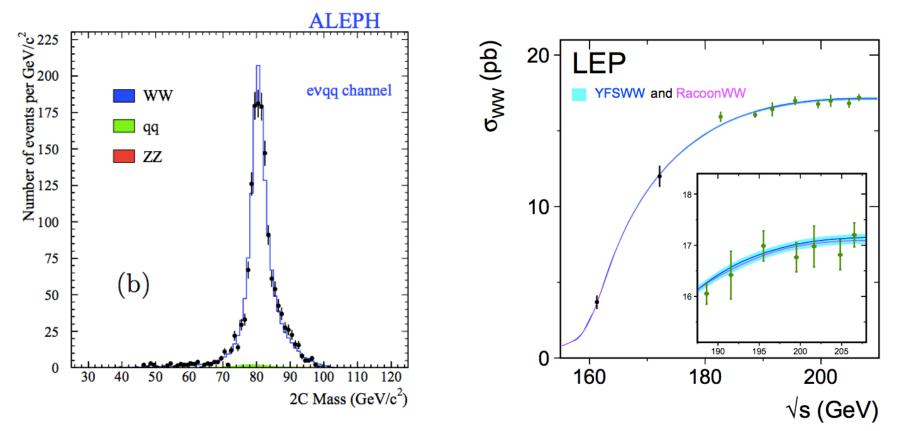

- Review of the key electroweak constant
 - Beam energy systematics is dominant systematics on M_Z , M_W
 - Beam energy measurement is the key to Z pole and WW physics


Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139(31)$	1×10 ⁻¹⁰	$e^{\pm}g_2$	Zpole
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	$\mu^{\pm} lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP	Z pole
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC	WW run
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD	Z pole
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC	
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC	ZH runs

From PDG2018

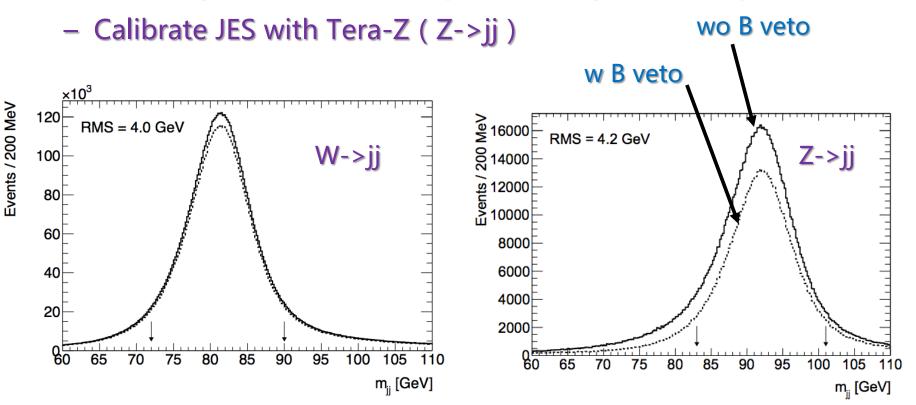
Motivation

- Small tension in weak mixing angle and W mass.(2σ)
 - Between direct measurement and EWK fit prediction
 - Indirect search for new physics



W mass measurement in lepton collider

• Two approaches to measure W mass at lepton collider:


Direct measurement performed in ZH runs (240GeV) Precision 2~3MeV WW threshold scan WW threshold runs (157~172GeV) Expected Precision 1MeV level

Electroweak Physics at CEPC, Zhijun Liang

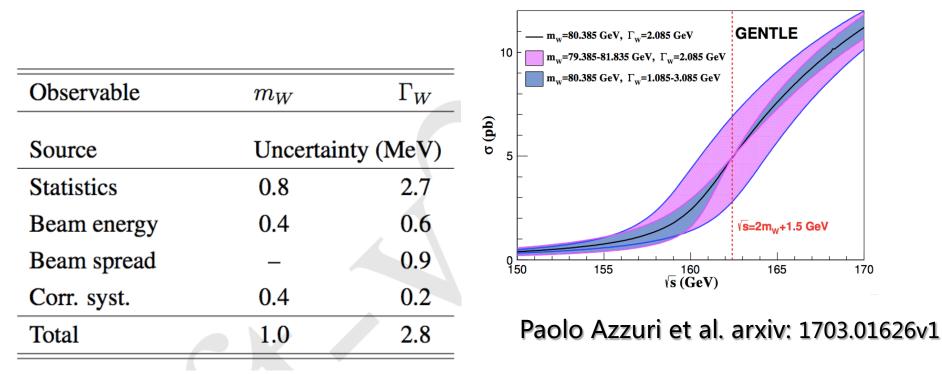
W mass direct measurement

- Reconstruct di-jet mass from WW->lvqq events in ZH run
 - Not affect by beam energy uncertainty
 - Major systematics is Jet energy scale (JES) uncertainty (2~3 MeV)
 - · Mainly from Jet flavor composition and jet flavor response

Electroweak Physics at CEPC, Zhijun Liang

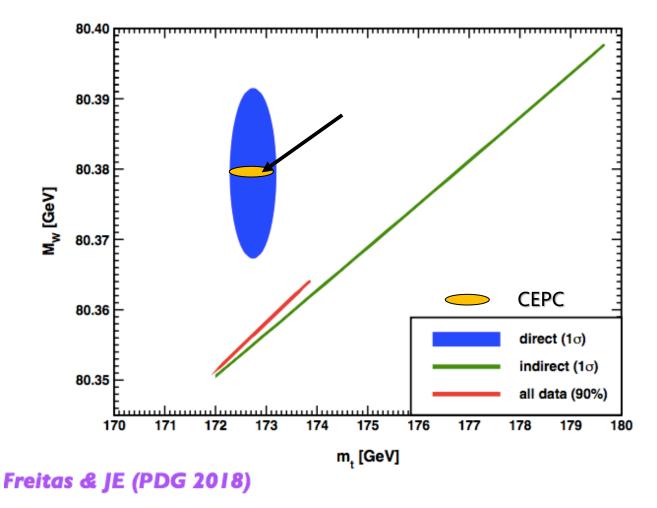
WW threshold scan – CEPC plan

- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.6 ab⁻¹)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|) ٠
 - 14M WW events in total


400 times larger than LEP2 comparing WW runs

E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	କ୍ତି ³⁰ LEP	
157.5	0.5	1.25	0.6	β 20-	-
161.5	0.2	3.89	0.8		••-
162.5	1.3	5.02	6.5	10 - YFSWW/RacoonWW no ZWW vertex (Gentle)	_
172.0	0.5	12.2	6.1	0 contraction only v _e exchange (Gentle)	
		Flectroweak Pr	hysics at CEPC. Zhijun Liang	160 180 200 √s (G	

Electroweak Physics at CEPC, Zhijun Liang


WW threshold scan-systematics unc.

- Consider the beam spread unc. (EBS), beam energy unc., signal efficiency, cross section unc. and background
- Expected 1MeV precision
 - Dominated by statistics uncertainty: 1MeV
 - Leading syst. (0.5MeV): beam energy syst.
- Plan to have a joint CEPC-Fcc(ee) paper on WW threshold scan.

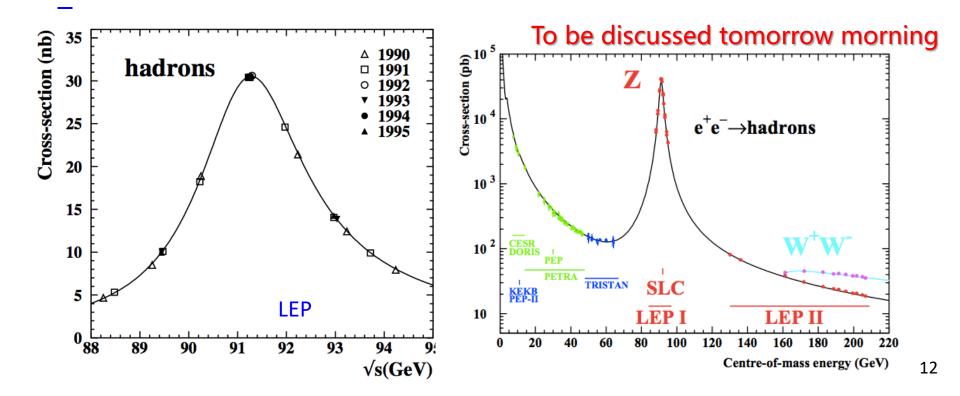
Prospect of CEPC W mass measurement

- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Electroweak Physics at CEPC, Zhijun Liang

- Introduction to CEPC
- W physics
- Z pole physics

Prospect of CEPC EWK physics

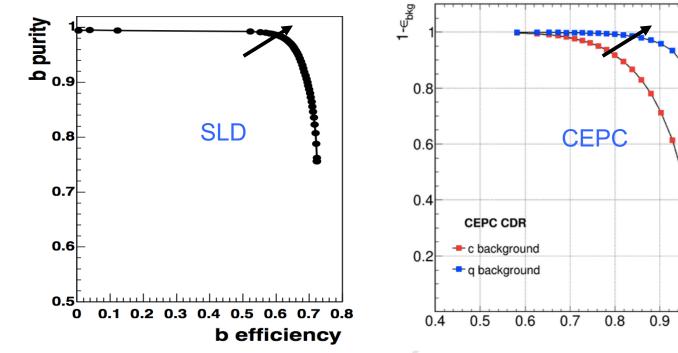

Expect to have 1~2 order of magnitude better than current precision

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L}dt$
m_Z	2 MeV	0.5 MeV	Z pole	8 ab^{-1}
$A^{0,b}_{FB}$	1.7%	0.1%	Z pole	8 ab^{-1}
$A^{0,\mu}_{FB}$	7.7%	0.3%	Z pole	8 ab^{-1}
$A_{FB}^{0,e}$	17%	0.5%	Z pole	8 ab^{-1}
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.001%	Z pole	8 ab^{-1}
R_b	0.3%	0.02%	Z pole	8 ab^{-1}
R_{μ}	0.2%	0.01%	Z pole	8 ab^{-1}
$N_{ u}$	1.7%	0.05%	ZH runs	5.6 ab^{-1}
m_W	33 MeV	2–3 MeV	ZH runs	5.6 ab^{-1}
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}

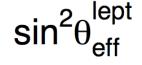
Table 11.9: The expected precision in a selected set of EW precision measurements in CEPC and the comparison with the precision from LEP experiments. The CEPC accelerator running mode and total integrated luminosity expected for each measurement are also listed.

Z mass measurement

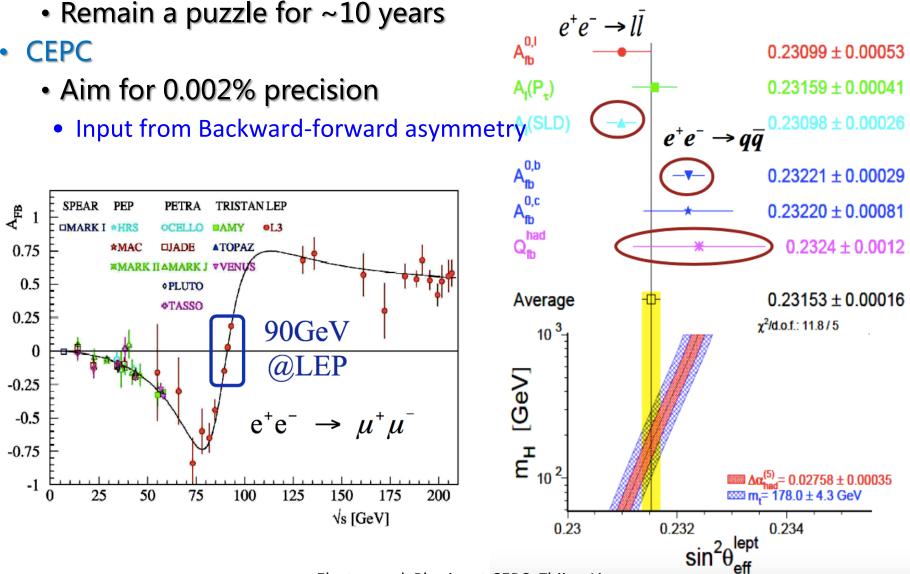
- LEP measurement : 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV (CDR) → 0.1MeV (TDR)
 - Z threshold scan runs is needed to achieve high precision.
 - Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP \rightarrow <0.1MeV


$\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$ Branching ratio (R^b)

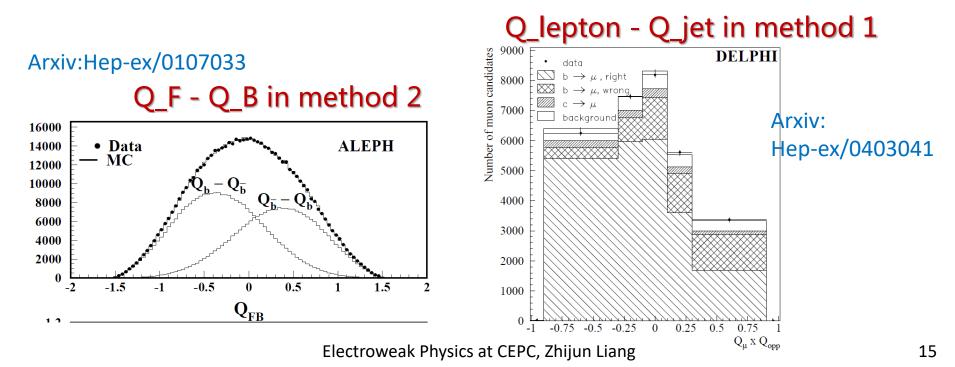
- LEP measurement 0.21594 ±0.00066
 - Syst error : ~0.2%


$$C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$$

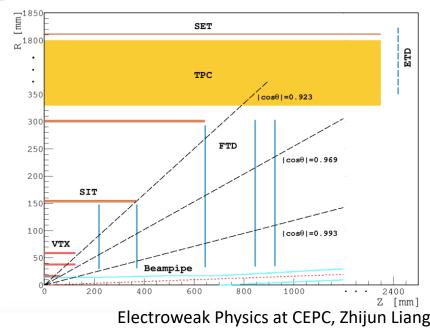
 \in_{sig}


- Major systematics is hemisphere tag correlations
- CEPC
 - Expected Syst error (0.02%)
 - hemisphere tag correlations depends on b tagging efficiency
 - Expect 20~30% higher B tagging efficiency than SLD
 - Theory uncertainty (gluon splitting ..): need input from theorists

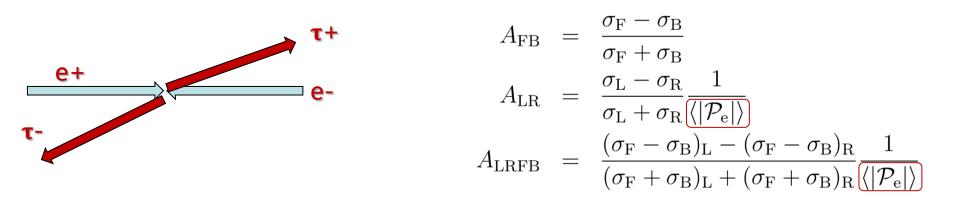
Weak mixing angle


Electroweak Physics at CEPC, Zhijun Liang

Backward-forward asymmetry


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay CEPC precision 0.1%, LEP precision ~2% (stat dominated)
 Main systematics is B hadron decay branching ratio
 - Method 2: jet charge method, Inclusive b jet (LEP precision 1.2%)
 - use event Thrust to define the forward and background

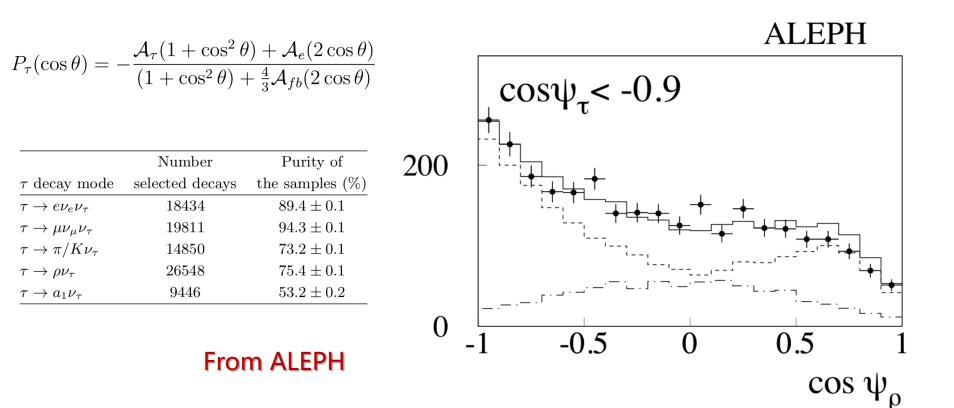
Use jet charge difference (Q_F - Q_B)



Backward-forward asymmetry in Z->µµ

- LEP measurement : 0.0169 +-0.00130
- CEPC expected: +-0.00005
- CEPC has potential to improve it by a factor of 20~30.
 - Acceptance systematics (larger detector coverage, smaller syst.)
 - The precision of beam energy measurement
- Major systematics
 - Beam energy systematics (5e⁻⁵)
 - Muon angular resolution can reach 1e⁻⁵ level (by full sim)

A_e and A_τ measurements



- A_e and A_τ expected precision in CEPC
 - Direct measurement using Z -> $\tau\tau$ events is more precise
 - τ polarization information is the key

Precision (relative uncertainty)	A _e	A _τ
Direct measurement from Z -> $\tau \tau$ τ polarization analysis	0.0003	0.0005
A _{FB} from Z ->ee and Z -> ττ (indirect measurement)	0.003	0.006

$A_e \text{ and } A_\tau \text{ in } Z \rightarrow \tau \tau$

• Tau polarization can be measured through its decay product

Eur.Phys.J.C20:401–430,2001

Electroweak Physics at CEPC, Zhijun Liang

A_e and A_τ in $Z \rightarrow \tau \tau$: systematics

- Key systematics is from EM scale, and τ identification
- **A**_τ : stat +- 0.00015 (scale from LEP), total unc., 0.0005
- A_e: stat +-0.0003 (scale from LEP), Total unc. , 0.0003

		A_e					
Systematic effect	h	ρ	3h	$h2\pi^0$	e	μ	acol
tracking	0.04	-	-	-	-	0.05	_
non- τ background	0.13	0.08	0.02	0.07	1.23	0.24	0.24
modelling	-	-	0.40	0.40	-	-	-
TOTAL	0.13	0.08	0.40	0.41	1.23	0.24	0.24

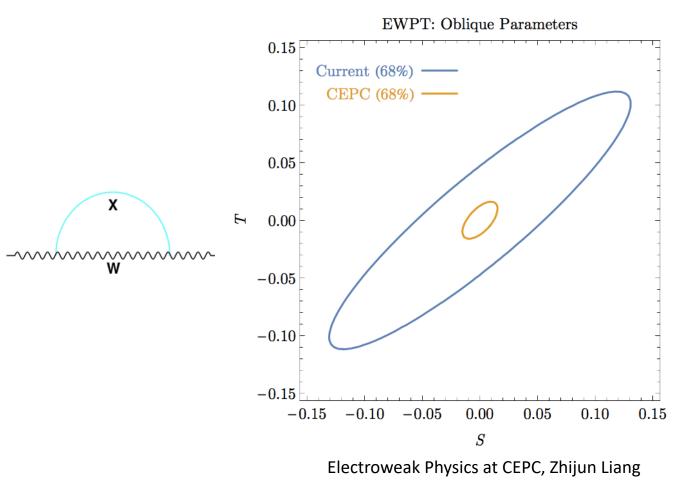
Eur.Phys.J.C20:401-430,2001

Summary

- Potential of electroweak measurement at CEPC
 - Expect 1~2 order of magnitude better than current precision
 - Key issue (already addressed in CDR)
 - Jet energy scale and resolution (W mass)
 - Luminosity measurement (Z/W mass)
 - Impact parameter and b tagging performance – Weak mixing angle, R^b
 - Key issue (To be address or to be improved in TDR)
 - Beam energy measurement (Z/W mass)
 - Detector readout time and Pileup issue is the key for Missing energy (Number of neutrino generation)
 - Photon energy scale uncertainty

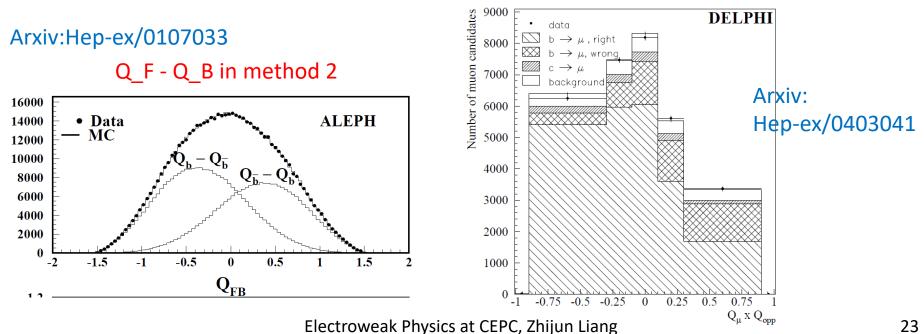
– Number of neutrino generation, R^{mu}

Prospect of CEPC EWK physics

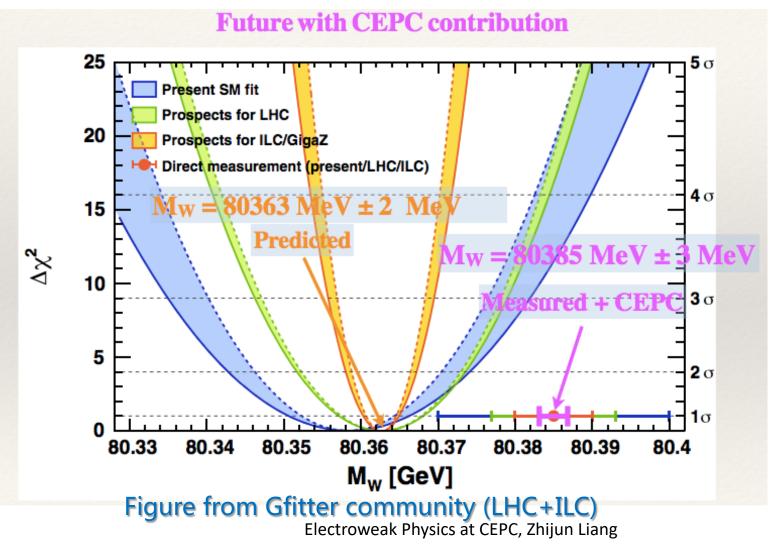

Expect to have 1~2 order of magnitude better than current precision

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L}dt$
m_Z	2 MeV	0.5 MeV	Z pole	8 ab^{-1}
$A^{0,b}_{FB}$	1.7%	0.1%	Z pole	8 ab^{-1}
$A^{0,\mu}_{FB}$	7.7%	0.3%	Z pole	8 ab^{-1}
$A_{FB}^{0,e}$	17%	0.5%	Z pole	8 ab^{-1}
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.001%	Z pole	8 ab^{-1}
R_b	0.3%	0.02%	Z pole	8 ab^{-1}
R_{μ}	0.2%	0.01%	Z pole	8 ab^{-1}
$N_{ u}$	1.7%	0.05%	ZH runs	5.6 ab^{-1}
m_W	33 MeV	2–3 MeV	ZH runs	5.6 ab^{-1}
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}

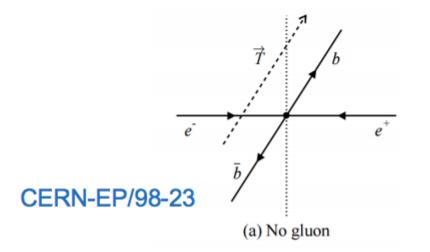
Table 11.9: The expected precision in a selected set of EW precision measurements in CEPC and the comparison with the precision from LEP experiments. The CEPC accelerator running mode and total integrated luminosity expected for each measurement are also listed.

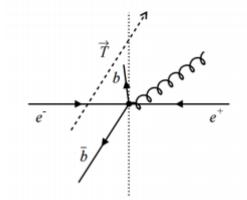

Constraint to new physics

- Oblique parameter S,T,U : corrections to gauge-boson self-energies
 - S and T (U) correspond to dimension 6 (8) operators
- Constraint to Oblique parameter from CEPC EWK measurements will be about one order of magnitude better than current constraint.


Backward-forward asymmetry

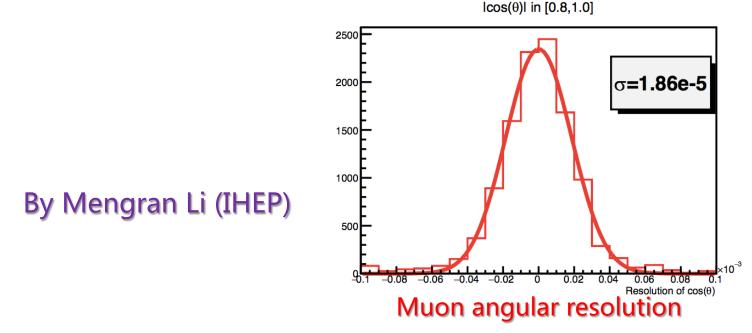
- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)
 Q_lepton Q_jet in method 1


Prospect of CEPC W mass measurement


- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics


(d) Thrust forward, quark backward

Error source	$C_{ m QCD}^{ m quark}$ (%)		$C_{\rm QCD}^{\rm part,T}$ (%)	
	$b\bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

 $A_{FB}^{bb}(0)$

Backward-forward asymmetry in Z->µµ

- LEP measurement : 1.69% +-0.13%(PDG fit)
- CEPC aim to improve it by a factor of 20~30.
 - muon angular resolution and acceptance
 - the precision of beam energy measurement
- Full simulation studies to understand muon angular resolution
 - Muon angular resolution can reach 1e-4 to 1e-5 level

Electroweak Physics at CEPC, Zhijun Liang

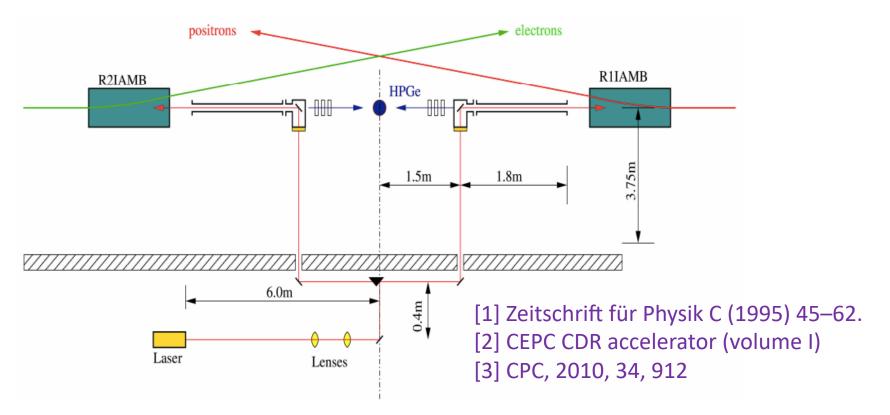
Motivation for CEPC electroweak physics

- need more precision in
 - W mass, Top mass and weak mixing angle
- CEPC can provide more precise measurement for
 - W/Z and Higgs mass and weak mixing angle

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$ From PDG201	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_{2}$
$G_F = 1.1663787 \ (6) \times 10^{-5} \ \text{GeV}^{-2}$	1×10-6	μ^{\pm} lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10-3	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC

Number of neutrino generation (N_v)

• LEP measurement :


 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

- Indirect measurement (Z line shape method): 2.984+-0.008
- Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)
- CEPC measurement :
 - Focus on direct measurement, Expected Syst error (~0.2%)
 - High granularity in calorimeter can help photon identification
 - Detector readout time and Pileup is also key for Missing energy
 - Need focus on improving photon energy scale in next step

Systematics source	LEP	CEPC
Photon trigger and Identification efficiency	~0.5%	<0.1%
Calorimeter energy scale	0.3~0.5%	<0.2%

Z mass measurement (2)

- Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP [1] \rightarrow <0.5MeV
 - Compton backscattering [2] \rightarrow 2~5 MeV
 - Radiation return , Z($\mu\mu$) γ events \rightarrow 2~5MeV

