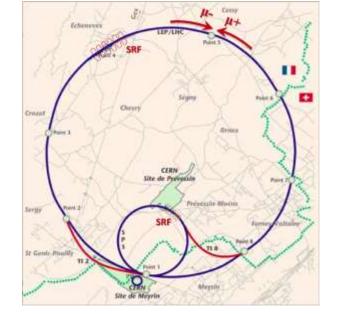


Fast Acceleration of Muons:

RCS as accelerator and as collider ring, HTS magnet R&D

Vladimir SHILTSEV (Fermilab) Muon Collider – EPPSU Preparatory Meeting, CERN 11 April 2019


Muon Collider : Where's the cost hidden?

- ee linear
 - ILC
 - CLIC
- ee circular
 - -LEP3
 - FCC-ee
 - CepC
 - HF-FNAL

Cost Considerations : eg 14 TeV

- reuse the existing 27 km LHC tunnel, the 7 km SPS tunnel and most of CERN infrastructure.
- Beyond that only very rough estimates (so called "αβγ-law")

Total Project Cost $\approx \alpha \times (Length/10km)^{1/2} + \beta \times (Energy/TeV)^{1/2} + \gamma \times (Power/100MW)^{1/2}$

- the incremental cost : "PS" configuration 2B\$ × sqrt(14TeV of SC magnets) +10 B\$× sqrt(0.02TeV of SRF)=8.9±3 B\$.
- "MAP" configuration : extra ~10B\$xsqrt(0.008 TeV of SRF)+ 2B\$xsqrt(0.2 for 20 MW)=1.8±0.6 B\$.
- "LEMC" configuration : extra ~1B\$×sqrt(0.045 TeV e+ ring)+ 10B\$×sqrt(0.001 TeV SRF) + 2B\$× sqrt(2.5 250 MW power)=3.6 ± 1.2 B\$
 On the feasibility of a pulsed 14 TeV c.m.e. muon collider in the LHC tunnel

3 4/11/2019 Shiltsev | MuMu RCS and Magn D. Neuffer and V. Shiltsev 2018 JINST 13 T10003

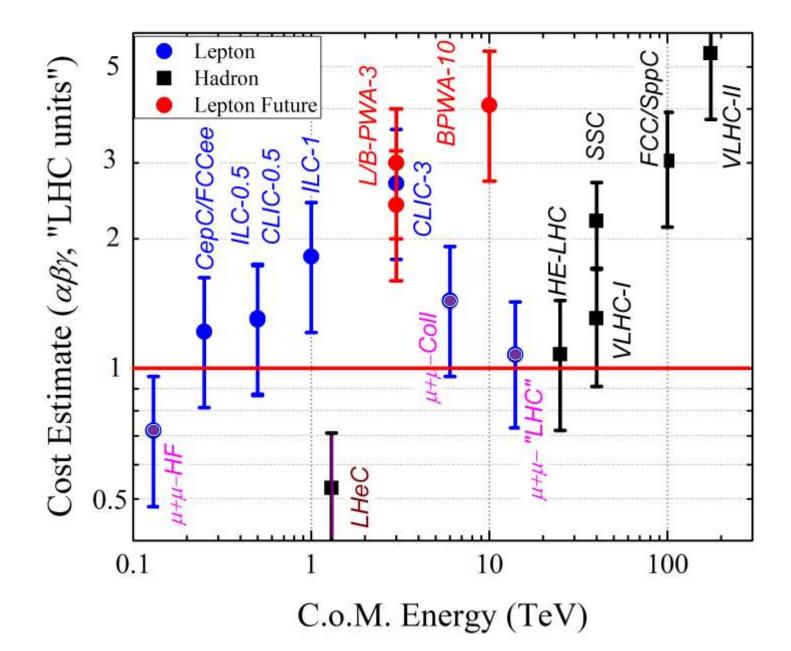
αβγ - Cost Estimate Model:

Cost(TPC) = $\alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

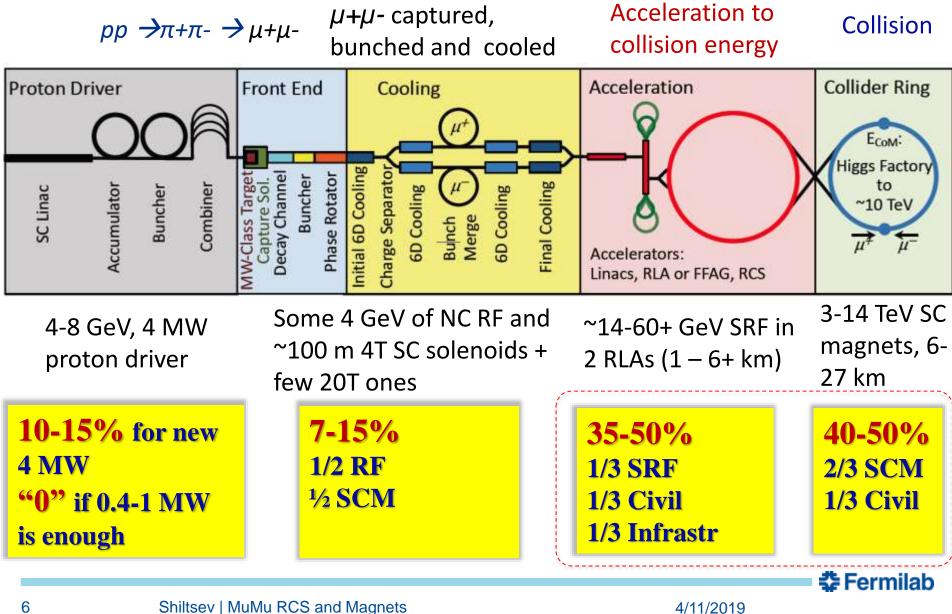
- a) $\pm 33\%$ estimate, for a "green field" accelerators
- **b) "US-Accounting" = TPC !** (~ 2-2.5 × European Accounting)

JR.

- c) Coefficients (units: 10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(*L*/10 km)
 - β≈ 10B\$/sqrt(*E*/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(E/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(E/TeV) for NC magnets
 - γ≈ 2B\$/sqrt(*P*/100 MW)


Shiltsev | MuMu RCS and Magnets

4/11/2019


2014 JINST 9

Cost Model for High Energy Particle Accelerators,

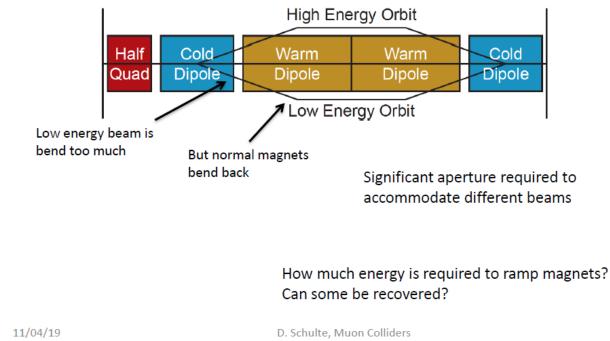
Energy Frontier Colliders in "LHC Units" (~10B\$ TPC)

Muon Collider : Where's the Cost Hidden?

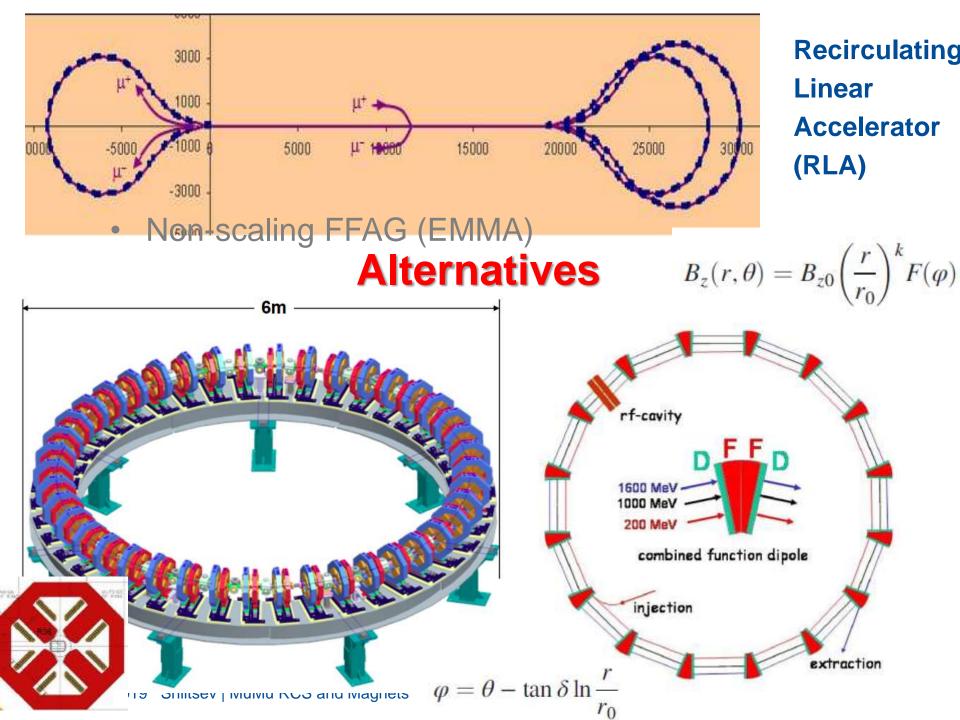
What can be used to save big?

Shiltse

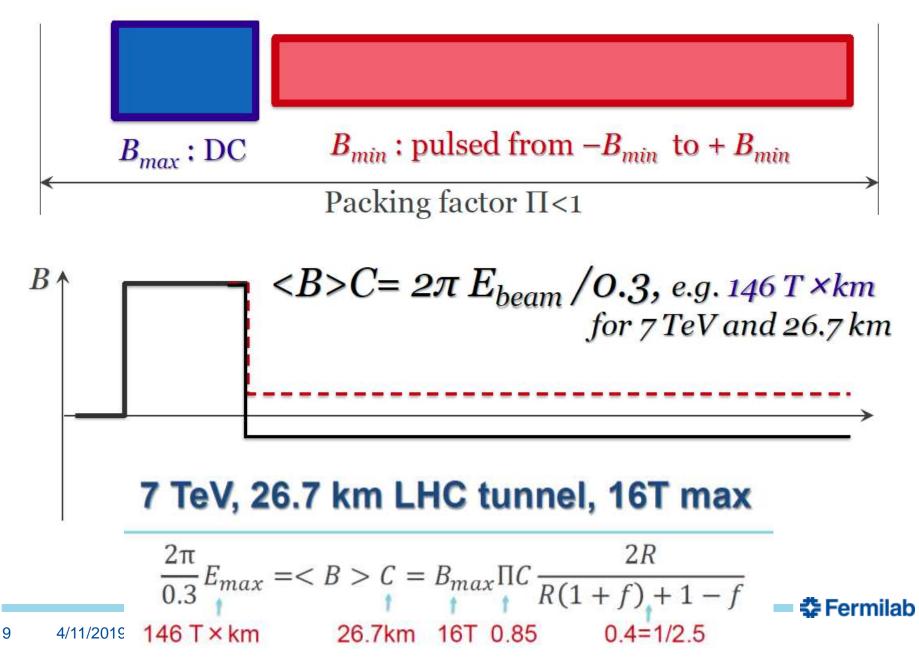
- RF is ~5-10 x more expensive than SC NC magnets
- Minimize $RF \rightarrow eg$ (from Daniel's talk)


Rapid Cycling Synchrotron

Use fast ramping normal conducting magnets

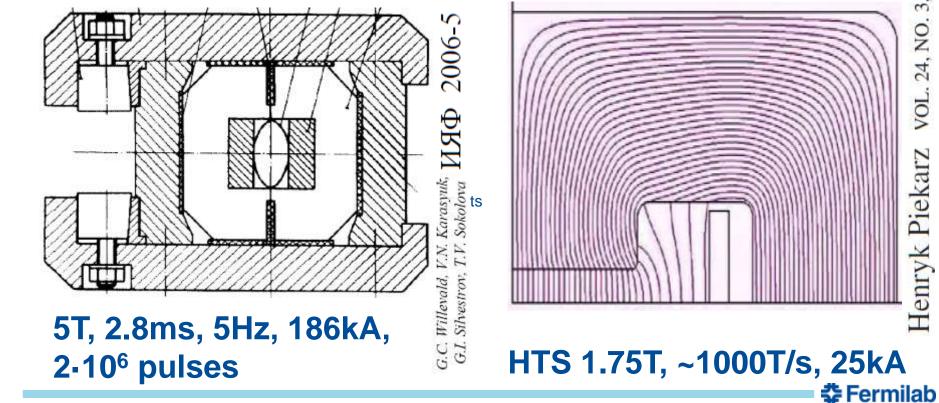

Limits field to 1.4-2 T

Use mixture of high field static magnets and fast ramping normal conducting magnets


- Normal magnets change sign
- Can about double the effective field reach

ab

Acceleration: (1) pulsed magnets


Table 1: Muon RCS accelerator parameters.

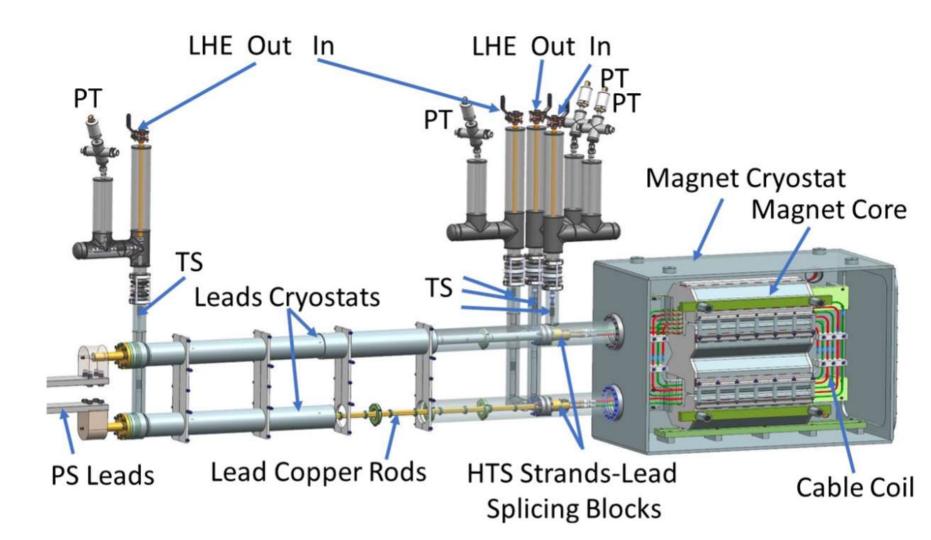
	"LHC-S"	"LHC	-D"	"SPS"
C, km	26.7	26.7	26.7	6.9
E_{max} , TeV	7	7	4	0.45
E_{inj} , TeV	0.45	4	0.45	0.03
f_{rep} , Hz	5	4	4	20
ΔE /turn, GeV	14.0	3.5	9.2	3.7
B _{SC} , T	16	16	16	8
<i>L_{SC}</i> , km	4.8	7.1	2.9	0.63
B_{pls} , T	3.8	2.0	1.9	0.8
$ au_{ramp}$, ms	42	76	34	2.6
dB_{pls}/dt , T/s	180	52	112	615

Magnets:

- DC SC
- Pulsed NC or SC

FCC 16T Nb3Sn

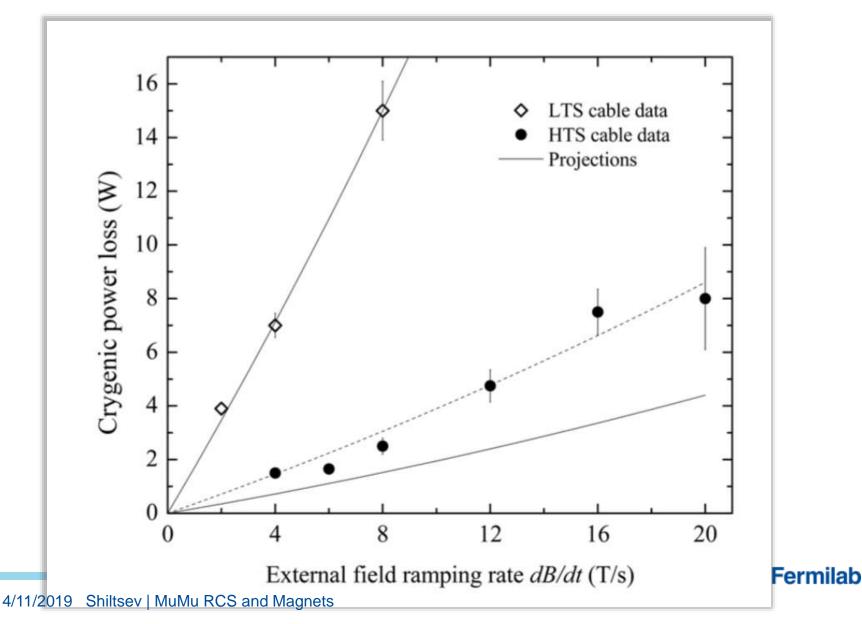
Dipole

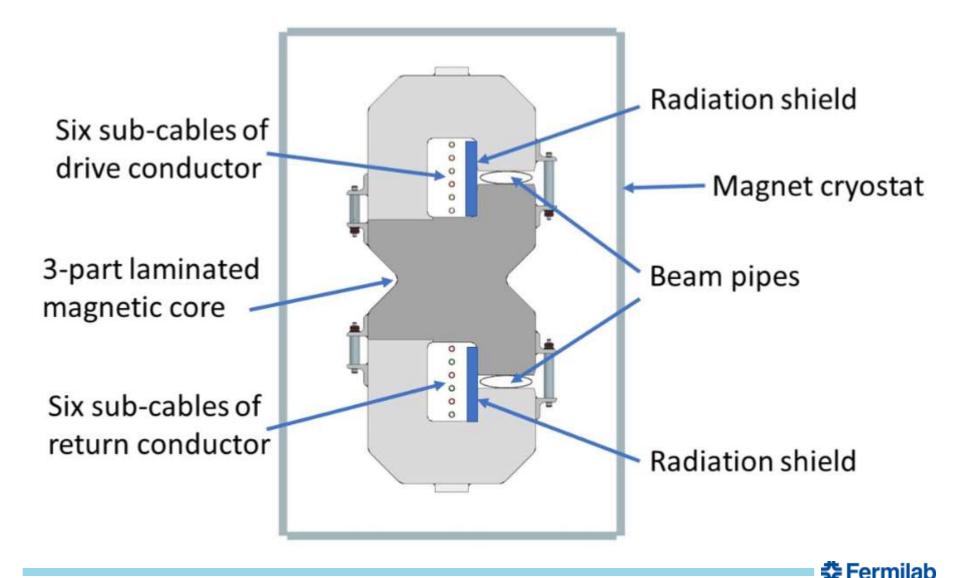

VOL. 24, NO. 3, JUNE 2014 enryk Piekarz

Record fast-cycling accelerator magnet based on high temperature superconductors

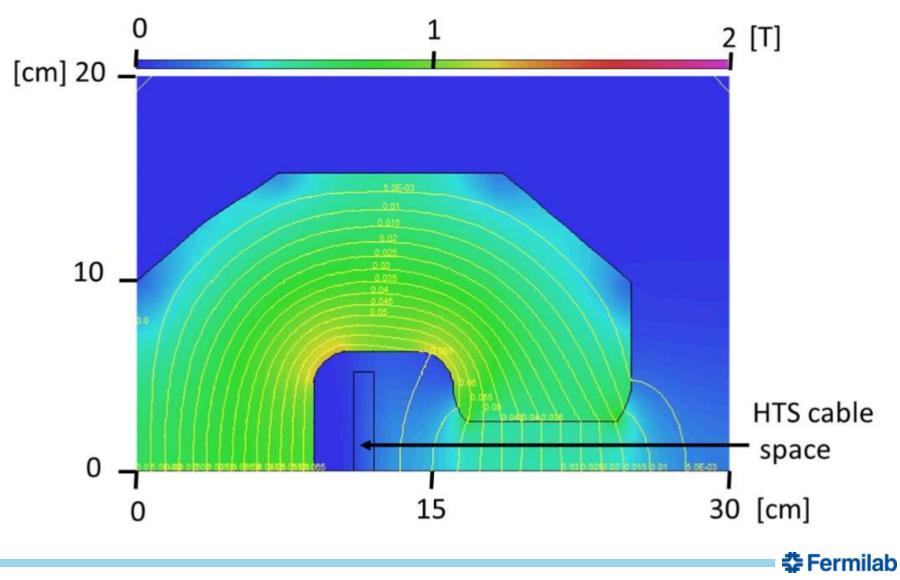
arXiv:1903.03853

Henryk Piekarz, Steven Hays, Jamie Blowers, Bradley Claypool, Vladimir Shiltsev

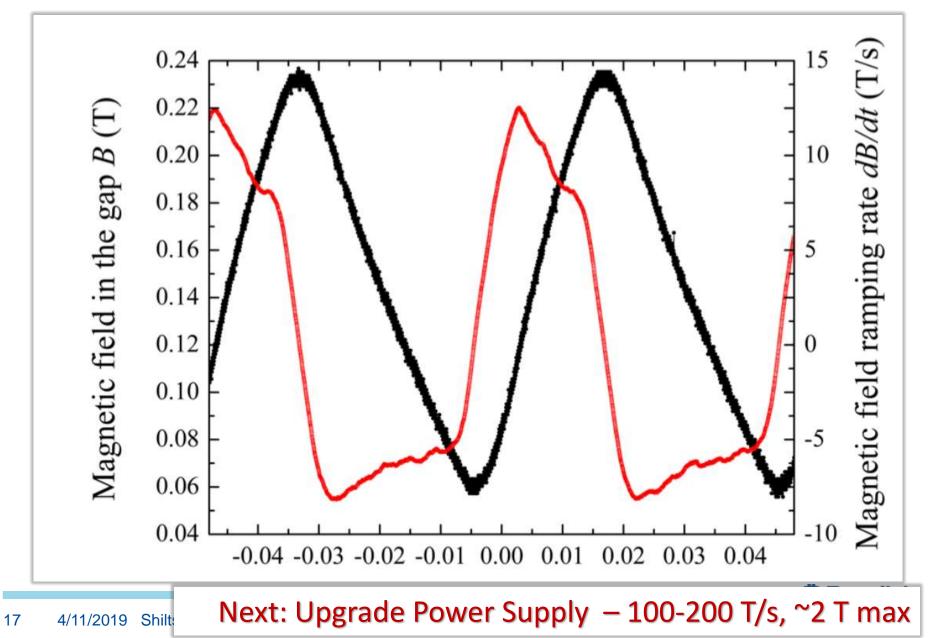

(Submitted on 9 Mar 2019)



HTS Conductor has Small AC Losses (~ 1/5 – 1/10 LTS) + Operates at Higher T (30-60 K vs 2-4 K)



14


(Accelerator) Double-Bore HTS Magnet

Dipole filed in the gap (1/4 shown)

The result : PS limited (1.5V max) – 12 T/s, 2.4kG

Summary

- Muon Colliders do have cost advantages
 - \$\$ total construction cost
 - \$\$ / TeV
 - \$\$ / ab⁻¹
 - Operations
- Each MC option requires cost optimization
 - Higgs Factory, 3 TeV, 6 TeV, 14 TeV "LHC", MAP/LEMC
- Acceleration system is great part of the cost
 - RCS might be very cost efficient
 - Initial R&D success indicate record high 12 T/s with HTS magnets (need 5-100) but needs further effort

🔁 Fermilab

• Should be part of the EuroMAP

Discussion : "Granada Message"

- despite ups and downs over the past 20 years, the mumu concept is not going away and the reasons are [...]
- µµ offers a "moderately conservativemoderately innovative" way to cost affordable energy frontier colliders
- 3. major advantages/promises are [...]
- 4. key challenges are [...]
- 5. to claim feasibility (CDR-level) in, say, 5(10?) years we need [....R&D program goals]

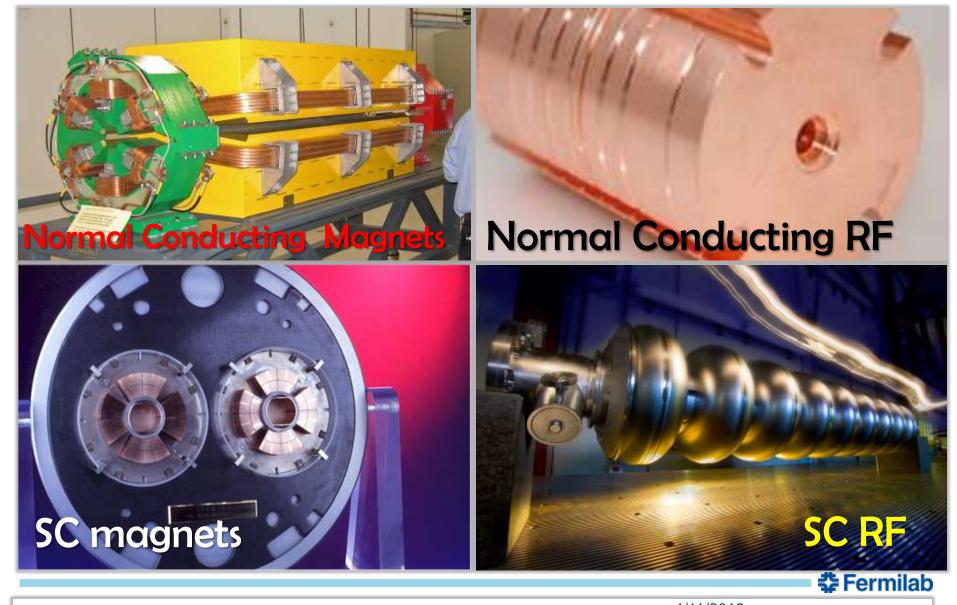
🛟 Fermilab

Luminosity and Cooling

- Option "PS": use existing proton source 24 GeV, 8 bunches 6-10¹² protons at 1.2Hz → on target → ionization cooling of muons
- Option "MAP": build dedicated 8 GeV proton source 2-10¹⁴ p/pulse at 5Hz → on target → ionization cooling of muons
- Option "Low Emittance" :~45 GeV 6.3km circumference e+ storage ring → 0.3mm Be target → ~10⁻⁷ muon pairs per e⁺ bunch (100 bunches of 3×10¹¹ e⁺) → 63m 22 GeV μ rings accumulate μ's for ~ 2500 turns, obtaining bunches of ~4.5×10⁷ μ's at ~2200Hz (10¹¹ μ/s) → fast RLA

BACK-UP SLIDES

Table 2: Opti	ons for a 14	TeV μ^+ - μ^-	collider.	
Parameter	"PS"	"MAP"	"LEMC"	
Avg. luminosity	$1.2 \cdot 10^{33}$	$3.3 \cdot 10^{35}$	$2.4 \cdot 10^{32}$	
Beam $\delta E/E$	0.1%	0.1%	0.2%	tunn
Rep rate, Hz	5	5	2200	E
N_{μ} /bunch	$1.2 \cdot 10^{11}$	$2 \cdot 10^{12}$	4.5×10^{7}	muon collider in the LHC tunne 03
пь	1	1	1	lider
$\varepsilon_{t,N}$ mm-mrad	25	25	0.04	n co
β^* , mm	1	1	0.2	DO3
$\sigma^*(IR), \mu m$	0.6	0.6	0.011	14 TeV c.m.e. m JINST 13 T10003
Bunch length, mm	0.001	0.001	0.0002	FeV c
μ production source	24 GeV <i>p</i>	8 GeV <i>p</i>	45 GeV e^+	
<i>p</i> or <i>e</i> /pulse	$6 \cdot 10^{12}$	$2 \cdot 10^{14}$	$3 \cdot 10^{13}$	pulsed 1 ev 2018 .
Driver beam power	0.17MW	1.6MW	40 MW	ts a
Acceleration, GeV	1-3.5,	1-3.5,	40 GV, RLA	d V. S
	3.5-7	3.5-7	20 turn	On the feasibility of D. Neuffer and V. Shil
	RCS	RCS		the f
v radiation, mSv/yr	0.08	1.5	0.015	8 G


Neutrino Radiation

 $Dose \cong 0.57 \frac{N_{\mu}' E_{\mu}^{3}}{R_{r}^{2}} mSv / year$

- N_{μ} ' in 10¹³/s, E_{μ} is in TeV and R_{x} is 36 km for a 100m depth
- All options are safe

Four "Proven" Technologies

... in addition to "traditional" technologies of tunneling, electric power and site infrastructures, etc ...

Analysis: 2014 JINST 9

17 "Data Points" - Costs of Big Accelerators:

- Actually built:
 - RHIC, MI, SNS, LHC
- Under construction:
 - XFEL, FAIR, ESS
- Not built but costed:
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC, Project X, Beta-Beam, SPL, v Factory

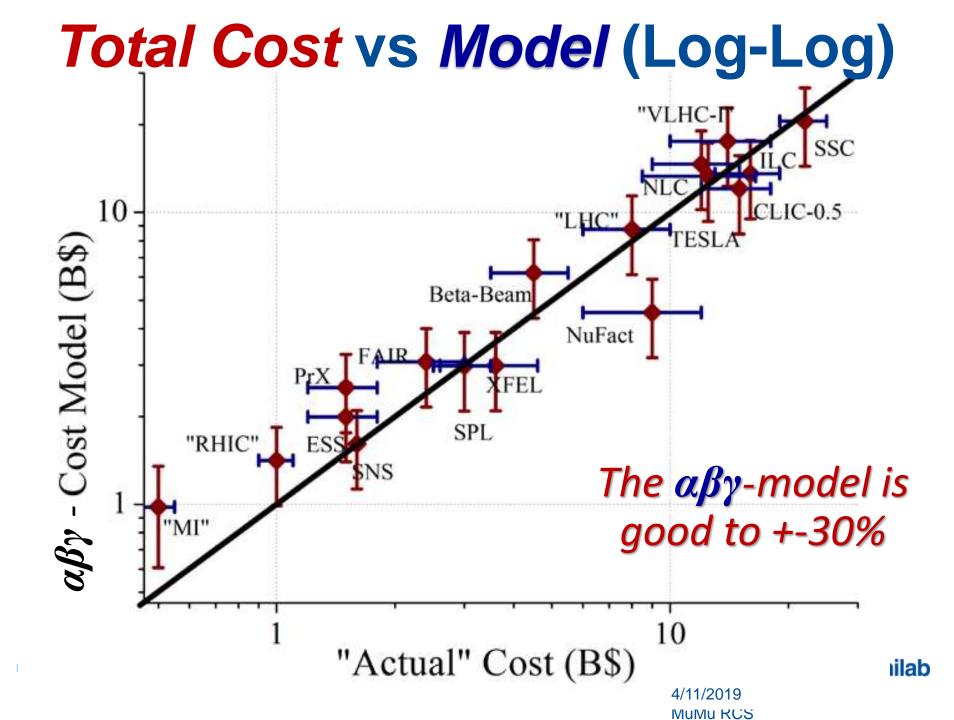
Wide range :

- 4 orders in *Energy*, >1 order in *P*ower, >2 orders in *L*ength
- Almost 2 orders in cost Shiltsev | MuMu RCS and Magnetsss
 - (normalized to US TPC)

T07002	Cost (B\$) Year	Energy (TeV)	Accelerator technology	Comments	Length (km)	Site power (MW)	TPC range (Y14 B\$)
SSC	11.8 BS (1993)	40	SC Mag	Estimates changed many times [6-8]	87	~ 100	19-25
FNAL MI	260M\$ (1994)	0.12	NC Mag	"old rules", no OH, existing injector [9]	3.3	~ 20	0.4-0.54
RHIC	660MS (1999)	0.5	SC Mag	Tunnel, some infrastructure, injector re-used [10]	3.8	~ 40	0.8-1.2
TESLA	3.14 B€ (2000)	0.5	SC RF	"European accounting" [11]	39	~ 130	11-14
VLHC-I	4.1 B\$ (2001)	40	SC Mag	"European accounting", existing injector [12]	233	~ 60	10-18
NLC	~ 7.5 B\$ (2001)	1	NC RF	~ 6 B\$ for 0.5 TeV collider, [13]	30	250	9-15
SNS	1.4 B\$ (2006)	0.001	SC RF	[14]	0.4	20	1.6-1.7
LHC	6.5 BCHF (2009)	14	SC Mag	collider only — existing injector, tunnel & infrstr., no OH, R&D [15]	27	~ 40	7-11
CLIC	7.4-8.3B CHF(2012)	0.5	NC RF	"European accounting" [16]	18	250	12-18
Project X	1.5 B\$ (2009)	0.008	SC RF	[17]	0.4	37	1.2-1.8
XFEL	1.2 B€ (2012)	0.014	SC RF	in 2005 prices, "European accounting" [18]	3.4	~ 10	2.9-4.0
NuFactory	4.7-6.5 B€ (2012)	0.012	NC RF	Mixed accounting, w. contingency [19]	6	~ 90	7-11
Beta- Beam	1.4-2.3 B€ (2012)	0.1	SC RF	Mixed accounting, w. contingency [19]	9.5	~ 30	3.7-5.4
SPL	1.2-1.6 B€ (2012)	0.005	SC RF	Mixed accounting, w. contingency [19]	0.6	~ 70	2.6-4.6
FAIR	1.2B€ (2012)	0.00308	SC Mag	"European accounting" [20], 6 rings, existing injector	~ 3	~ 30	1.8-3.0
ILC	7.8 BS (2013)	0.5	SC RF	"European accounting" [21]	34	230	13-19
etss	1.84 B€ (2013)	0.0025	SC RF	4/11/2049 accounting" [22, 23]	0.4	37	2.5-3.8

V.Shiltsev, A phenomenological cost model for high energy particle accelerators

αβγ - Cost Estimate Model:


Cost(TPC) = $\alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

a) $\pm 33\%$ estimate, for a "green field" accelerators

- **b)** "US-Accounting" = TPC ! (~ 2-2.5 × European Accounting)
- c) Coefficients (units: 10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(*L*/10 km)
 - β≈ 10B\$/sqrt(*E*/TeV) for SC/NC RF
 - **β≈ 2B\$ /sqrt(***E***/TeV)** for SC magnets
 - β≈ 1B\$ /sqrt(*E*/TeV) for NC magnets

γ≈ 2B\$/sqrt(*P*/100 MW)

USE AT YOUR OWN RISK!

