Proton Driver Considerations

Muon Collider - Preparatory Meeting, CERN, 11th April 2019

- Requirements and Proton Driver Candidates
- Muon Flux per Proton Beam Power versus Proton Energy
- Proton Driver Proposals
 - CERN SPL with Accumulator and Compressor Rings
 - FNAL MAP with 8 GeV H⁻ Linac with Accumulator and Compressor Rings
 - RAL Scheme with 0.8 GeV H⁻ Linac followed by two RCSs
 - Based on ESS adding Accumulator and Compressor Rings
- Summary

C. Carli

No very recent papers on proton drivers found (Muon cooling & acceleration considered more challenging aspect for μ -collider?)

Requirements and Proton Driver Candidates for Neutrino Factories and Muon Colliders

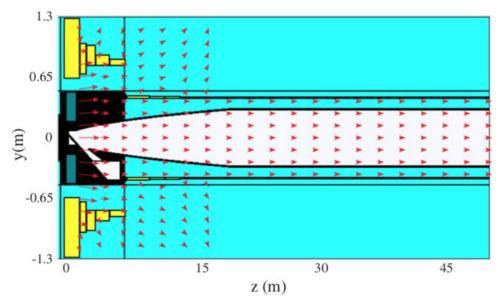
Typical requirements

Parameter	Value	Comments
Beam Power	1 to 4 MW	Higher beam power typically for MC
Beam Energy	a few GeV (say 2 to 12 GeV)	Muon flux normalized to beam power @2GeV?
Repetition Rate	15 to 50 Hz	Lower repetition typically for MC
Number of bunches	3 to 6	To be combined to one bunch for MC
Rms Bunch Length	2 to 3 ns	
Bunch spacing		Some limitations depending on target type

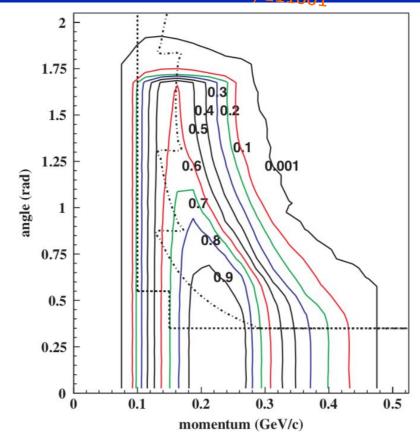
Number of useful muons per proton normalized to beam energy (valid for energy range – at least from 5 to 15 GeV)

$$\frac{h}{E} = \frac{0.013}{\text{GeV}} = \frac{8.1 \times 10^{13}}{\text{MJ}} = \frac{8.1 \times 10^{13} \,\text{s}^{-1}}{\text{MW}} = \frac{10^{21}}{(12\ 400\ 000\ \text{s}) \times \text{MW}}$$

Candidates

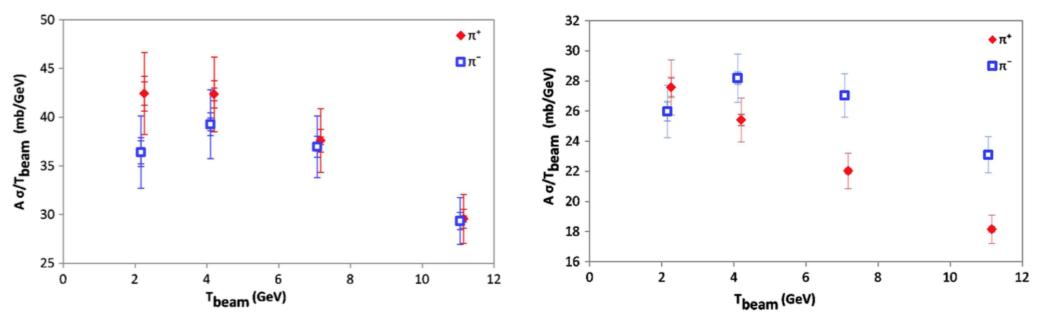

- □ Full Energy H⁻ Linac with accumulator and compressor ring
- □ H⁻ Linac with Rapid Cycling Synchrotron(s) (possibly two in parallel)
- □ H⁻ Linac with FFAGs
- □ H⁻ Linac and a combination of RCS and FFAG ...

Muon Flux per Proton Beam Power versus Proton Energy


From J. Strait et al "Towards the optimal e of the proton driver for a neutrino factor muon collider", PRSTAB 13, 111001

- Cross section for incident proton to generate useful muon at frontend exit based on
 - Pion production (differential) cross sections measured by HARP (evaluations from two sub-groups lead to two slightly different results) for Ta

□ Acceptance of front-end optimized for 16 GeV (higher than energy of most muon frontend proposals)

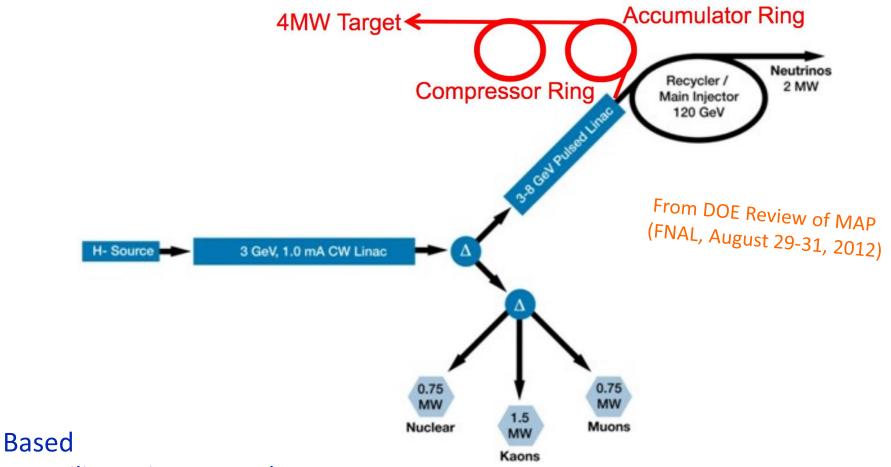

Front-end "acceptance": probability that a pion at the target leads to useful muon at the exit of the front-end

Dashed lines: regions with availability of muon production cross sections measured by HARP

Muon Flux per Proton Beam Power versus Proton Energy

- Result: cross section for generation of useful muon normalized to energy
 - \Box Typical value σ/E = 30 mb/GeV, but significant differences depending on which pion cross section result is used, some variations with energy

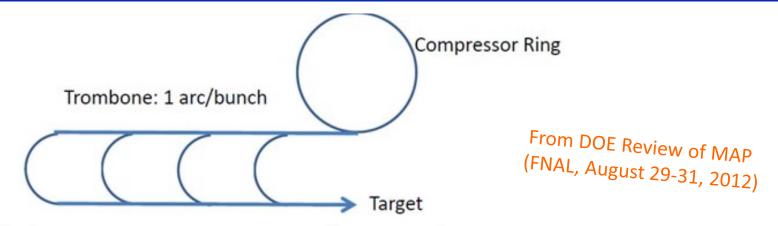
 \Box Yield given by $\frac{h}{E} = \frac{S}{E}nl$ with *n* the number of nuclei per volume and *l* the target length


□ For mercury (pion production cross sections close to Ta) with A = 200.6, ρ = 13.5 G/cm³ and thus n = 4.1 10²⁸ m⁻³, the length*l* to find *h*/*E* = 0.013 is given by

$$l = \frac{h/E}{n(S/E)} = 8 \text{ cm}$$

Proton Driver Proposals

FNAL MAP with 8 GeV H- Linac with Accumulator and Compressor Rings

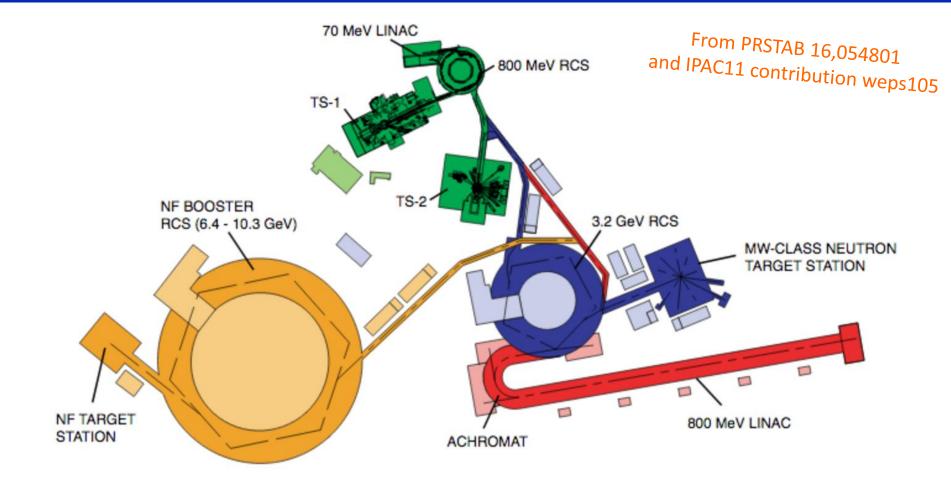


- □ Facility serivng several users
- Accumulator and compressor rings added for muon collider
- \Box H⁻ beam current increased to 5 mA

Proton Driver Proposals

FNAL MAP with 8 GeV H- Linac with Accumulator and Compressor Rings

Muon Collider Proton Driver Trombone Schematic

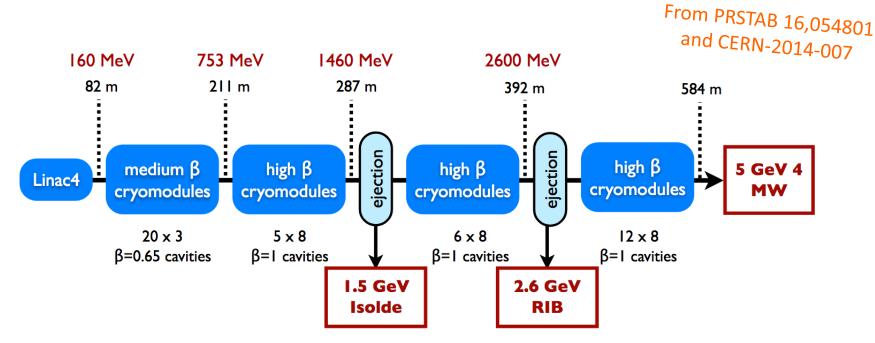

(not to scale; bunches arrive simultaneously on target)

Different version of accumulator & compressor rings designed by different people

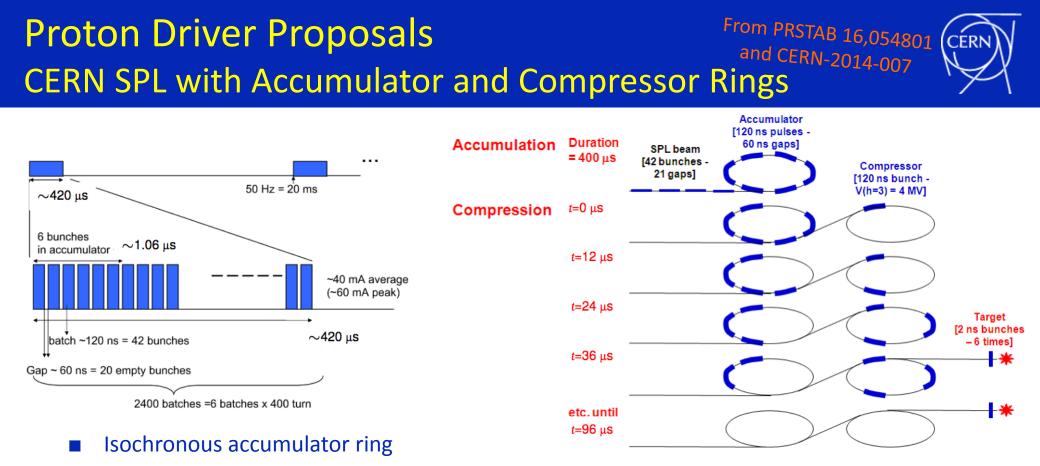
- Accumulator with moderate RF voltage and far from transition
- □ Compressor with large (120 kV) RF voltage close to transition to generate short bunches
- Combiner after extraction out of compressor ring
 - Combination of four bunches extracted from compressor to one bunch on target
 - Different path lengths such that bunches arrive simultaneously
 - Different incidence angles for different bunches
 - □ (Scheme useful to adopt any neutrino factory proton driver to muon collider)

Proton Driver Proposals RAL Scheme with 0.8 GeV H- Linac followed by two RCSs

- Proposal combining a spallation source (2 to 3.3 MW) and a 4 MW neutrino factory proton driver (could be adapted for muon collider by adding bunch merging section)
- Linac followed (for neutrino factor proton driver) by two Rapid Cycling Synchrotrons (RCS)

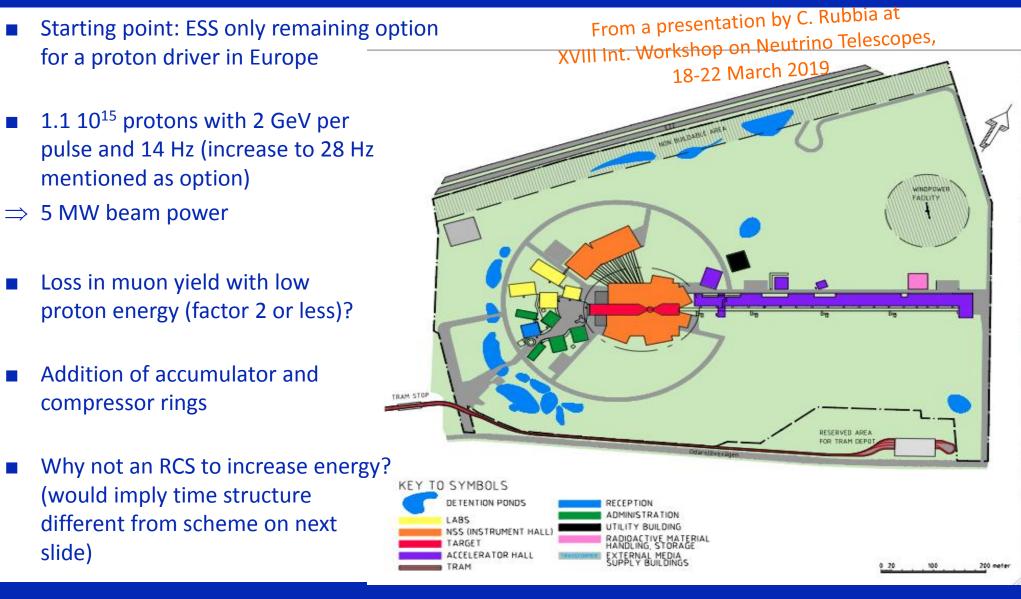


From PRSTAB 16,054801 and IPAC11 contribution weps105


- Common to spallation and proton driver
 - 800 MeV H⁻ Linac and 3.2 GeV RCS running with 50 Hz
 (5 or 9 bunches, different versions for beam intensities and bunch sharing)
 - □ 2 MW to 3.3 MW on spallation target
- Only for NF proton driver
 - □ Second RCS "Neutrino Factory Booster" running with 50 Hz
 - □ Aim is 4 MW on target
 - □ Typically two or three bunches (machine partially filled)
 - maximum energy between ~4 GeV and 10 GeV
 (depending on number of bunches, intensity per bunch ..)
 - Bunch compression envisaged towards end of acceleration (possibly bunch rotation) in RCS

Proton Driver Proposals CERN SPL with Accumulator and Compressor Rings

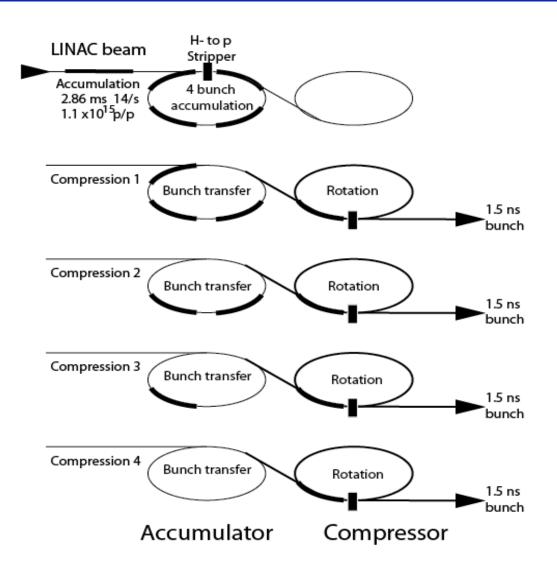
- Full energy 5 GeV H⁻ Linac SPL
 - □ 50 Hz repetition rate (baseline, but flexible design?)
 - □ Versions with 20 mA and 40 mA beam current (average after chopping)
 - Accumulator and compressor ring designed for neutrino factory (special extraction sequence)



- No RF needed, longitudinal space charge impedance not an issue (energy change of head and tail of bunch acceptable)
- Detailed simulations on bunch compression: final rms bunch length of 2 ns
- Compressor ring slightly shorter than accumulator to generate time structure for neutrino factory (irrelevant for muon collider)
- Some investigations on transvers and longitudinal impedances and instabilities
 - □ Scheme feasible at least for the short durations the beam stays in the rings

Proton Driver Proposals

Based on ESS adding Accumulator and Compressor Rings



Proton Driver Proposals Based on ESS adding Accumulator and Compressor Rings

- Rings with ~35 m radius
- Accumulator ring filled with 14 Hz repetition rate
- Accumulator to compressor transfers with 4x14 Hz up to 54 ms

From a presentation by C. Rubbia at XVIII Int. Workshop on Neutrino Telescopes, 18-22 March 2019

Summary, comments ...

- Proton driver needed closer to existing facilities than other key ingredients of muon collider
 - □ ... or rather less unknown territory?
 - □ Extrapolation from facilities as SNS, ESS, Project X ...
 - Recent reports on muon colliders contain little information on proton drivers
- Different variants (full energy Linac with accumulator/compressor, different versions of Linacs combined with rings for acceleration) proposed
 - □ Optimum solution?
 - □ (feasibility, cost)?
- Topics for further studies
 - Instabilities and collective effects in particular for rings
 - □ Beam loss, collimation and machine activation (unwanted H⁻ stripping at high energies)
 - Optimum proton driver beam energy (muon yield, required power, cost, reliability ..), repetition rate (function of muon collider energy?)
 - □ H⁻ Injection into ring with high beam energies (foil, optimisation, feasibility of laser stripping? ...)