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Detector response simulation

A detailed simulation of the potential detector at the Muon Collider is
necessary to assess the achievable precision of future physics measurements

Making use of the simulation/reconstruction tools previously developed within
the MAP (Muon Accelerator Program) program:

- based on the ILCroot package: supports signal + MARS background merging

Detailed detector geometry and magnetic field map used for full simulation:

+ muon detector (skipped for now) ---------- :

magnetic coil (3.57T) -==============--- <
nozzle (simulated in MARS) ---------- .

vertexing + tracking detectors ----.

calorimeter """'------:

Two versions of beam background considered:
 62.5 GeV u* beams (Higgs Factory)
« 750 GeV ut beams (High Energy Muon Collider)
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http://www.dmf.unisalento.it/~danieleb/IlcRoot/faq.htm

Tracking: VXD

Beam pipe: Beryllium (Be)
thickness: 400 pm

Nozzles: for background suppression
material: Tungsten (W)
gap between nozzles: 12 cm

Rmin: 1 cm

Vertexing detector (VXD): precise tracking
Si pixel sensors: 20x20 um pitch

R: 3-13 cm L: 42 cm

Granularity:

- Barrel: 5layers (75 um thick)
- Endcap: 2 x 4 disks (100 um thick)
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Tracking: SIT+FTD

Silicon Tracker (SiT):
Si pixel sensors: 50x50 pum pitch

« thickness: 200 um
R: 20-120 cm L: 330 cm

- Barrel: 5 layers
- Endcap: 2 X (4 +3) disks

Forward Tracking Detector (FTD):
Si pixel sensors: 50x50 pm pitch

- thickness: 200 um
- Endcap: 2 X 3 disks

Hit simulation with GEANT4:
« full simulation chain in place: hits = sdigits — digits

 noise, electronic thresholds, saturation effects are included
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Energy release in the tracker

Simulated energy deposited in the tracker by signal and background particles
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Energy deposition profiles are similar between the signal and background

Hit density in the Higgs-factory mode is a serious issue: timing can help
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Time of flight in the tracker

Simulated time of arrival of particles in the detector module

- reference TO: time of photons arriving from the IP to the detector

p: beam: 62.5 GeV p: beam: 750 GeV
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Selecting a 2 ns time window around the expected arrival time allows to reject up
to 95% of background hits in the tracker

At 750 GeV the IP muons are potentially leaking through the nozzles gap
b most likely explanation: to be verified by a detailed study of the particles origin
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Double layers in the tracker

Further background suppression possible with a double layer design

- soft background tracks have lower probability

- only pairs of hits in 2 sublayers are read out :

of surviving till the second sublayer

IP bkg

Effect of the cut with 1 mm distance between
sublayers studied at 750 GeV [V. Di Benedetto et al 2018 [INST 13 PO9004]
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Hit density < 10/cm in the tracker except for the first 2 VXD layers
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https://iopscience.iop.org/article/10.1088/1748-0221/13/09/P09004

ADRIANO calorimeter

Dual readout calorimeter: measuring Cerenkov + scintillation light simultaneously

b electromagnetic fraction of the shower can be determined in each event

Fully projective geometry: 23.6K towers

« 1Cerenkov + 1 Scintillation signal from each tower

scintillating fibers e

wavelength-shifting fibers

high transmittance glass

Cerenkov and Scintillation hits are simulated separately, digitized independently

- photodetector noise, wavelength-dependent light attenuation and collection
efficiency taken into account during digitization

Clusters of digitized signals used for jet reconstruction
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Jet clustering

Building jets from reconstructed tracks + calorimeter clusters
. tested on H—bb signal events at +/s=125 GeV (no background)
+ clear environment for testing the technical implementation

Jet clustering using a cone algorithm: 1o

- size parameter: R=2.0 o

 most tracks contained within the jet
coneof AR=2.0

- jets are rather wide due to no boost
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Jet acceptance requirements: 60

« pr =10 GeV 40
+ Inl =25 20
0O 0.5 1 1.5 2 2.5 3 0
This is the first attempt of looking at jets: A Rtrack, jet

« clustering parameters to be optimised in the presence of background
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Jet clustering: angular properties

Jets from H—bb decays expected to be back to back

- true-level jets clustered from all the ]
final-state particles in an event $C 8404 in
[ acceptance
Ensuring consistency between the ;
reconstructed tracks and calorimeter clusters o

 comparing jets clustered from different
sets of input objects
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Jet clustering: momentum

The reconstructed jet pr spectrum looks significantly different from the true jets

Jets

- jet energy scale improves the agreement

« further calibration of the calorimeter 250;— reco X JES
energy response might be needed : ﬂ true
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JES improves the central value

- resolution is still suboptimal
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Conclusions

« Full chain of the detector simulation (tracker + calorimeter) is implemented in
the ILCroot framework

- Signal can be combined with the beam background at the detector level

- Beam background creates a very large number of hits in the tracker

b can be suppressed by selecting only hits in a ~2ns time window

- Jet clustering implemented for the first time, allowing to do detailed studies
of specific physics processes at a Muon Collider

- Still a lot of space for improvements at the event reconstruction side

L great potential for future studies
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