JOHANNES GU	<mark>JG U</mark> JTENBERG ERSITÄT ^{MANZ}	O PRIS	MA ⁺ (ritp #	ainz Institute for eoretical Physics
			ng of Higgs and ements at future lepton coll		
			•		

Jiayin Gu

JGU Mainz

KAIST-KAIX Workshop for Future Particle Accelerators July 10, 2019

arXiv:1907.04311 J. de Blas, G. Durieux, C. Grojean, JG, A. Paul

Jiayin Gu

Introduction			

EFT (effective field theory) @ Future lepton colliders

- Higgs is the primary goal!
- Also very precise EW measurements (Z-pole, WW threshold, higher energies).
- EFT is good for future lepton colliders.
 - A systematic parameterization of BSM contributions to Higgs and EW couplings.
 - If $v \ll \Lambda$, leading order contributions are parametrized by D6 operators.
- Future lepton colliders are also good for EFT!
 - ▶ High precision, relatively low energy ($E \ll \Lambda$) ⇒ ideal for EFT studies!
 - LHC is ideal for discovery, but

EFT certainly does not cover everything!

- What if we find light new particles? (I'll throw my papers in the trash can!)
- Higgs or Z Exotic decays... (See other talks in this workshop.)

	Framework		
EFT globa	al fit		

Assuming baryon and lepton numbers are conserved,

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^2} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^4} \mathcal{O}_{j}^{(8)} + \cdots$$
(1)

- Write down all D6 operators, eliminate redundant ones via field redefinition, integration by parts, equations of motion...
 - ► different choices of which operators to eliminate ⇒ different basis
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott
 - Don't worry! Only a small subset is relevant for our study.
- Higgs + aTGC + EW = 28 parameters in our framework
 - CP-even only, no fermion dipole interactions,
 - only consider the diagonal Yukawa couplings of *t*, *c*, *b*, τ , μ ,
 - ► impose U(2) on 1st and 2nd generation quarks, exclude Ztt and Wtb couplings.
 - ► We don't consider flavor violating Higgs or Z decays, which can be studied separately.

Framework		

You can't really separate Higgs from the rest of the SM!

$$\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger}\overleftrightarrow{D_{\mu}}H\overline{\ell}_{L}\gamma^{\mu}\ell_{L},\\ \mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a}\overleftrightarrow{D_{\mu}}H\overline{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}\\ \mathcal{O}_{He} = iH^{\dagger}\overleftrightarrow{D_{\mu}}H\overline{e}_{R}\gamma^{\mu}e_{R} \end{array}$$

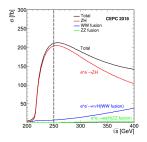
(or the ones with quarks)

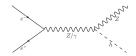
- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

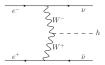
- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate aTGCs $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - ► also generates *HVV* anomalous couplings such as $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$.

Framework		

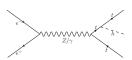
You also have to measure the Higgs!


- Some operators can only be probed with the Higgs particle.
- $\blacktriangleright |H|^2 W_{\mu\nu} W^{\mu\nu} \text{ and } |H|^2 B_{\mu\nu} B^{\mu\nu}$
 - $H \rightarrow v/\sqrt{2}$, corrections to gauge couplings?
 - ► Can be absorbed by field redefinition! This applies to any operators in the form |*H*|²O_{SM}.

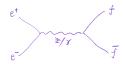

$$c_{\rm SM}\mathcal{O}_{\rm SM} \quad \text{vs.} \quad c_{\rm SM}\mathcal{O}_{\rm SM} + \frac{c}{\Lambda^2}|H|^2\mathcal{O}_{\rm SM}$$
$$= (c_{\rm SM} + \frac{c}{2}\frac{v^2}{\Lambda^2})\mathcal{O}_{\rm SM} + \text{terms with } h$$
$$= c'_{\rm SM}\mathcal{O}_{\rm SM} + \text{terms with } h \qquad (2)$$

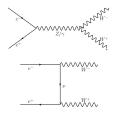

- probed by measurements of the $h\gamma\gamma$ and $hZ\gamma$ couplings, or the *hWW* and *hZZ* anomalous couplings.
- or Higgs in the loop (different story...)
- Yukawa couplings, Higgs self couplings, ...

	Measurements		Conclusion


Higgs measurements

- $e^+e^- \rightarrow hZ$, cross section maximized at around 250 GeV.
- $e^+e^- \rightarrow \nu \bar{\nu} h$, cross section increases with energy.
- $e^+e^- \rightarrow \bar{t}th$, can be measured with $\sqrt{s} \gtrsim 500 \,\text{GeV}$.
- ► $e^+e^- \rightarrow Zhh$ and $e^+e^- \rightarrow \nu\bar{\nu}hh$ (triple Higgs coupling, not included here).



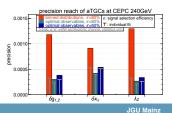

EW measurements

Z-pole

- $\triangleright \sim 10^{11} 10^{12}$ Zs at CEPC/FCC-ee.
- How many Zs do we really need?

- $e^+e^- \rightarrow WW$, threshold scan, or "free data" at 240 GeV and above.
 - ► *W* mass, width, branching ratios.
 - anomalous Triple Gauge Couplings (aTGCs)
 - S-TGC parameterization ⇒ full EFT parameterization
 - optimal observables...

	Measurements		


A refined TGC analysis using Optimal Observables

- TGCs are sensitive to the differential distributions!
 - Current method: fit to binned distributions of all angles.
 - Correlations among angles are ignored.
- What are optimal observables?
 (See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)
 - For a given sample, there is an upper limit on the precision reach of the parameters.
 - In the limit of large statistics (everything is Gaussian) and small parameters (leading order dominates), this "upper limit" can be derived analytically!

•
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}|_{SM} + \sum_{i} S(\Omega)_{i} g_{i}$$
. The optimal observables are simply the $S(\Omega)_{i}$.

- Very idealized! How well can we actually do?
 - Choose a conservative 50% efficiency to compensate the omission of systematics...

	Parameterization	

Parametrization of Higgs couplings and aTGCs

- Write down all D6 operators and use e.o.m., field redefinitions, etc. to remove the redundant degrees of freedom.
 - Warsaw, SILH, SILH',
- Higgs basis: Since we need to calculate things in the broken electroweak phase, why don't we define the basis in the broken phase as well? (A. Falkowski, LHCHXSWG-INT-2015-001) (see also "BSM Primary Effects" [arXiv:1405.0181] Gupta, Pomarol, Riva)
 - Full SM gauge symmetry ⇒ not all couplings are independent. e.g. Couplings of h to W can be written in terms of couplings of h to Z and γ.
 - Higgs couplings + aTGCs = 12 parameters
 - $\delta c_{Z}, \ c_{ZZ}, \ c_{Z\Box}, \ c_{\gamma\gamma}, \ c_{Z\gamma}, \ c_{gg}, \ \delta y_t, \ \delta y_c, \ \delta y_b, \ \delta y_\tau, \ \delta y_\mu, \ \lambda_Z.$
 - $\blacktriangleright \ \delta c_Z \leftrightarrow h Z^{\mu} Z_{\mu}, \quad c_{ZZ} \leftrightarrow h Z^{\mu\nu} Z_{\mu\nu}, \quad c_{Z\Box} \leftrightarrow h Z_{\mu} \partial_{\nu} Z^{\mu\nu}$
 - advantage: can be sort of interpreted as "Higgs couplings"
- Let's take this further and make EFT look as much like "κ" as we can! (Peskin *et al.*)

How to make your banana look like an apple

- EFT fit results projected on Effective Higgs couplings ([arXiv:1708.08912], [arXiv:1708.09079], Peskin et al.)
 - ▶ g(hZZ), g(hWW) are defined at the scale of the relavent Higgs decay. $g(hZZ) \propto \sqrt{\Gamma(h \rightarrow ZZ)}$, $g(hWW) \propto \sqrt{\Gamma(h \rightarrow WW)}$.
 - Not necessarily a basis, but can be made into a basis. (Maybe call it the "Peskin basis"?)
 - It looks like κ but it is not κ ! (both intuitive and confusing....)
- Used in ILC and FCC-ee official documents and the Higgs@Future Colliders WG report.
- Also useful for comparing results in different basis...

	Parameterization	

Parametrization in *Z*-pole and *W* mass/width/BR

- ▶ To make our lives easier, we could (using field redefinitions, e.o.m., ...)
 - parameterize all corrections at Z-pole in terms of modifications of Zff couplings (and same for W);
 - impose the relation $\delta g^{hZf} = \delta g^{Zf}$, $\delta g^{hWf} = \delta g^{Wf}$.

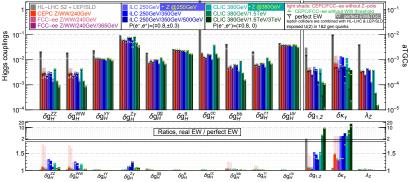
 Can use "couplings" instead of "operators" to parameterize EW corrections (52 real parameters without flavor assumption)

$$\begin{split} \delta m_{(W)} \,, \quad \delta g_L^{Z\prime\prime} \,, \quad \delta g_L^{Ze} \,, \quad \delta g_R^{Ze} \,, \quad \delta g_L^{Zu} \,, \quad \delta g_R^{Zu} \,, \quad \delta g_L^{Zd} \,, \quad \delta g_R^{Zd} \,, \quad \delta g_R^{Zd} \,, \quad \delta g_R^{Wq} \,, \\ \delta g_L^{Z\nu} \,= \, \delta g_L^{Ze} \,+ \, \delta g_L^{W\prime} \,, \qquad \delta g_L^{Wq} \,= \, \delta g_L^{Zu} \, V - \, V \delta g_L^{Zd} \,. \end{split}$$

52 real parameters without flavor assumption, 16 (diagonal ones) are included.

		Results	
_			

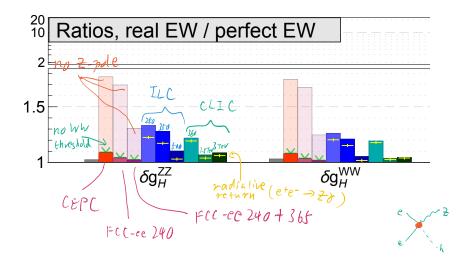
Run Scenarios


$\int \mathcal{L} dt$ [ab ⁻¹]									
unpolarized	Z-pole	WW thres.	240 GeV	350 GeV	365 GeV				
CEPC	8	2.6	5.6						
FCC-ee	150	10	5	0.2	1.5				
ILC			250 GeV	350 GeV	500 GeV				
$P(e^-, e^+) = (-0.8, +0.3)$			0.9	0.135	1.6				
$P(e^-, e^+) = (+0.8, -0.3)$			0.9	0.045	1.6				
CLIC			380 GeV	1.5 TeV	3 TeV				
$P(e^-, e^+) = (-0.8, 0)$			0.5	2	4				
$P(e^-, e^+) = (+0.8, 0)$			0.5	0.5	1				

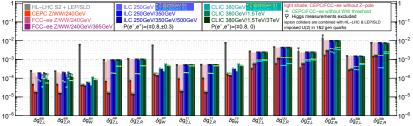
- Hopefully the most up-to-date scenarios?...
- Possible Giga-Z run at linear colliders?
- ▶ We also considered $P(e^-, e^+) = (\mp 0.8, 0)$ and unpolarized beams for ILC.

JGU Mainz

"Full fit" projected on the Higgs couplings (and aTGCs)


precision reach on effective couplings from full EFT global fit

- > 28-parameter fit, projected on the Higgs couplings & aTGCs.
- The hZZ and hWW couplings are not independent!
- Z-pole measurements are important for the hZZ and hWW couplings!

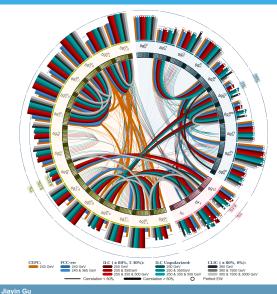

		Results	

Z-pole run is also important for Higgs couplings!

precision reach on EW couplings from full EFT global fit

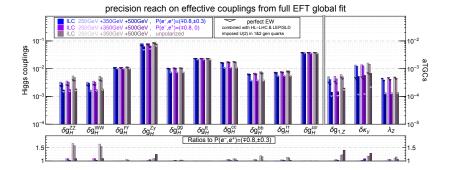
- (h)Zff couplings are still best probed by future Z-pole runs.
- Higgs and diboson measurements at high energy (at linear colliders) are also sensitive to the (h)Zee couplings, but can not resolve them from other parameters.
- ► Linear colliders: Using radiative return $(e^+e^- \rightarrow Z\gamma)$ to measure Z observables at high energy?

Framewo


Measurements

Parameterizatio

Results

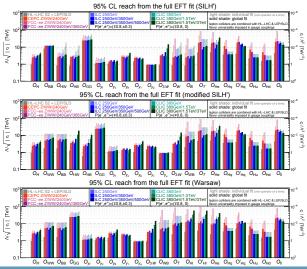

Conclusion

Entering the new era of circular bar plots!

- Precision reach on the outside...
- Correlations on the inside...
- Without future Z-pole run ⇒ larger correlation among the hWW, hZZ couplings, aTGCs and the Zee couplings.

			Results	
ILC polari	zation			

- ▶ Polarized beams: assuming the luminosity is equally divided into (-,+) and (+,-) polarizations.
- ▶ Beam polarizations can probe different combinations of EFT parameters in $e^+e^- \rightarrow hZ$ (and so can runs at different energies).


		Results	

D6 operators

$\mathcal{O}_{\mathcal{H}} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^2)^2$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB}=g^{\prime 2} H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{I}_L H e_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = rac{\mathrm{i}g'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H)^2$	$\mathcal{O}'_{H\ell} = iH^{\dagger}\sigma^{a}\overleftrightarrow{\mathcal{D}_{\mu}}H\bar{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_L \ell_L) (\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He}=\textit{i}\textit{H}^{\dagger}\overrightarrow{D_{\mu}}\textit{H}\overline{e}_{R}\gamma^{\mu}e_{R}$
$\mathcal{O}_{Hq} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}^{\prime} = iH^{\dagger}\sigma^{a}D_{\mu}H\bar{q}_{L}\sigma^{a}\gamma^{\mu}q_{L}$	$\mathcal{O}_{Hd} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Pick your favorite basis!

- Modified-SILH' is most convenient in the limit of perfect EW (Z-pole, W mass/width/BR).
- Now we can choose any of them...

			Conclusion
Conclusion			

- We need to measure the Higgs, and we also need to measure the EW gauge bosons.
- We need a realistic $e^+e^- \rightarrow WW$ (TGC) analysis!
 - Going beyond theorists' naive analysis...
 - ▶ 3 TGC \Rightarrow full EFT parameterization.
 - Use optimal observables to extract information in the angular distribution.
- Towards a EW + Higgs + top combined fit?
 - Top gauge & Yukawa couplings...
 - For the top loop contributions in Higgs processes, see e.g. [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang.
- Triple Higgs coupling.... (see backup slides)

Conclusion

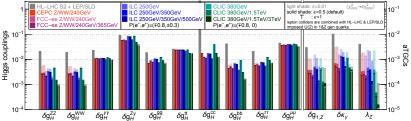
Jiayin Gu

			Conclusion
Conclusio	n		
Conclusio	on		

Note: Obviously EFT is not the only tool to probe new physics at future lepton colliders.

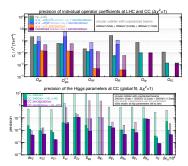
Jiayin Gu

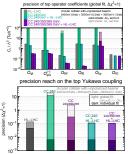
		Conclusion


backup slides

Jiayin Gu

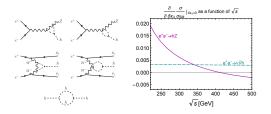
JGU Mainz

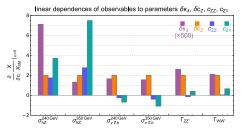

Impact of $e^+e^- ightarrow WW$ measurements


precision reach with different assumptions on $e^+e^- \rightarrow WW$ measurements

► Scaling the χ^2 of $e^+e^- \rightarrow WW$ measurements (from theorists' naive analysis).

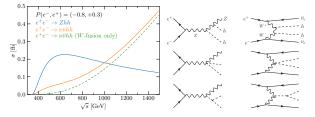
Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

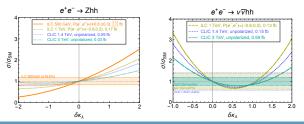


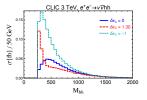


$$\begin{split} & \mathcal{O}_{t\varphi} = \bar{\mathcal{O}} t \bar{\varphi} \left(\varphi^{\dagger} \varphi \right) + h.c., \\ & \mathcal{O}_{\varphi Q}^{(1)} = \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q), \\ & \mathcal{O}_{\varphi Q}^{(3)} = \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q), \\ & \mathcal{O}_{\varphi t} = \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t), \\ & \mathcal{O}_{tW} = (\bar{Q} \sigma^{\mu \nu} \tau^{I} t) \, \bar{\varphi} W_{\mu \nu}^{I} + h.c., \\ & \mathcal{O}_{tB} = (\bar{Q} \sigma^{\mu \nu} \tau^{A} t) \, \bar{\varphi} G_{\mu \nu}^{A} + h.c., \end{split}$$

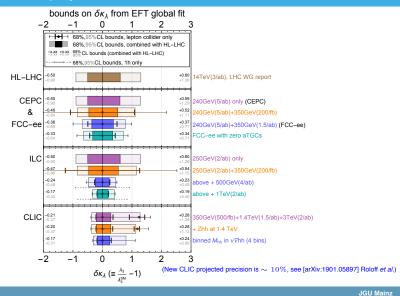
- Higgs precision measurements have sensitivity to the top operators in the loops, but it is challenging to discriminate many parameters in a global fit.
- HL-LHC helps, but a Top threshold run is better.
- Indirect bounds on the top Yukawa coupling.


Triple Higgs coupling at circular colliders (240 & 350 GeV)



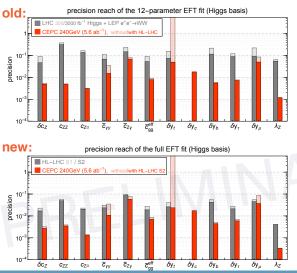

- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκ_λ)
- at 350 GeV:
 - WW fusion
 - hZ at a different energy
- *h* → *WW**/*ZZ** also have some discriminating power (but turned out to be not enough).

Double-Higgs measurements ($e^+e^- \rightarrow Zhh \& e^+e^- \rightarrow \nu \bar{\nu} hh$)


- Destructive interference in $e^+e^- \rightarrow \nu \bar{\nu} hh!$ The square term is important.
- hh invariant mass distribution helps discriminate the "2nd solution."

		Conclusion

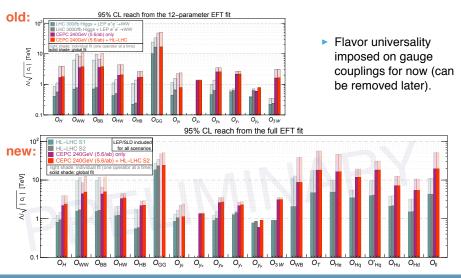
A summary of the projected reaches on $\delta \kappa_{\lambda}$ (with updated HL-LHC projection)



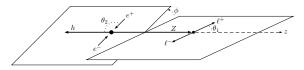
Jiayin Gu

			Conclusion
EW obser	vables		

- A complete list of (pseudo-)observables, preferably without assumptions on flavor universality. (m_Z , G_F and α are used as inputs.)
 - ► Γ_Z , σ_{had} ,
 - R_e, R_μ, R_τ, R_b, R_c,
 - $\blacktriangleright A^{0,e}_{\rm FB}, A^{0,\mu}_{\rm FB}, A^{0,\tau}_{\rm FB}, A^{0,b}_{\rm FB}, A^{0,c}_{\rm FB},$
 - A_e and A_τ from A_τ polarization in $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$.
- Do not include "derived quantities."
 - \triangleright N_{ν}
 - ► $\sin \theta_W^{\rm eff}$
 - ▶ S&T
- W mass & width, BR
 - $e^+e^-
 ightarrow WW$ (aTGCs)


CEPC: old vs. new (Higgs basis)

- Full fit: only the Higgs parameters are shown.
- HL-LHC: ATLAS and CMS are combined. (The correlation between ATLAS/CMS are not provided by the WG.)


Jiayin Gu

CEPC: old vs. new (modified-SILH' basis)

Jiayin Gu

JGU Mainz

- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - [arXiv:1406.1361] M. Beneke, D. Boito, Y.-M. Wang
 - [arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$\mathcal{A}_{ heta_1} \;,\;\; \mathcal{A}_{\phi}^{(1)} \;,\;\; \mathcal{A}_{\phi}^{(2)} \;,\;\; \mathcal{A}_{\phi}^{(3)} \;,\;\; \mathcal{A}_{\phi}^{(4)} \;,\;\; \mathcal{A}_{c heta_1, c heta_2} \;.$$

- Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).
- Optimal observables can further improve the sensitivity.