INTERPLAY OF HIGGS AND FLAVOR PHYSICS

Felix Yu Johannes Gutenberg University, Mainz

KAIST-KAIX Workshop for Future Particle Accelerators KAIST – July 11, 2019

The Higgs and Flavor Connection

- Prima facie connection
 - − Higgs Yukawa couplings break global flavor symmetry of SM: U(3)⁵ → U(1)_B×U(1)_e×U(1)_µ×U(1)_τ
 - Yukawa matrices provide the only flavored interactions in SM, resulting in CKM matrix for charged current $C \supset \overline{O} \longrightarrow \widetilde{H} \cong -\overline{O} \longrightarrow \overline{H} \cong -\overline{O} \longrightarrow \overline{H} \cong -\overline{O} \longrightarrow \overline{O} \longrightarrow \overline{H} \cong -\overline{O} \longrightarrow \overline{O} \longrightarrow \overline{H} \cong -\overline{O} \longrightarrow \overline{O} \longrightarrow \overline{O} \longrightarrow \overline{H} \cong -\overline{O} \longrightarrow \overline{O} \longrightarrow \overline$

$$\mathcal{L} \supset Q_L y_u H u_R + Q_L H y_d a_R + \text{ h.c.}$$

= $\bar{Q}_L V_u^{\dagger} \tilde{H} V_u y_u U_u^{\dagger} U_u u_R + \bar{Q}_L V_d^{\dagger} H V_d y_d U_d^{\dagger} U_d d_R + \text{ h.c.}$
= $\bar{Q}_L^m \tilde{H} y_u^{\text{diag}} u_R^m + \bar{Q}_L^m H y_d^{\text{diag}} d_R^m + \text{ h.c.}$

$$V_{\rm CKM} = V_u V_d^{\dagger}$$

The Higgs and Flavor Connection

- Prima facie connection
 - − Higgs Yukawa couplings break global flavor symmetry of SM: U(3)⁵ → U(1)_B×U(1)_e×U(1)_µ×U(1)_τ
 - Yukawa matrices provide the only flavor interactions in SM, resulting in CKM matrix
- Yet, *inescapable* mechanism at play
 - No matter the Yukawa matrices (in gauge basis), large SM global symmetry structure dictates mass-coupling degeneracy for Higgs-fermion interactions
 - And guarantees absence of tree-level FCNCs

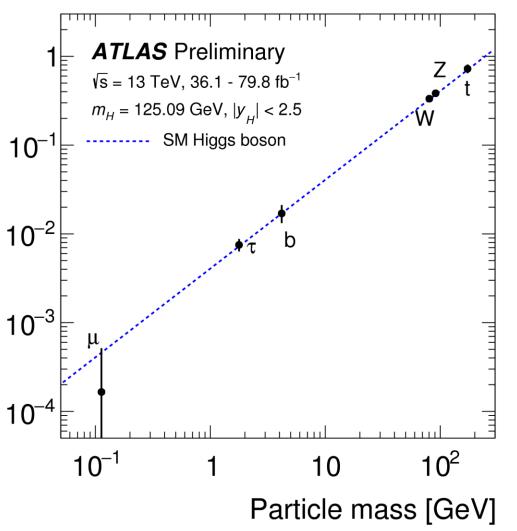
Felix Yu – Higgs and Flavor Interplay

The SM Flavor Puzzle

or $\sqrt{\kappa_v w}$

<|"ב

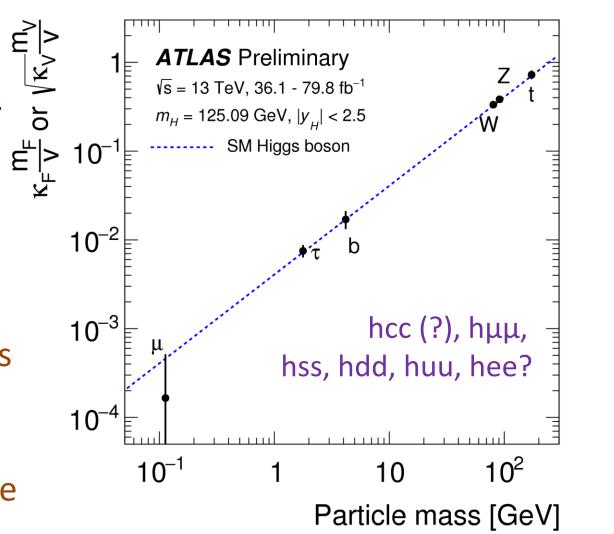
- Mass-coupling degeneracy wellsupported by Higgs data
 - Known hierarchy in fermion masses, patterns of CKM mixing lack dynamical explanation



Felix Yu – Higgs and Flavor Interplay

The SM Flavor Puzzle

- Mass-coupling degeneracy wellsupported by Higgs data
 - Nevertheless,
 should continue
 program as far as
 we can go and
 cover all SM
 fermions possible



ATLAS Higgs WG, Combined Summary Plot

Motivating non-standard Yukawas

- κ-framework to rescale SM Yukawa couplings seems innocuous – can simply write dim-4, renormalizable Higgs interactions
- In fact, any κ≠1 scenario provides no-lose scenario for New Physics

Motivating non-standard Yukawas

• SM fermions are chiral \rightarrow mismatch between Yukawa coupling and mass leads to unitarity violation in $f\bar{f} \rightarrow VV$ scattering

Appelquist, Chanowitz, PRL 59, 2405 (1987)

- For example, W⁺W⁻ scattering breaks unitarity at $E_f \simeq \frac{8\pi v^2}{\zeta |m_f - y_f v|}, \begin{array}{l} \zeta = \sqrt{3} & \text{quarks} \\ \zeta = 1 & \text{leptons} \end{array}$

• As an example, bare top quark mass breaks unitarity at about 5 TeV

- UV completion needed to satisfy perturbative unitarity
 - e.g. 2HDM, vector-like fermion partners

Effects of non-standard Yukawas

- New matter fields can have, in principle, different breaking patterns of SM global symmetry
 - After integrating out heavy fields (e.g. 2HDM, VL fermions)

$$\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y'_u \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} \tilde{H} u_R + y_d \bar{Q}_L H d_R + y'_d \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} H d_R + \text{h.c.}$$

– In dim-6 SMEFT, diagonalize the mass combination

$$m_f = \frac{y_f v}{\sqrt{2}} + \frac{y_f' v^3}{2\sqrt{2}\Lambda^2}$$

• Resulting Yukawa interactions are not necessarily diagonal nor CP-conserving, nor aligned with mass $\frac{y_{f, \text{ eff}}}{\sqrt{2}} = \frac{y_f}{\sqrt{2}} + \frac{3y'_f v^2}{2\sqrt{2}\Lambda^2} = \frac{m_f}{v} + \frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}$

New Physics Flavor Problem

- One of the most significant problems in BSM pheno
 - In dim-6 SMEFT, can only exercise the global flavor rotations once
 - Recall that the form of the SM Yukawa matrices did not matter – guaranteed vanishing of FCNCs, mass-coupling degeneracy
 - Now, y_u , y'_u , y_d , and y'_d are *each* arbitrary not governed by any gauge symmetry $\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y'_u \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} \tilde{H} u_R$ $+ y_d \bar{Q}_L H d_R + y'_d \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} H d_R + \text{ h.c.}$
 - No dynamical expectation for an alignment between these matrices
 D'Ambrosio, et al [hep-ph/0207036]
 - [Minimal flavor violation is an ansatz, not an answer]

Effects of non-standard Yukawas

 Effective Yukawa interactions can strongly deviate from SM expectations

$$\left(\frac{y_{f,\text{ eff}}}{\sqrt{2}}\right)_{ij} = \left(\frac{m_i}{v}\right)\delta_{ij} + \left(\frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}\right)_{ij}$$

- Competition of SM and NP global symmetry breaking patterns generically gives strongly constrained flavor effects
 - Break the mass-Yukawa proportionality
 - For light fermions, dominant Yukawa contribution can come from higher dimensional operator
 - In particular, $m_f / v \approx 10^{-5} 10^{-1.5}$: why are SM decays falling into line?
 - New flavor-violating Higgs interactions
 - New CP-violating Higgs interactions

Dimension 6 CPV

Alonso, Jenkins, Manohar, Trott [1312.2014] Also see Grzadowski, Iskrzynski, Misiak, Rosiek [1008.4884]

i.e. How expansive the NP flavor problem is Henning, Lu, Melia, Murayama [1512.03433]

- 1: X° 2: H^{6} 3: $H^{4}D^{2}$ 4: $X^{2}H^{2}$ 5: $\psi^{2}H^{3}$ + h.c. 6: $\psi^{2}XH$ + h.c. 7: $\psi^{2}H^{2}D$ 8: $(\bar{L}L)(\bar{L}L)$ 8: $(\bar{R}R)(\bar{R}R)$ 8: $(\bar{L}L)(\bar{R}R)$
- 8: $(\bar{L}R)(\bar{R}L)$ + h.c. 8: $(\bar{L}R)(\bar{L}R)$ + h.c.

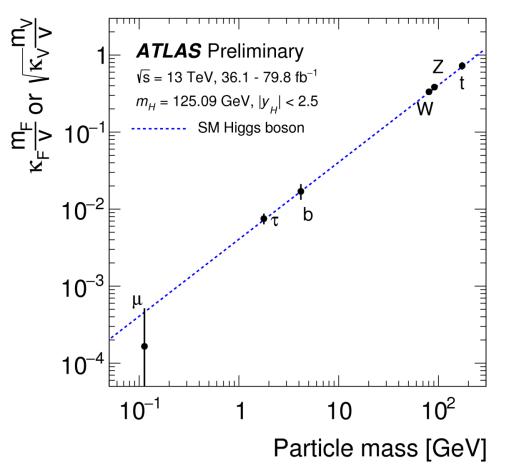
1350 CP-even, 1149-CP odd operators (B-conserving)

Class	$N_{\rm op}$	CP-even		$CP ext{-odd}$					
		n_g	1	3	n_g	1	3		
1	4	2	2	2	2	2	2		
2	1	1	1	1	0	0	0		
3	2	2	2	2	0	0	0		
4	8	4	4	4	4	4	4		
5	3	$3n_g^2$	3	27	$3n_g^2$	3	27		
6	8	$8n_g^2$	8	72	$8n_g^2$	8	72		
7	8	$\frac{1}{2}n_g(9n_g+7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30		
$8 : (\overline{L}L)(\overline{L}L)$	5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126		
$8 : (\overline{R}R)(\overline{R}R)$) 7	$\frac{1}{8}n_g(21n_g^3 + 2n_g^2 + 31n_g + 2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195		
$8 : (\overline{L}L)(\overline{R}R)$	8	$4n_g^2(n_g^2+1)$	8	360	$4n_g^2(n_g - 1)(n_g + 1)$	0	288		
$8 : (\overline{L}R)(\overline{R}L)$	1	n_g^4	1	81	n_g^4	1	81		
$8 : (\overline{L}R)(\overline{L}R)$	4	$4n_g^4$	4	324	$4n_g^4$	4	324		
8 : All	25	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 + 89n_g + 2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014		
Total	5 9	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$) 53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$) 23	1149		

Suite of Higgs NP signatures

- Test for deviations from predicted SM decays (Z. Liu, J. Gu talk)
- Test for presence of forbidden/vanishingly small SM decays
 - Light fermions (cc, μμ, ee)
 - Flavor violating
 - CP-violating (Stamou talk)
- (Test BSM states)
 - (Invisible/exotic decays, exotic production)

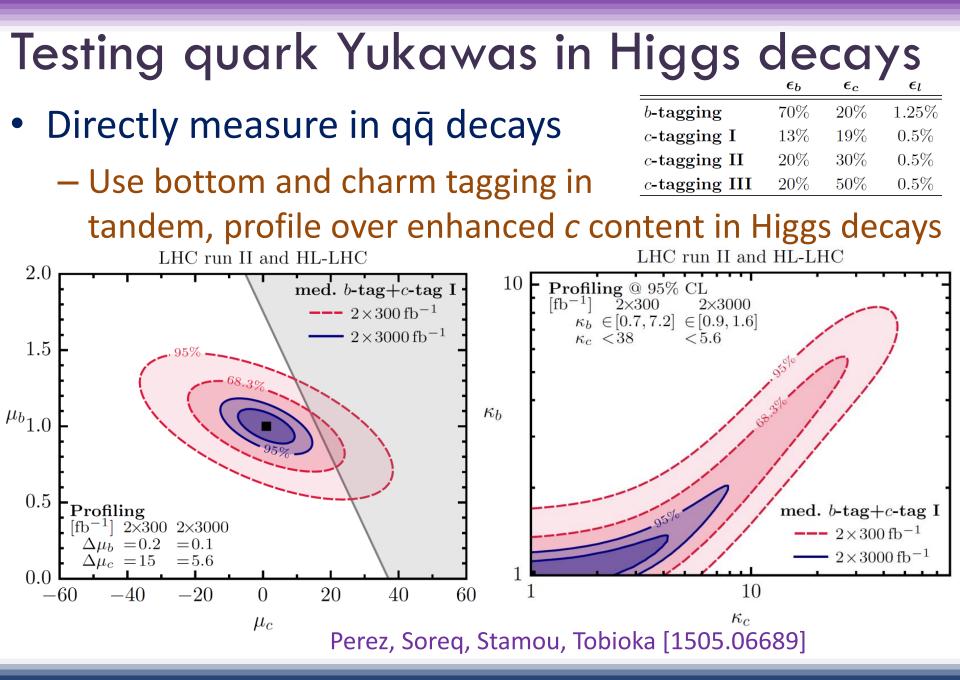
ATLAS Higgs WG, Combined Summary Plot



Curtin, et. al. [1312.4992]; FY [1404.2924]

- Recall that top Yukawa coupling provides leading contribution for Higgs production (y_t ≈ 1)
 - Theory uncertainty in ggF at N3LO is 4.6-6.7%
 - Enhanced light quark Yukawas can induce Anatasiou, et. al. [1602.00695]
 - New s-channel Higgs production modes
 - Associated Higgs+j modes
 - Interference in inclusive and exclusive ggF
 - Deviations in Wh charge asymmetry FY [1609.06592]
- Bottom Yukawa coupling provides leading contribution for Higgs decay ($y_b \approx 1/60$ at $\mu_R = 125$ GeV)
 - Growth in total Higgs width is an irreducible effect from enhanced light quark Yukawas

- Competition between enhanced production (leveraging quark PDFs) and depleted signal strength
 - Differentiates production-based probes vs. exclusive decays
 - Generally expect modifications to both total rates and differential distributions, if precision is attainable
- Production-based studies flesh out observable consequences of enhanced Yukawa coupling – agnostic to overall signal strength



Enhanced charm Yukawa in rare decays

- Indirectly measure in rare decays: *e.g.* $h \rightarrow J/\psi \gamma$
 - Yukawa contribution interferes with loop-induced vertex Isidori, Manohar, Trott [1305.0663]
 Kagan, Perez, Petriello, Soreq, Stoynev, Zupan [1406.1722]

Bodwin, Chung, Ee, Lee, Petriello [1406.1722] Bodwin, Chung, Ee, Lee, Petriello [1407.6695] Perez, Soreq, Stamou, Tobioka [1503.00290, 1505.06689] König, Neubert [1505.03870] Han, Wang [1704.00790]

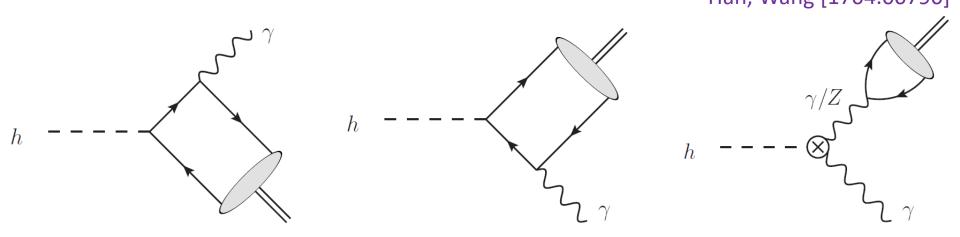
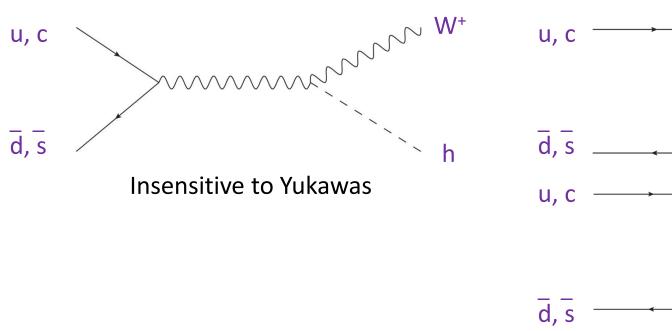


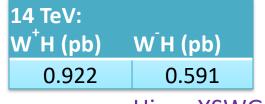
Fig. from König, Neubert [1505.03870]

Small SM rate	es, cl	ean f	final	state	
$\operatorname{Br}(h \to \phi \gamma) = (2$	2.31 ± 0.03	$f_{\phi} \pm 0.11_{h \to 0}$	$_{\gamma\gamma})\cdot 10^{-6}$	König, Neube	ert [1505.03870]
${ m Br}(h o J/\psi \gamma)$ =	$= (2.95 \pm 0)$	$.07_{f_{J/\psi}} \pm 0.0$	$0.06_{ m direct} \pm 0.12$	$(14_{h \to \gamma \gamma}) \cdot 10^{-6}$	
${ m Br}(h o \Upsilon(1S) \gamma)$	$) = (4.61 \pm$	$0.06_{f_{\Upsilon(1S)}}$ +	$^{1.75}_{1.21 m direct}\pm 0$	$(0.22_{h \to \gamma\gamma}) \cdot 10^{-9}$)
Branching fraction limit (95% CL)	Expected	Observed	ATLAS [18	807.00802]	
$\mathcal{B}\left(H\to J/\psi\gamma\right)\left[\ 10^{-4}\ \right]$	$3.0^{+1.4}_{-0.8}$	3.5	_	_	
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[10^{-4}\right]$	$15.6^{+7.7}_{-4.4}$	19.8			
$\mathcal{B}\left(Z\to J/\psi\gamma\right)\left[\ 10^{-6}\ \right]$	$1.1^{+0.5}_{-0.3}$	2.3			
$\mathcal{B}\left(Z \rightarrow \psi\left(2S\right)\gamma\right)\left[10^{-6}\right]$	$6.0^{+2.7}_{-1.7}$	4.5			
$\mathcal{B}\left(H \to \Upsilon(1S)\gamma\right)\left[\ 10^{-4} \ \right]$	$5.0^{+2.4}_{-1.4}$	4.9			
$\mathcal{B}\left(H \to \Upsilon(2S)\gamma\right)\left[\ 10^{-4} \ \right]$	$6.2^{+3.0}_{-1.7}$	5.9			
$\mathcal{B}\left(H \to \Upsilon(3S)\gamma\right)\left[\ 10^{-4} \ \right]$	$5.0^{+2.5}_{-1.4}$	5.7			
$\mathcal{B}\left(Z \to \Upsilon(1S) \gamma\right) \left[\begin{array}{c} 10^{-6} \end{array} \right]$	$2.8^{+1.2}_{-0.8}$	2.8			
$\mathcal{B}\left(Z \to \Upsilon(2S) \gamma\right) \left[\ 10^{-6} \ \right]$	$3.8^{+1.6}_{-1.1}$	1.7			
$\mathcal{B}\left(Z \to \Upsilon(3S) \gamma\right) \left[\ 10^{-6} \ \right]$	$3.0^{+1.3}_{-0.8}$	4.8	CMS	[1810.10056]	
		$(Z(H) \rightarrow J/\psi)$	γ) at 95% CL	$\frac{\mathcal{B}(Z (H) \rightarrow J/\psi\gamma)}{\mathcal{B}_{SM}(Z (H) \rightarrow J/\psi\gamma)}$	
Unpolarized 4.6 (5.	$3^{+2.3}_{-1.6})$	$1.4 \ (1.6^{+0.7}_{-0.5})$) × 10 ⁻⁶	15 (18)	
$Z \rightarrow J/\psi \gamma$ Transverse 5.0 (5.	$9^{+2.5}_{-1.7})$	$1.5 (1.7^{+0.7}_{-0.5})$	$) \times 10^{-6}$	16 (19)	
Longitudinal $3.9 (4.$	T • T 1	$1.2 (1.4^{+0.6}_{-0.4})$		13 (15)	17
$H \rightarrow J/\psi\gamma$ Transverse 2.5 (1.	(-0.5)	$7.6 (5.2^{+2.4}_{-1.6})$) × 10 *	260 (170)	1/

Quark Yukawas, W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by proton PDFs
 - Consider W⁺h:
 - (Unitarity violation requires NP completion)





Higgs XSWG

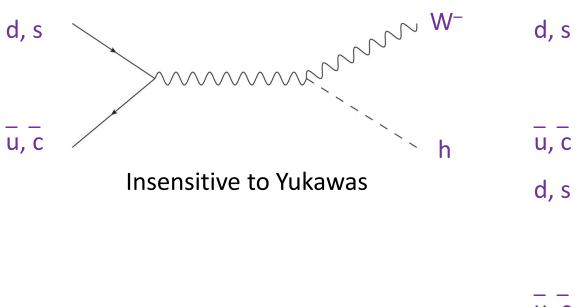
γ₁, γ_c

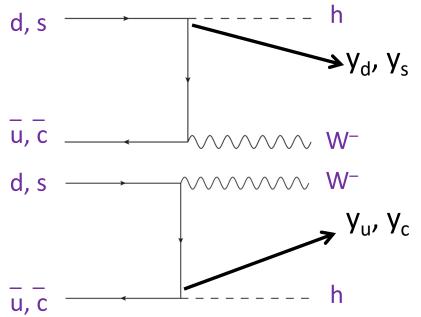
 y_d, y_s

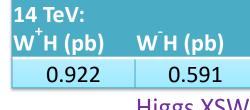
W+

Quark Yukawas, W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by proton PDFs
 - Consider W⁻h:
 - (Unitarity violation requires NP completion)

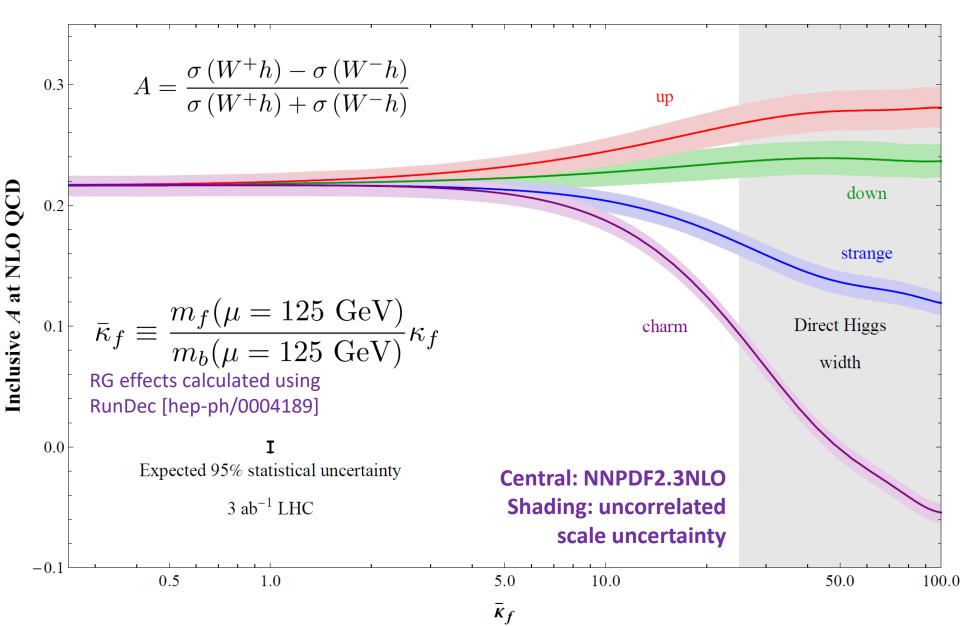




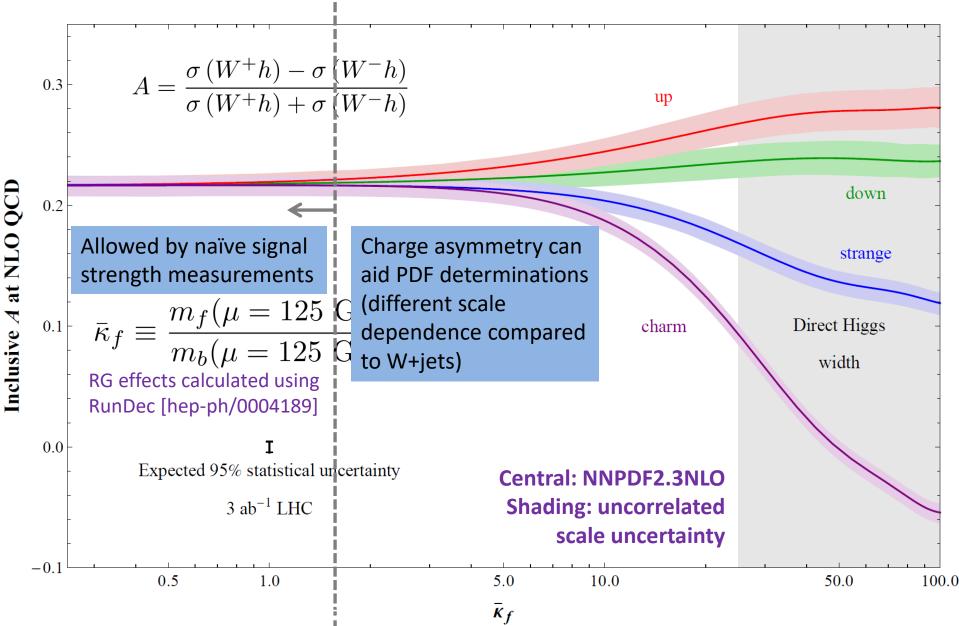


Higgs XSWG

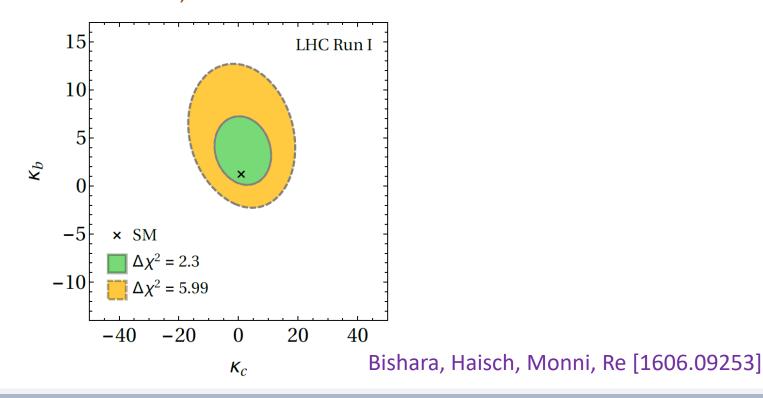
NLO Inclusive charge asymmetry



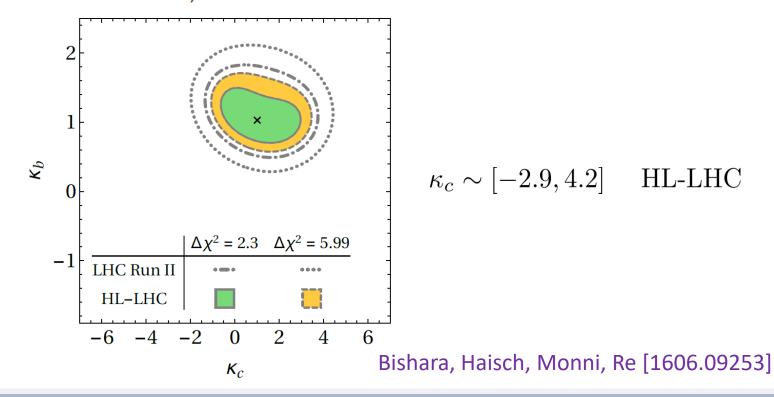
NLO Inclusive charge asymmetry



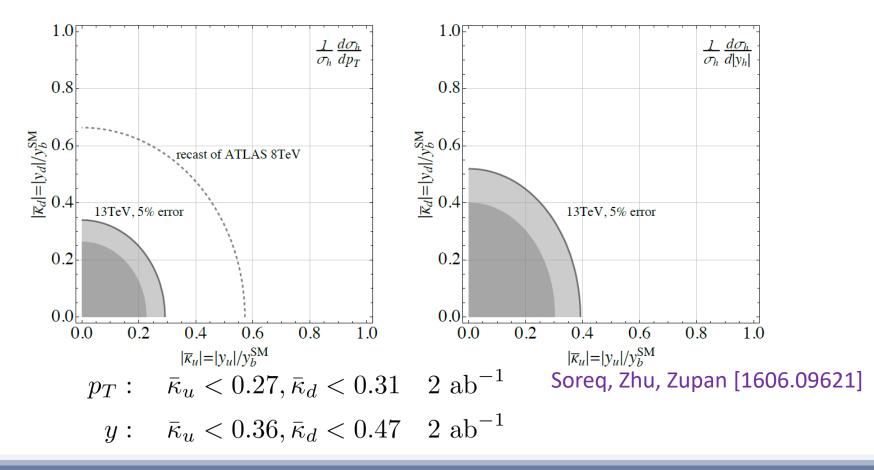
- Modifying light quark Yukawas changes interference effect with top Yukawa in ggF
 - Use normalized $p_{T,h}$ and leading jet p_T distributions



- Modifying light quark Yukawas changes interference effect with top Yukawa in ggF
 - Use normalized $p_{T,h}$ and leading jet p_T distributions



- Use normalized $p_{T, h}$ and y_h distributions
 - Continuing theory calculations needed to push uncertainties

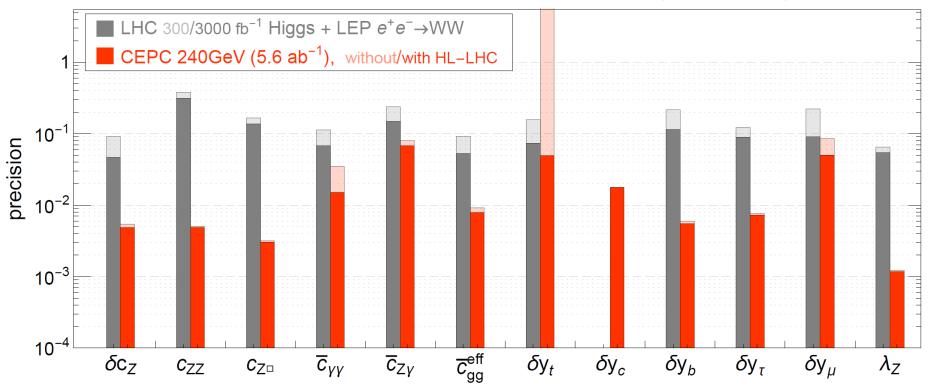


Future collider sensitivity

CEPC CDR [1811.10545]

• Much better sensitivity to charm and muon at e⁺e⁻ machine

precision reach of the 12-parameter EFT fit (Higgs basis)



Higgs FCNCs and Higgs CPV

- FCNCs
 - Recall LHC searches of $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$
 - LHC provides leading constraints on possible t→hc decays
 - Ibrahim, Itani, Nath, Zorik [1703.04457] • Clean e^+e^- environment can access $h \rightarrow bs$, bd decays
 - Barducci, Helmboldt [1710.06657]

- CPV
 - Observation of ttH invites study of Higgs CPV in top Yukawa coupling (apart from indirect constraint in eEDM)
 - Numerous possibilities for CPV in Higgs to taus
 - Harnik, Martin, Okui, Primulando, FY [1308.1094], refs. therein; – ATLAS estimates ±18° (aggressive), ±33° (conservative) at HL-LHC, assuming only stat. uncertainty ATL-PHYS-PUB-2019-008
- Higgs width studies also critical for quark Yukawas

Summary

- Huge variety of "SM zeroes" which can also be tested in Higgs physics
 - Light 2nd and 1st generation Yukawa couplings
 - Most studies focus on (HL-)LHC reach, selective attention on for future colliders
 - FCNCs, CPV studied in conjunction with low energy probes
- Higgs-Flavor program at Higgs factory still under progress
- NP flavor problem is a critical open question violation of SM flavor breaking pattern is generic
 - CPV connections with baryogenesis and EW phase transition
 - cf. possible connections with B-flavor anomalies?

Any κ≠1 discovery provides no-lose scenario for New Physics – ties discovery at Higgs factory with (very) high energy machine

CPV at dimension 6

$1: X^{3}$		2	$: H^6$	$3: H^4 D^2$				$5:\psi^2H^3+{\rm h.c.}$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \qquad 0$		$Q_H (H^{\dagger}H)^3$		(H^{\dagger})	$^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^\dagger H)(\bar{l}_p e_r H)$		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu})$	H) [*] (H^{\dagger})	$D_{\mu}H$	Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$		
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$										
	$4: X^{2}H^{2}$	$6:\psi^2 XH + \text{h.c.}$				$7:\psi^2H^2D$					
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	$(e_r)\tau^I HW$	$V^{I}_{\mu\nu} \qquad \qquad Q^{(1)}_{Hl}$			$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$			
$Q_{H\widetilde{G}}$	$H^{\dagger}H {\widetilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^\mu$	$^{\nu}e_{r})HB_{\mu}$	ν	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$(T^A u_r) \widetilde{H} $	$G^A_{\mu u}$	Q_{He}	:	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\tau^I \widetilde{H} V$	$V^{I}_{\mu u}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$		
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^\mu$	$^{\nu}u_r)\widetilde{H}B_{\mu}$	ιν	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) H 0$	$G^A_{\mu u}$	Q_{Hu}	ı	$(H^{\dagger}i\overleftarrow{L}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$		
Q_{HWB}			$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$			Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$			
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^\mu$	$^{\nu}d_{r})HB_{\mu}$	ιν	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$		
$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$				$8:(\bar{L}L)(\bar{R}R)$					
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_e	e (\bar{e}_j)	$_p\gamma_\mu e_r)(\bar{e}_s$	$\gamma^{\mu}e_t)$	Q_{le}	($\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$(s_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_u	u (\bar{u}_{p})	$(\bar{u}_s \gamma_\mu u_r)(\bar{u}_s)$	$(\gamma^{\mu}u_t)$	Q_{lu}	($\bar{l}_p \gamma_\mu l_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$\left(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)\right)$	Q_d	(\bar{d}_l)	$_{p}\gamma_{\mu}d_{r})(\bar{d}_{s})$	$\gamma^{\mu}d_t)$	Q_{ld}	($\bar{l}_p \gamma_\mu l_r) (\bar{d}$	$(s_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_e	u $(\bar{e}_{j}$	$(\bar{u}_s \gamma_\mu e_r)(\bar{u}_s)$	$\gamma^{\mu}u_t)$	Q_{qe}	(0	$\bar{q}_p \gamma_\mu q_r)(\bar{\epsilon}$	$\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_e	d $(\bar{e}_{j}$	$_{p}\gamma_{\mu}e_{r})(\bar{d}_{s})$	$\gamma^{\mu}d_t)$	$Q_{qu}^{(1)}$	(ġ	$\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$u_s \gamma^\mu u_t$)		
		$Q_u^{(i)}$	(\bar{u}_{l})	$_{p}\gamma_{\mu}u_{r})(\bar{d}_{s})$	$_{s}\gamma^{\mu}d_{t})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_p)$	$_{\mu}T^{A}q_{r})(\bar{v}$	$\bar{u}_s \gamma^\mu T^A u_t$		
		$Q_u^{(i)}$	$d^{(3)} = (\bar{u}_p \gamma_\mu)^{(3)}$	$T^A u_r)(\bar{d}_s$	$\gamma^{\mu}T^{A}d_{t})$	$Q_{qd}^{(1)}$	(ē	$\bar{q}_p \gamma_\mu q_r)(\dot{c}$	$\bar{l}_s \gamma^\mu d_t)$		
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma)$	$_{u}T^{A}q_{r})(d$	$\bar{l}_s \gamma^\mu T^A d_t)$		
	$8:(\bar{L}R)(\bar{L}R)$	$(\overline{R}L) +$	h.c.	8:(1	$(\bar{L}R)(\bar{L}R)$ -	+ h.c.					
	Q_{ledq} (\bar{l}_{j})	(\bar{d}_s)	(q_{tj}) ζ	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_j$	$_{jk}(\bar{q}_s^k d_t)$					

 $Q_{quqd}^{(8)}$

 $Q_{lequ}^{(1)}$

 $Q_{lequ}^{(3)}$

 $(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$

 $(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$

 $(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

Alonso, Jenkins, Manohar, Trott [1312.2014]

Phenomenological perspective

- SM is entirely predictive for a huge range of possible Higgs production and decay channels
 - Yukawa-mediated two-body decays
 - bb, cc, $\tau\tau$, $\mu\mu$, ee (tt, ss, uu, dd) Test Yukawa patterns, CPV phases
 - Vector coupling-induced decays
 - 4l, lvlv, lvqq
 Test EWSB, probe VV unitarization, additional Higgs states, CPV
 - Loop-induced decays
 - gg, γγ, Ζγ
 - Rare decays
 - J/ψ γ, Υγ, φγ

- Test new colored states, new EM charged states Mass generation/mixing of new matter
 - Test Yukawa couplings, loop-induced couplings

Suite of Higgs modes to study

– EW dibosons

See, e.g. Anderson, et. al. [1309.4819]

- Probe in both decays and production, especially VBF and VH (using crossing symmetry)
- Part of general study of differential distributions to test momentumdependent form factors

– ttH See, e.g. Buckley, Goncalves [1507.07926]

- Dileptonic tt final state with $H \rightarrow bb$ jet substructure
- -ZvFarina, Grossman, Robinson [1503.06470]
 - Take advantage of interference between continuum background and signal • from gluon initiated events
- gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322]
 - Use associated jets for angular analysis
- $-\gamma\gamma$ Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955]
 - Require converted photons (detector material) and angular resolution on leptonic opening angles
- bb, cc, etc. Galanti, Giammanco, Grossman, Kats, Stamou, Zupan [1505.02771]
 - Can possible overcome QCD wash-out of quark polarization

CPV in HVV interactions at future colliders

• Comparison for e⁺e⁻ and pp

TABLE III: List of f_{CP} values in HVV couplings expected to be observed with 3σ significance and the corresponding uncertainties δf_{CP} for several collider scenarios, with the exception of $V^* \to VH$ mode at pp 300 fb⁻¹ where the simulated measurement does not quite reach 3σ . Numerical estimates are given for the effective couplings Hgg, $H\gamma\gamma$, $HZ\gamma$, HZZ/HWW, assuming custodial Z/W symmetry and using HZZ couplings as the reference. The \checkmark mark indicates that a measurement is in principle possible but is not covered in this study.

			HZZ/HWW							gg	$HZ\gamma$	H'	$\gamma\gamma$
collider	energy	\mathcal{L}	$H \to V$	VV^*	$V^* \to VH$		$V^*V^* \to H$		$gg \to H$		$H\to Z\gamma$	$\gamma\gamma \to H$	$H\to\gamma\gamma$
	${\rm GeV}$	fb^{-1}	f_{CP} $\delta_{.}$	f_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}			
pp	14000	300	0.18 0	0.06	6×10^{-4}	4×10^{-4}	18×10^{-4}	7×10^{-4}	—	0.50			
pp	14000	3000	0.06 0	0.02	$3.7\times\!10^{-4}$	$1.2\times\!10^{-4}$	4.1×10^{-4}	1.3×10^{-4}	0.50	0.16	\checkmark		\checkmark
e^+e^-	250	250	\checkmark		21×10^{-4}	7×10^{-4}	~	/					
e^+e^-	350	350	\checkmark		3.4×10^{-4}	1.1×10^{-4}	~	/					
e^+e^-	500	500	\checkmark		11×10^{-5}	4×10^{-5}	~	/					
e^+e^-	1000	1000	\checkmark		20×10^{-6}	8×10^{-6}	~	/					
$\gamma\gamma$	125		\checkmark									\checkmark	

Anderson, et. al. [1309.4819]