

Collider Ring Designs

Muon Collider – Preparatory Meeting, April 10-11, 2019 Mark Palmer

Acknowledgements

- Work here was driven by Yuri Alexahin
- Lattice design and simulation support
 - Y. Alexahin, E. Gianfelice-Wendt and V. Kapin (FNAL)
 - M.-H. Wang, Y. Nosochkov, Y. Cai (SLAC)
- Radiation load on magnets N. Mokhov (FNAL) and MARS team
- Magnet concepts A. Zlobin (FNAL)

Key Design Targets

- β^* ~ few millimeters
- Minimize the circumference to provide maximum luminosity
- $n_b \sim 2 \times 10^{12}$
 - Possibly higher
- Large bunch charge requires protection of magnets from heat deposition and detectors from backgrounds produced by secondary particles
- With choice of dipole field (~10T), optimum circumference at each energy results in ~2000 turns in the collider ring before the muons decay

High Energy Collider Comments – p. 1

- Designs require large momentum acceptance
 ⇒ combined with the small β* leads to challenging IR chromaticity correction!!
 - Local sextupole correction in the IR required
 - Sextupole correction requires significant dispersion so dipoles are an integral part of the IR design
 - Additional benefit of the dipoles is to help sweep away charged particles from muon decays!
- Limited number of turns, has benefits:
 - Impact of high order resonances minimized
 - IBS and residual gas scattering are too weak to produce a beam halo
 - Pre-collimated beams will not grow significantly ⇒ collimation in collider ring not necessary
- Bunch length requirements:
 - Need $\sigma_7 \le \beta^*$ to preserve luminosity in presence of the hour-glass effect

 - High energy designs have σ_p/p ~ 10⁻³ [Note ~10x Tevatron or LHC values]
 ⇒ large momentum acceptance necessary
 ⇒ small momentum compaction factor required (α_c~10⁻⁵) to maintain short bunch length with manageable RF voltage

High Energy Collider Comments – p. 2

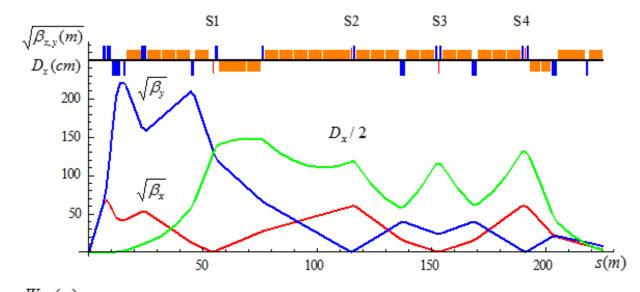
- Large beam-beam effect: ~0.1/IP
 - Due to large single-bunch charge
 - Stability impacts
 - Aperture impacts in combination with the dynamic β effect
- Neutrino Radiation
 - Limit straight sections to L ≤ 0.5 m
 - Introduce dipole component in all quads
 - Complicates β* tuning sections
- MAP 1.5 TeV and 3 TeV CoM energy designs utilize Nb₃Sn magnets
- At 6 TeV, preliminary design requires HTS magnets in the IR!

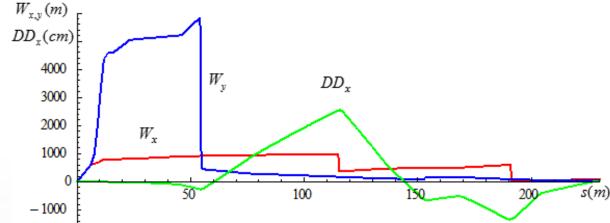
Parameter Summary

Accelerato,

- Detailed designs have been completed for
 - Higgs Factory
 - 1.5 TeV
 - 3.0 TeV
- Including magnet and shielding requirements
- 6.0 TeV design requires more work to finalize IR design and validate projected performance

Parameter	Higgs Factory		High En	Colliders	
Collision energy, TeV	0.126 ^{a)}	$0.126^{b)}$	1.5	3.0	6.0*
Repetition rate, Hz	30	15	15	12	6
Average luminosity / IP, 10^{34} /cm ² /s	0.0017	0.008	1.25	4.6	11
Number of IPs	1	1	2	2	2
Circumference, km	0.3	0.3	2.5	4.34	6
β*, cm	3.3	1.7	1	0.5	0.3
Momentum compaction factor α_c	0.079	0.079	$-1.3\cdot10^{-5}$	$-0.5\cdot10^{-5}$	$-0.3 \cdot 10^{-5}$
Normalized emittance, π ·mm·mrad	400	200	25	25	25
Momentum spread, %	0.003	0.004	0.1	0.1	0.083
Bunch length, cm	5.6	6.3	1	0.5	0.3
Number of muons / bunch, 10 ¹²	2	4	2	2	2
Number of bunches / beam	1	1	1	1	1
Beam-beam parameter / IP	0.005	0.02	0.09	0.09	0.09
RF frequency, GHz	0.2	0.2	1.3	1.3	1.3
RF voltage, MV	0.1	0.1	12	50	150



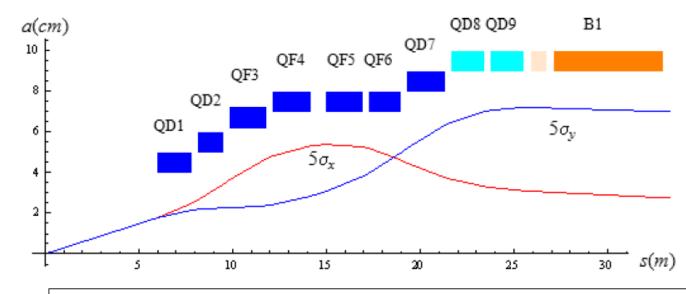

^{*}The 6 TeV ring design is not completed yet, the numbers are a projection.

1.5 TeV Design

Program

- IR and Chromaticity Correction Section (CCS)
- Utilizes final focus doublet with Nb₃Sn Dipoles
- $\beta^* = 1$ cm
 - Note: smaller β^* or higher energy drives the final focus strengths up rapidly

3 TeV Design – p. 1

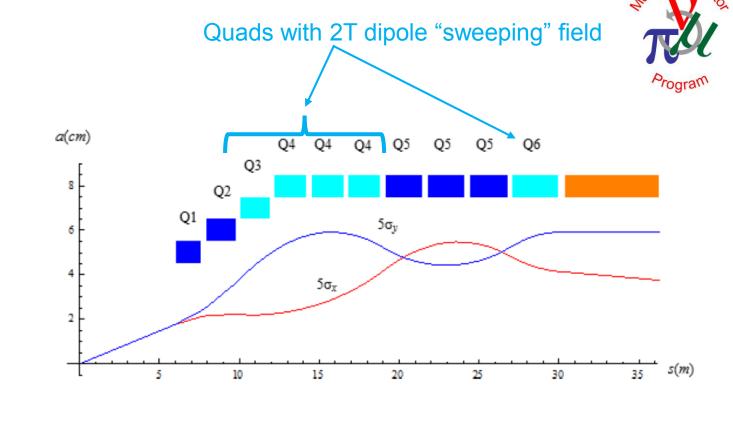


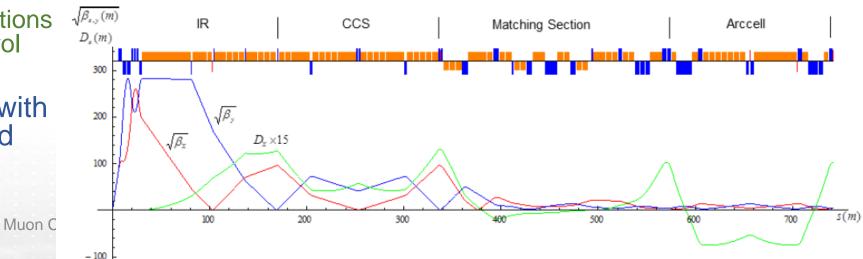
IR Triplet Design

- $\beta^* = 5 \text{ mm}$
- Magnet Apertures: $R > 5 \sigma_{max} + 2 cm$
- B_{pole-tip}< 10 T

Challenge

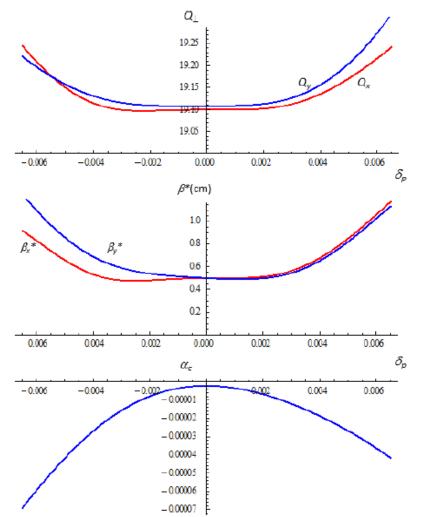
- Dipole sweeping of decay products not effective in this design
- Quad nearest IP is focusing

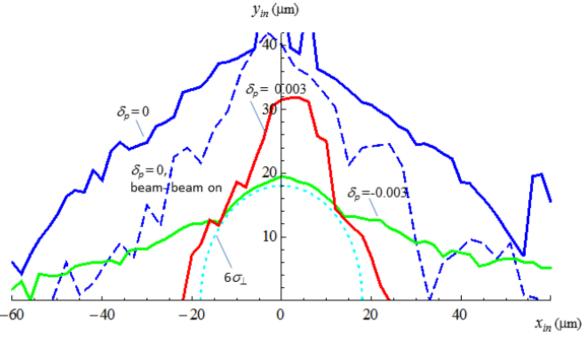

Parameter	QD1	QD2	QF3	QF4-6	QD7	QD8-9	B1
Aperture (mm)	80	100	124	140	160	180	180
Gradient (T/m)	-250	-200	161	144	125	-90	0
$B_{dipole}(T)$	0	0	0	0	0	2	8
Length (m)	1.85	1.40	2.00	1.70	2.00	1.75	5.80



3 TeV Design – p. 2

- IR Quadruplet Design
 - $\beta^* = 5 \text{ mm}$
 - B_{pole-tip}< 12 T
 - Quadruplet design utilized for 3 TeV Baseline parameters
 - Matching sections provide
 - β^* control: 3 mm 3 cm
 - Low β and dispersion sections for RF bunch-length control
 - Detailed characterization with magnet errors still required

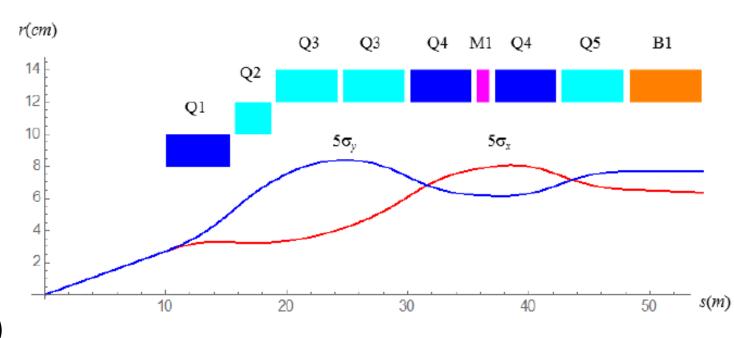




Lattice Performance @ 3 TeV

Dynamic aperture (2048 turns) - dashed line includes beam-beam effects.

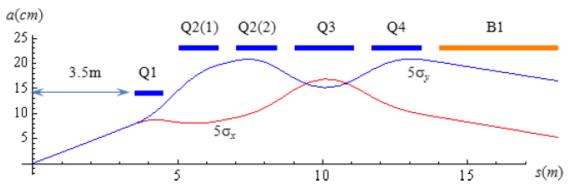
Off-momentum performance: Good to $\pm 6\sigma$

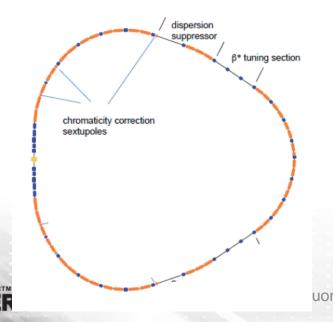


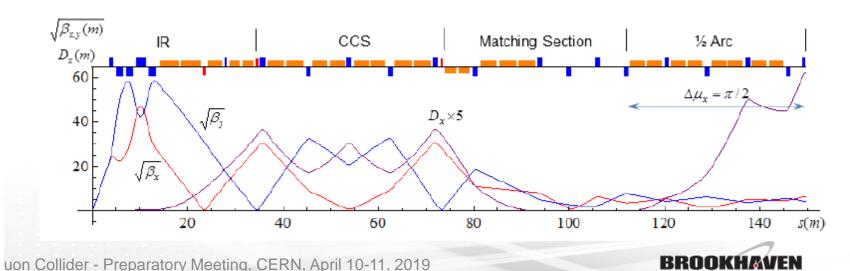
6 TeV IR

Arogram

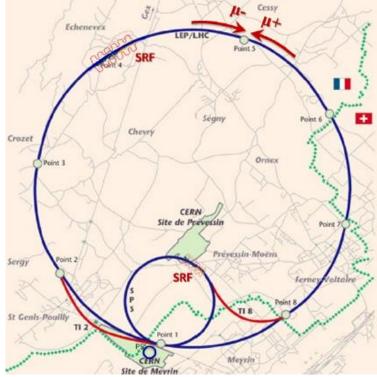
- $\beta^* = 3 \text{ mm}$
- Magnet Apertures: $R > 5 \sigma_{max} + 3 cm$
- B_{pole-tip}< 16 T (quads)
 - Now in the HTS regime
 - Is this potentially the real limit on E_{CoM} ???


Parameter	Q1	Q2	Q3	Q4	Q5
ID (mm)	160	200	240	240	240
G (T/m)	200	-125	-100	103	-78
$B_{\mathrm{dipole}}(\mathrm{T})$	0	3.5	4.0	3.0	6.0
L (m)	5.3	3.0	5.1	5.1	5.1




Higgs Factory Design

- Substantively different design given optimization for small energy spread
- Strong sensitivity to machine errors (particularly in the IR) are observed
- Only 1 IR is feasible


Parameter	Q1	Q2	Q3	Q4	B 1
Aperture (mm)	270	450	450	450	450
Gradient (T/m)	74	-36	44	-25	0
Dipole field (T)	0	2	0	2	8
Magnetic length (m)	1.00	1.40	2.05	1.70	4.10

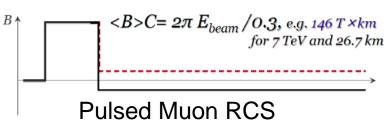

7+7 TeV in the LHC Tunnel? (Neuffer, Shiltsev)

Table 2. Options for a 14 TeV μ^+ - μ^- Collider.

Parameter	"PS"	"MAP"	"LEMC"
Avg. luminosity	$1.2 \cdot 10^{33}$	$3.3 \cdot 10^{35}$	$2.4 \cdot 10^{32}$
Beam $\delta E/E$	0.1%	0.1%	0.2%
Rep rate, Hz	5	5	2200
N_{μ} /bunch	$1.2\cdot 10^{11}$	$2 \cdot 10^{12}$	4.5×10^7
n_b	1	1	1
$arepsilon_{t,N}$ mm-mrad	25	25	0.04
eta^* , mm	1	1	0.2
$\sigma^*({\rm IR}), \mu{\rm m}$	0.6	0.6	0.011
Bunch length, m	0.001	0.001	0.0002
μ production source	24 GeV p	$8\mathrm{GeV}p$	$45\mathrm{GeV}~e^+$
p or e/pulse	$6 \cdot 10^{12}$	$2 \cdot 10^{14}$	$3 \cdot 10^{13}$
Driver beam power	$0.17\mathrm{MW}$	1.6 MW	$40\mathrm{MW}$
Acceleration, GeV	1–3.5, 3.5–7 RCS	1–3.5, 3.5–7 RCS	40 GV, RLA 20 turn
ν radiation, mSv/yr	0.05	0.8	0.008

Summary

Arogram

- Detailed concepts are available for Higgs, 1.5 TeV, and 3 TeV
- Study of the 3 TeV design would provide:
 - Comparisons with CLIC
 - Chance to work with a reasonably mature lattice
 - A good next step evaluation
 - Thrusts:
 - Further IR optimization
 - Detector optimization
 - Shielding optimization
- Further design effort needed to:
 - Optimize general IR options
 - Determine realistic limits on max. pole-tip field as a function of collider energy

