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Introduction

Detailed studies of detector optimisation 
and physics potential available for CLIC 

• Introduction: CLIC, energy staging, 
experimental conditions, detector concept

• Software chain and detector performance

• Example physics benchmark studies
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The Compact Linear Collider (CLIC)

Compact Linear Collider (CLIC):
• Based on 2-beam acceleration scheme
• Operated at room temperature
• Gradient: 100 MV/m
• Energy: 380 GeV - 3 TeV
• Length: 50 km (for 3 TeV)
• P(e−) = ±80%
• Upgrades could benefit form novel approaches (dielectric structures, PWFA, ...)
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CLIC staged implementation

CERN-2018-005-M
arXiv:1812.01644

CLIC would be implemented 
in several energy stages

Current baseline scenario:

• The strategy can be adapted to 
possible discoveries at the (HL-)LHC
or the initial CLIC stage(s)

• 1 year = 1.2 x 107 seconds
(based on CERN experience)
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CLIC experimental conditions
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Beam-induced backgrounds

• e+e- pairs
• γγ → hadrons

e+e- pairs:
High occupancies
→ Detector design issue
(small cell sizes)

γγ → hadrons
Main background
in calorimeters and trackers
→ Impact on physics
(needs suppression in the data)
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Detector requirements

  pT 

pT
2 ~2×10−5GeV −1

σ (E )
E

∼3.5 % for E>100GeV

σ (d 0)=√a2+b2⋅GeV 2/( p2 sin3θ ) , a≈5μ m ,b≈15μm

• Momentum resolution
(e.g. Higgs recoil mass, H → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging
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CLIC detector concept

• Ultra low-mass
vertex detector
with ≈ 25 x 25 μm2

pixels

• Main trackers:
silicon-based
(large pixels / short strips)

• Fine grained (PFA) 
calorimetry, 1+7.5 λ

• Strong solenoid magnet (4 T)

• Complex forward region 
with compact calorimeters

• Instrumented return yoke for muon ID

CLICdp-Note-2017-001
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Calorimetry and PFA
Detector design driven by jet energy resolution and background rejection
→ Fine-grained calorimetry + particle flow analysis (PFA)

What is PFA?
Typical jet composition:
• 60% charged particles
• 30% photons
• 10% neutral hadrons

Always use the best
available measurement:
• charged particles
→ tracking detectors:
• photons → ECAL:
• neutrals → HCAL:

Hardware and software!
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Background suppression
Beam-induced background from γγ → hadrons can be efficiently suppressed by
applying p

T
-dependent timing cuts on individual reconstructed particles (= particle flow objects)

e+e− → tt at 3 TeV with background from γγ → hadrons overlaid
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Simulation software chain

André Sailer
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Main tool for event generation: WHIZARD

WHIZARD 1.95 (and earlier versions) used since a long time for LC physics studies
(including CLIC CDR and ILC TDR)

Recently switched to WHIZARD 2.x:

• Automatic generation of matrix elements for 
arbitrary processes in e+e−, e±γ, γγ collisions

• Beamstrahlung spectra via CIRCE2 interface 
or beam-beam event files

• Lepton collider ISR structure functions, EPA

• Arbitrary beam polarisation

• Output event formats: LCIO 
(also HepMC, LHEF, StdHEP, …)

• Using other generators for specific purposes 
(PYTHIA, PHYSSIM, ...)

https://whizard.hepforge.org/

CERN-2018-005-M

https://whizard.hepforge.org/
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Geometry description (DD4hep)

André Sailer
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Tracking

Emilia Leogrande
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Particle flow analysis

André Sailer
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Distributed computing

André Sailer
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CLICdet performance in full simulation: tracking

Transverse momentum resolution of 
2 x 10−5 GeV−1 achieved for high-energy 
tracks in the central part of the detector

Momentum resolution Displaced tracks

arXiv:1812.07337
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CLICdet performance in full simulation: PFA

Jet energy resolution Hadronic W and Z decays

→ Physics projections are based
on realistic full detector simulations and

include the impact of beam-beam effects 

arXiv:1812.07337

Jet energy resolution with pile-up at 
the 3 TeV CLIC stage
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Fast simulation

Ulrike Schnoor
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Example full simulation studies:

Higgs and top physics with
emphasis on reconstruction
challenges and high energy
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Single Higgs production

Higgsstrahlung: e+e− → ZH
• σ ~ 1/s, dominant up to ≈ 500 GeV
• Model-independent measurement of σ(ZH) 
at 380 GeV

WW fusion: e+e− → Hv
e
v

e

• σ ~ log(s), dominant above 500 GeV
• Large statistics at high energy

ttH production: e+e− → ttH
• Accessible ≥ 500 GeV, maximum ≈ 800 GeV
• Direct extraction of the top-Yukawa coupling
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Flavour tagging: H → bb/cc/gg at √s = 350 GeV

Simultaneous extraction of:
• Three decay modes: bb/cc/gg 
→ precise flavour tagging
• Two production modes: 
ZH and WW fusion 
→ Higgs p

T
 spectrum

Eur. Phys. J. C 77, 475 (2017)

CLIC, √s = 350 GeV, L = 1 ab−1, no polarisation

H→bb H→cc H→gg

0.61 %
10 %
4.3 %

1.3 %
18 %
7.2 %

Uncertainties on σ x BR
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Top Yukawa coupling

→ σ(ttH) is directly 
sensitive to the top 
Yukawa coupling g

ttH

g
ttH

2

Most important final states:
e+e− → ttH → qqblνbbb
e+e− → ttH → qqbqqbbb
→ Roughly similar sensitivity

CLIC, √s = 1.4 TeV, L = 2.5 ab−1

Δgg
ttH

/g
ttH

 = 2.9%

arXiv:1807.02441

• Sensitivity to CP mixing
in the ttH coupling from 
σ(ttH)

• Differential distributions 
provide further 
improvement

−igttH (cosϕ +i sinϕ γ 5)

ttH → bbbbqqτ−ν
τ

at CLIC (1.4 TeV)

sin2ϕ

Δg
si

n2
ϕ
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Higgs and WW production
in 10 TeV e+e− collisions 

CERN-2018-005-M

→ New physics scales 
well beyond the 
centre-of-mass energy
can be reached

The 10 TeV projections 
were scaled from 3 TeV
(assuming the same
luminosity spectrum)
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Double Higgs production
e+e− → ZHH:
• Cross section maximum around 600 GeV

e+e− → HHv
e
v

e
:

• Benefits from high-energy operation

Both processes provide complementary 
information:

→ The ambiguity in the extraction of g
HHH

 from 
σ(HHv

e
v

e
) can be broken using differential 

distributions and / or σ(ZHH) at 1.4 TeV
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Higgs self-coupling measurements
• HH→bbbb is the “golden channel” at CLIC, combination with HH→bbWW* 
leads to marginal improvement

arXiv:1901.05897NB: ZHH not full simulation yet

Template fit at 3 TeV
uses two variables: M(HH) and BDT score

1.4 TeV 3 TeV

σ(HHHHν
e
νe) > 3σ EVIDENCE

Δσ/σ = 28%
> 5σ OBSERVATION

Δσ/σ = 7.3%

σ(HHZHH) > 5σ 
OBSERVATION

g
HHH

/g
HHH

SM 1.4 TeV:
-34% +36%

rate only

1.4 & 3 TeV:
-7% +11%

differential analysis
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Boosted top reconstruction
e+e− → tt → qqqqbb at √s = 3 TeV • Hadronic decays of high-energy 

top quarks do not lead to three 
well-separated jets

• Instead, reconstruction of the top 
in a “large” jet and identification of 
substructure compatible with 
t → Wb → qqb

• Studied ≈10 years for the LHC, 
new and active effort for CLIC 
including different approaches

• Boosted H→bb also under study

Example:
• John Hopkins top tagger
• High efficiency achieved in physics 
analyses (also due to moderate backgrounds in 
e+e− collisions)

arXiv:1807.02441
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EFT analysis of tt production at CLIC

• A global fit requires at least one high-energy stage in addition to 380 GeV operation
• High-energy operation dramatically improves the sensitivity for 
certain (“four-fermion”) operators

arXiv:1807.02441

Bars:
global fit

Ticks:
individual 
operators
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Much more information

https://clic.cern/european-strategy

https://clic.cern/european-strategy
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Summary and conclusions

• The CLICdet detector model is optimised to study e+e− collisions 
up to 3 TeV in the CLIC experimental conditions

• The corresponding software chain is validated for physics studies from 
Geant4 simulation to user analysis, access to distributed resources 
via (iLC)Dirac

• CLIC energy-staging → optimal for physics:

380 GeV: Optimised for precision SM Higgs and top physics
1.5 TeV & 3 TeV: Best sensitivity for new physics searches,

rare Higgs processes and decays

• Lots of potential synergies with muon collider studies 
(already visible this morning)
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Backup slides
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Studies of high-energy e+e− colliders

Compact Linear Collider (CLIC): CERN
√s = 380 GeV, 1.5 TeV, 3 TeV
Length: 11 km, 29 km, 50 km 

Future Circular Collider (FCC-ee): CERN
√s = 90 - 365 GeV

Circumference: 97.75 km

International Linear Collider (ILC): 
Japan (Kitakami)

√s = 250 - 500 GeV
Length: 20 km, 31 km 

Circular Electron Positron Collider
(CEPC): China

√s = 90 - 240 GeV
Circumference: 100 km
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Comparison to other e+e− collider options

Linear colliders:
• Can reach the highest energies
• Luminosity rises with energy
• Beam polarisation at all energies
• Potential to benefit from novel 
accelerator techniques

Circular colliders:
• Large luminosity at 
lower energies
• Luminosity decreases 
with energy

NB: Peak luminosity at 
LEP2 (209 GeV) was ≈ 1032 cm−2s−1
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Detector simulation

André Sailer
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Compositeness at CLIC
Composite Higgs Composite top

m
*
: compositeness scale

g
*
: coupling strength of the composite sector

Discovery of Higgs compositeness scale up to 10 TeV (40 TeV for g
*
 ≈ 8)

Discovery of top compositeness scale up to 8 TeV (20 TeV for small g
*
)

CERN-2018-009-M
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