Target and Prospect of Belle-II experiment Nanae Taniguchi (KEK)

Motivation

- Questions
- origin of generation and mechanism of flavor
- baryon asymmetry (in Universe) and CP violation
- Both involve 3 generation \rightarrow motivated to study heavy quarks

B physics experiments

heavy flavor (b) factories

- Current/Recent
- B factories : KEKB/Belle, PEP-II/Babar
- 1999-2010: 772×10 ${ }^{6}+471 \times 10^{6} \mathrm{BB}$
- e+e- collider at 10.6 GeV (CMS)
- LHCb Running
- 2008 - : $\sim 9 \mathrm{fb}-1 \sim \mathrm{O}\left(10^{12}\right)$ b’s
- pp collider at 7-13 TeV
- Upcoming
- SuperKEKB/Belle II Just started
- 2018 - : target is $\sim 50 \mathrm{ab}^{-1}$ by $2024,5 \times 10^{10} \mathrm{BB}$
- e+e- collider at 10.6 GeV (CMS)

Achievement from Belle/Babar

- Discovery of CP violation in B meson
- Confirmed Kobayashi-Maskawa mechanism
- Precise measurement of CKM parameters
- Study for origin of CP Violation
- Study rare phenomena for new physics search
- Obtain hints for new physics

Discovery CPV

$31 \times 10^{6} B \bar{B} \quad 2001$ summer

Discovery CPV

Full data: 772MBB

determine CKM unitarity triangle

$$
\begin{array}{r}
\delta\left(\sin 2 \phi_{1}\right) \sim 4 \% \\
\delta \phi_{2}, \delta \phi_{3} \sim O(10 \%)
\end{array}
$$

$\sin 2 \phi_{1}=0.667 \pm 0.023$ (stat) ± 0.012 (syst)

$$
\mathcal{A}_{f}=0.006 \pm 0.016 \text { (stat) } \pm 0.012 \text { (syst) }
$$

Study rare phenomena

$\sim 100 \mathrm{fb}^{-1}$

 $\sim 400 \mathrm{fb}^{-1}$$$
b \rightarrow s \ell^{+} \ell^{-} \text {observation (2003) }
$$

$$
b \rightarrow d \gamma
$$

$$
B \rightarrow \tau \nu
$$

evidence (2006)

detail analysis can be done thanks to many data

Asymmetry

angular analysis 660MBB (2008)

Time dependent CPV (2009)

Full data analysis (2014)

Branching fraction measurement

hints ? for new physics

- Contribution of new physics may appear as deviation from SM prediction

Anomaly is reported by LHCb Belle result is consistent with SM
center value is away from SM prediction, but error is large.
\rightarrow consistent with SM within error

center value is closer to SM prediction, but error is smaller.
$\rightarrow \sim 4$ sigma deviation
~3 sigma deviation

Discovery CPV

Full data: 772MBB

determine CKM unitarity triangle $\delta\left(\sin 2 \phi_{1}\right) \sim 4 \%$ $\delta \phi_{2}, \delta \phi_{3} \sim O(10 \%)$
$\sin 2 \phi_{1}=0.667 \pm 0.023$ (stat) ± 0.012 (syst)
still room for NP $\mathcal{A}_{f}=0.006 \pm 0.016$ (stat) ± 0.012 (syst)

Motivation for the higher luminosity B factory

Higher luminosity B factory provide rich physics programs to approach big questions.
There are many modes as good probe to search new physics.
B factory is also charm and tau factories.
Precise measurement of CKM
new CPV phase
new flavor coupling
$\sin 2 \phi_{1}$ from time dependent CPV

CPV in charm
matter-antimatter asymmetry
origin of flavor

Study rare phenomena for new physics search interaction between charged Higgs
mass origin and quark-lepton

$$
B \rightarrow D^{(*)} \tau \nu, \tau \nu
$$

beyond Standard Model
Right handed current

LeptonFlavorViolation

$$
\text { TCPV in } B \rightarrow X_{s} \gamma
$$

Chirality

$$
\tau \rightarrow \mu \gamma, \ell l l
$$

what is the main mode in Belle-II ?

- Belle (1999-2010)
- CP violation in B meson system
- Belle -II
- ??

a fixed phrase ...
"The results are consistent with SM within errors"
statistical error is dominant in almost all modes

what is the main mode in Belle-II ?

- Belle (1999-2010)
- CP violation in B meson system
- Belle -II
- to finalize the results with larger statistical data

SuperKEKB / Belle-II

$$
\begin{gathered}
\text { Target : } L=8 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{s}(\text { KEKB } \times 40) \\
L_{\text {int }}=50 / \mathrm{ab}(\text { Belle } \times 50)
\end{gathered}
$$

Belle II TDR, arXiv:1011.0352

Belle II collaboration

- grown a lot in the last years
- ~ 1000 members in 26 countries, >100 institutes

electron -positron collider $e^{-} e^{+} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$

Exclusive production

$$
B_{d} \bar{B}_{d}
$$

$\sigma_{b b} \sim 1 \mathrm{nb} ; \sim 1 \times 10^{6} b \bar{b}$ pairs $/ \mathrm{fb}^{-1}$
low multiplicity and clean environment
B mesons almost at rest in lab frame asymmetric beam energies boost for decay vertex separation

Hermetic 4π detector
Advantage in modes including γ, π^{0}, ν (missing)

LHCb

proton -ptoron collider (7-14 TeV)
b quarks produced by gluon fusion
All b-hadron varieties produced

$$
B_{d}, B_{s}, B_{c}, \Lambda_{b}
$$

$\sigma_{b b} \sim \mathcal{O}(100) \mu \mathrm{b} ; \sim 1 \times 10^{11} b \bar{b}$ pairs $/ \mathrm{fb}^{-1}$
high multiplicity and not clean environment
Highly boosted topology gives excellent decay vertex separation.

Longitudinally boosted bb pairs
Advantage in charged particles modes and Bs decays

different systematics

Two experiments are required to establish NP

sin2ب1 at Belle2 50/ab

- $\sin 2 \Phi_{1}$
- $b \rightarrow$ stransition
- New physics can contribute to loop
- promising way to probe additional CPV phase from New Physics
- $b \rightarrow c$ transition
- tree diagram is dominant
- can be measured precisely as SM reference

$\sin 2 \phi_{1}^{\text {eff }} \sim \sin 2 \phi_{1} @ S M$
$b \rightarrow s \bar{q} q$ penguin

$$
\sin 2 \phi_{1}^{\text {eff }} \neq \sin 2 \phi_{1}
$$

$$
\begin{array}{r}
\quad \begin{array}{c}
\text { Gold - plated modes } \\
\star \star B \rightarrow \phi K_{S}^{0} \\
\star \\
\star B \rightarrow \eta^{\prime} K_{S}^{0}
\end{array}
\end{array}
$$

decay amplitude is dominated by the short distance penguin transition $b \rightarrow s \bar{s} s$

More statistics is crucial for mode-by-mode studies

sin2ب1 at Belle2 50/ab

soon the measurement will be systematics limited; need to control them
$B^{0} \rightarrow(c \bar{c}) K^{0}$ as SM reference
$\sin 2 \phi_{1} \quad$ Asymmetry
$0.67 \pm 0.023 \pm 0.012 \quad 0.006 \pm 0.016 \pm 0.012$ Belle
$x . x x \pm 0.0027 \pm 0.0044 \quad x . x x \pm 0.0033 \pm 0.0037$ Belle II ($50 / \mathrm{ab}$)

WA (2017)						$5 \mathrm{ab}^{-1}$		$50 \mathrm{ab}^{-1}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$			
$J / \psi K^{0}$	0.022	0.021	0.012	0.011	0.0052	0.0090			
ϕK^{0}	0.12	0.14	0.048	0.035	0.020	0.011			
$\eta^{\prime} K^{0}$	0.06	0.04	0.032	0.020	0.015	0.008			
ωK_{S}^{0}	0.21	0.14	0.08	0.06	0.024	0.020			
$K_{S}^{0} \pi^{0} \gamma$	0.20	0.12	0.10	0.07	0.031	0.021			
$K_{S}^{0} \pi^{0}$	0.17	0.10	0.09	0.06	0.028	0.018			

the two values would be unambiguously distinguishable, signifying the existence of New Physics

R(K) at Belle2 50/ab

Lepton Flavor Universality is conserved in SM R_{K} and R_{K} * should be unity
~ 2 sigma tension is reported by LHCb in $\mathrm{R}_{\mathrm{K}^{*}}$
Belle results is consistent with SM,
but error is still large

$$
\begin{array}{r}
\text { [Belle, arXiv:1904.02440] } \\
R_{K_{*}}=0.94_{-0.14}^{+0.17} \pm 0.08 \\
\left(q^{2}>0.045 G e V^{2}\right)
\end{array}
$$

$$
R_{K^{*}}=\Gamma\left(B \rightarrow K^{*} \mu \mu\right) / \Gamma\left(B \rightarrow K^{*} e e\right)
$$

Observables	Belle 0.71 ab $^{-1}$	Belle II ab ab $^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\left.R_{K}(1.0 .6 .0) \mathrm{GeV}^{2}\right)$	28%	11%	3.6%
$R_{K}\left(>14.4 \mathrm{GeV}^{2}\right)$	30%	12%	3.6%
$R_{K^{*}}\left([1.0,6.0] \mathrm{GeV}^{2}\right)$	26%	10%	3.2%
$R_{K^{*}}\left(>14.4 \mathrm{GeV}^{2}\right)$	24%	9.2%	2.8%

If the anomaly is true,
5 sigma confirmation is possible before 50/ab

B->D ${ }^{(*)}$ TV at Belle2 50/ab

tree level process with intermediate $W^{ \pm}$

sensitive to charged Higgis

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \overline{\nu_{\tau}}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \overline{\nu_{\ell}}\right)}
$$

	$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
R_{D}	$(\pm 6.0 \pm 3.9) \%$	$(\pm 2.0 \pm 2.5) \%$
$R_{D^{*}}$	$(\pm 3.0 \pm 2.5) \%$	$(\pm 1.0 \pm 2.0) \%$

>5 sigima discovery would be possible

status of SuperKEKB/Belle II

- Phase-1 : Accelerator commissioning without Belle2 detector
- Roll in of Belle2 detector : 2017 Apr.
- Phase-2 : Detector commissioning ($\sim 500 / \mathrm{pb}$)
- First collision : 2018 Apr.
- Phase-3 : physics data taking. 2019 Mar. -

status of SuperKEKB/Belle II

- phase-3 run began at the
 beginning of April
- spring run ended in the morning on July 1st
- will resume autumn run in Oct.
- Achieved:
- beam current $(\max)=660 \mathrm{~mA}$ (target 2.6/3.6A)
- $\beta y^{*}: 2 \mathrm{~mm}$ (target 0.3 mm)
- $\mathrm{L}_{\text {peak }}: 6.1 \times 10^{33}\left(\right.$ Belle- 11×10^{34}, target 8×10^{35})

Belle II x5 = Belle III ??

- Flavor physics has potential of improvement to search new physics with larger data sample
- No concrete plan yet, just initial discussions..
- Belle II ($50 / \mathrm{ab}$) x5 $=250 / \mathrm{ab}$
- baseline : Belle II structure, Belle II detector
- studies to understand limitation of detectors
- background reduction is crucial

summary

- Belle II experiment at SuperKEKB aims to find New physics beyond the SM with ultimate precision measurement of heavy flavor decays
- Belle II physics run has just started
- We expect many interesting and exciting results in coming years !!

