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Detector response simulation

A detailed simulation of the potential detector at the Muon Collider is 
necessary  to assess the achievable precision of future physics measurements 

Making use of the simulation/reconstruction tools previously developed within 
the MAP (Muon Accelerator Program) program: 

• based on the ILCroot package: supports signal + MARS background merging 

Detailed detector geometry and magnetic field map used for full simulation: 

• muon detector (skipped for now) 

• magnetic coil  (3.57 T) 

• nozzle (simulated in MARS) 

• vertexing + tracking detectors 

• calorimeter 

Two versions of beam background considered: 

• 62.5 GeV µ± beams  (Higgs Factory) 

• 750 GeV µ± beams  (High Energy Muon Collider)

http://www.dmf.unisalento.it/~danieleb/IlcRoot/faq.htm
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Tracking: VXD
Beam pipe: Beryllium (Be) 

thickness: 400 µm 

Nozzles: for background suppression 

material: Tungsten (W) 

gap between nozzles: 12 cm 

Rmin: 1 cm 

Vertexing detector (VXD):  precise tracking 

Si pixel sensors:  20⨉20 µm pitch 

R: 3-13 cm  L: 42 cm 

Granularity: 

• Barrel:   5 layers  (75 µm thick) 
• Endcap:  2 ⨉ 4 disks (100 µm thick)
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Tracking: SiT+FTD
Silicon Tracker (SiT): 

Si pixel sensors:  50⨉50 µm pitch 

• thickness:  200 µm 

R: 20-120 cm  L: 330 cm 

• Barrel:   5 layers 

• Endcap:  2 ⨉ (4 +3) disks 

Forward Tracking Detector (FTD): 

Si pixel sensors:  50⨉50 µm pitch 

• thickness:  200 µm 

• Endcap:  2 ⨉ 3 disks 

Hit simulation with GEANT4: 

• full simulation chain in place: hits → sdigits → digits 

• noise, electronic thresholds, saturation effects are included



Nazar Bartosik Detector performance at Muon Collider  5

Energy release in the tracker

Simulated energy deposited in the tracker by signal and background particles

Interaction Point muons Background: 62.5 GeV

Energy deposition profiles are similar between the signal and background 

Hit density in the Higgs-factory mode is a serious issue:  timing can help

Background: 750 GeV

Vertexing 
detector

Tracking 
detector 

barrel
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Time of flight in the tracker

Simulated time of arrival of particles in the detector module 

• reference T0: time of photons arriving from the IP to the detector

µ± beam: 62.5 GeV µ± beam: 750 GeV
98%
4.6%

98%
19%

Selecting a 2 ns time window around the expected arrival time allows to reject up 
to 95% of background hits in the tracker 

At 750 GeV the IP muons are potentially leaking through the nozzles gap 

↳ most likely explanation:  to be verified by a detailed study of the particles’ origin
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Double layers in the tracker

Further background suppression possible with a double layer design 

• soft background tracks have lower probability  
of surviving till the second sublayer 

• only pairs of hits in 2 sublayers are read out 

Effect of the cut with 1 mm distance between 
sublayers studied at 750 GeV  [V. Di Benedetto et al 2018 JINST 13 P09004]

IP bkg

hit clusters surviving fraction hit clusters density

Hit density ≤ 10/cm2 in the tracker except for the first 2 VXD layers

https://iopscience.iop.org/article/10.1088/1748-0221/13/09/P09004
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ADRIANO calorimeter

Dual readout calorimeter: measuring Cerenkov + scintillation light simultaneously 

↳  electromagnetic fraction of the shower can be determined in each event 

Fully projective geometry:  23.6K towers 

• 1 Cerenkov + 1 Scintillation signal from each tower

scintillating fibers

wavelength-shifting fibers 
for transport of Cerenkov light

high transmittance glass

Cerenkov and Scintillation hits are simulated separately, digitized independently 

• photodetector noise, wavelength-dependent light attenuation and collection  
efficiency taken into account during digitization 

Clusters of digitized signals used for jet reconstruction
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Jet clustering

Building jets from reconstructed tracks + calorimeter clusters 

• tested on H→bb signal events at √s=125 GeV  (no background) 

• clear environment for testing the technical implementation 

Jet clustering using a cone algorithm: 

• size parameter: R=2.0 

• most tracks contained within the jet  
cone of ΔR = 2.0 

• jets are rather wide due to no boost 

Jet acceptance requirements: 

• pT  ≥ 10 GeV 

• |η| ≤ 2.5 

This is the first attempt of looking at jets: 

• clustering parameters to be optimised in the presence of background
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Jet clustering: angular properties

Jets from H→bb decays expected to be back to back 

• true-level jets clustered from all the  
final-state particles in an event 

Ensuring consistency between the  
reconstructed tracks and calorimeter clusters  

• comparing jets clustered from different  
sets of input objects
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↳ jet direction is properly reconstructed
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Jet clustering: momentum
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The reconstructed jet pT spectrum looks significantly different from the true jets 

• jet energy scale improves the agreement 

• further calibration of the calorimeter  
energy response might be needed 

reco ⨉ JES 
true 
reco

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
T

 / p
T

 pΔjet 

0

50

100

150

200

250

300

350

Je
ts

JES improves the central value 

• resolution is still suboptimal

reco ⨉ JES 
reco



Nazar Bartosik Detector performance at Muon Collider  12

Conclusions

• Full chain of the detector simulation (tracker + calorimeter) is implemented in 
the ILCroot framework 

• Signal can be combined with the beam background at the detector level 

• Beam background creates a very large number of hits in the tracker 

↳  can be suppressed by selecting only hits in a ~2ns time window 

• Jet clustering implemented for the first time, allowing to do detailed studies 
of specific physics processes at a Muon Collider 

• Still a lot of space for improvements at the event reconstruction side 

↳  great potential for future studies


