Technologies in ILC detectors

Taikan Suehara （Kyushu University）

Taikan Suehara，KAIST－KAIX Workshop for Future Particle Accelerators，11th Jul．2019，page 1

Timeline of ILC towards realization

 $2018.12 \quad 2019.3 \quad 2020.5$Government Level

MEXT panel	Summarize opinions of relevant ministries

SCJ committee on ILC

Establish KEK International WG

 Produce draft for international sharing of human and material resources

Discussion among governments Exchange of information
Strengthen US-Japan Discussion Group, cost reduction R\&D, governance discussion

Establish Discussion Group with the European partners

Next Roadmap by MEXT

Physicists Level

Draft proposal by researchers on international cost sharing

Talks with other countries
Good enough design for the final approval of construction, resolution of remaining technical issues
Agreement on governance, operation, sharing of cost and human resources

Full-scale negotiation among governments - specification of conditions and processes

M. Yamauchi, KEK DG

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, 11th Jul. 2019, page 2

Discussions at Granada etc.

All $1^{\text {st }}$ gen Higgs factories have "competitive" performance

- A few times more lumi in circular
- Polarization in linear
\# of "largely" improved H couplings (EFT)

		Factor $\geqslant 2$	Factor ≥ 5	Factor ≥ 10	Years from T_{0}
Initial run	CLIC380	9	6	4	7
	FCC-ee240	10	8	3	9
	CEPC	10	8	3	10
	ILC250	10	7	3	11
$2^{\text {nd }} / 3 \mathrm{rd}$ Run ee	FCC-ee365	10	8	6	15
	CLIC1500	10	7	7	17
	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh \& hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total NB: number of seconds/year differs: ILC 1.6×10^{7}, FCC-ee \& CLIC: 1.2×10^{7}, CEPC: 1.3×10^{7} $\mathrm{e}^{+} \mathrm{e}^{-}$collider is the next way to go! - Linear has energy upgrade - Circular can be a step for pp The ILC is the earliest machine if Japan will go timely... we'll see, but strong worldwide support incl. Korea necessary.

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, $11^{\text {in }}$ Jül. 2019, page 3

PFA detector: like HR camera

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, 11th Jul. 2019, page 5

PFA detector: like HR camera

PFA is not only for improving jet energy resolution but we can get "additional dimension" of the events to unveil the nature of the terascale physics!

One example: CALICE sees deviation of shower profile from MC

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, 11th Jul. 2019, page 6

Ingredients of PFA detectors

- Vertex detector
- Tracking (barrel / forward)
- Silicon
- TPC

- Very Forward
- ECAL
- HCAL
- Muon

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, 11th Jul. 2019, page 7

Silicon strips

10 cm

$\sigma_{R} \sim 7-10 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$ pitch Material ~ 0.5 \% X_{0} / layer

First SiD silicon tracker was fabricated with two KPiX ASICs (1024 ch each)

Preparing to be used for AIDA telescope in DESY

Technology of strip mature good for baseline, starting realistic prototyping

Concurrent event with tracker

+ ECAL seen
Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, 11th Jul. 2019, page 8

Time Projection Chamber

 $\sigma \sim 60 \mu \mathrm{~m}, \sim 200$ hits Material ~ a few \% X_{0}

Gating foil for avoiding ion going back to TPC High optical aperture realized by cooperation with industry

Prototype TPC

Taikan suehasurement for particle ID

Silicon-tungsten ECAL

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, $11^{\text {th }}$ Jul. 2019, page 10

Korea－France cooperation for SiW－ECAL electronics

－LAL \＆OMEGA collaboration with ITAEC／SKKU （Sungkyunkwan University，Suwon－Korea）and EOS company for the PCB production．
－ 10 FEV11＿COB produced．
－ 1.2 mm thickness $\rightarrow 9$ layers PCB！
－Good Planarity（metrology made in LAL）and electrical response．
－ 4 boards wirebonded at CERN bonding lab．Also In contact with CAPTINNOV Platform．

Taikan Suehara，KAIST－KAIX Workshop for Future

ECAL with strip scintillators

New $15 \mu \mathrm{~m}$ MPPC

HCAL

reflector wrapping machine

Automatic assembly system developed

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, $11^{\text {th }}$ Jul. 2019, page 13

More advanced: 3D to 4D/5D

Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, $11^{\text {th }}$ Jul. 2019, page 14

Particle ID by dE/dx and ToF

K / π separation by $\mathrm{dE} / \mathrm{dx}$ and ToF

- dE/dx: a few - a few tens GeV
- ToF: < 5-10 GeV

Silicon with avalanche gain (LGAD) can be a fast timing detector ~ 20 psec

Studies ongoing

Timepix3 for monolithic TPC readout
Taikan Suehara, KAIST-KAIX Workshop for Future Particle Accelerators, $11^{\text {th }}$ Jul. 2019, page 15

Final comments

- We are working hard for the realization of ILC
- Physics case is competitive for all Higgs factories
- Detector technologies are being finalized
- Need studies on mass production/quality control
- New ideas are coming and further welcomed
- PFA detector is a "big data" detector
- Scientists of artificial intelligence are curious we are trying to get close collaboration with them
- Worldwide support is essential
- Japan needs clear view for prospects of the project

