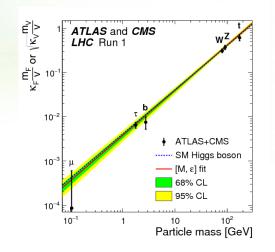
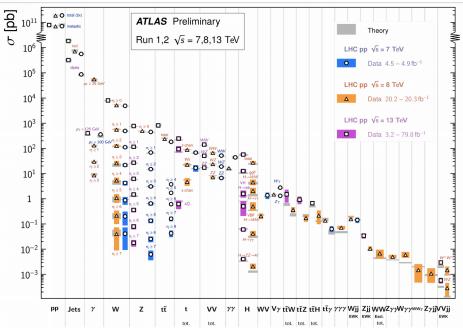
Higgs reconstruction at Muon Collider

Lorenzo Sestini Università di Padova and INFN-Padova

On behalf of the Muon Collider Physics group: N. Bartosik, A. Bertolin, M. Casarsa, A. Gianelle, D. Lucchesi, N. Mokhov, L. Sestini, N. Terentiev

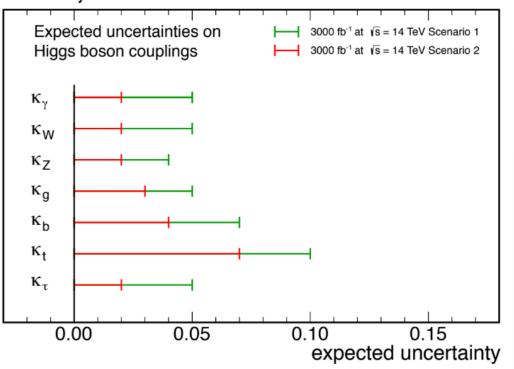



Muon Collider preparatory meeting – CERN, 10-4-2019

Introduction

- The Standard Model is greatly confirmed at LHC energies.
- But many sectors of the SM are poorly known or unexplored, as example:
 - Higgs interaction with light fermions.
 - → Higgs self-interaction.
 - Top-quark interaction with gauge bosons and Higgs known at 10% level.

Introduction



- HL-LHC prospects on Yukawa coupling
- If Λ_{NP} is the New Physics energy scale, the precision that should be achieved to probe it is:

$$\frac{\Delta k}{k} = \frac{5\%}{\Lambda_{NP}^2}$$

- If $\Lambda_{_{\rm NP}}$ = 10 TeV then 0.05% precision is needed.
- The Higgs sector can be the portal for New Physics.
- Muon Collider is an ideal machine to study it.

CMS Projection

Higgs production at Muon Collider

- Main Higgs production channels at Muon Collider generated with Pythia 8.
- Comparison with CLIC results (ISR included) to cross check our Monte Carlo cross sections.
 https://arxiv.org/pdf/1608.07538.pdf
- Cross sections are compatible apart from small differences.
- WW fusion dominates at multi-TeV energies.

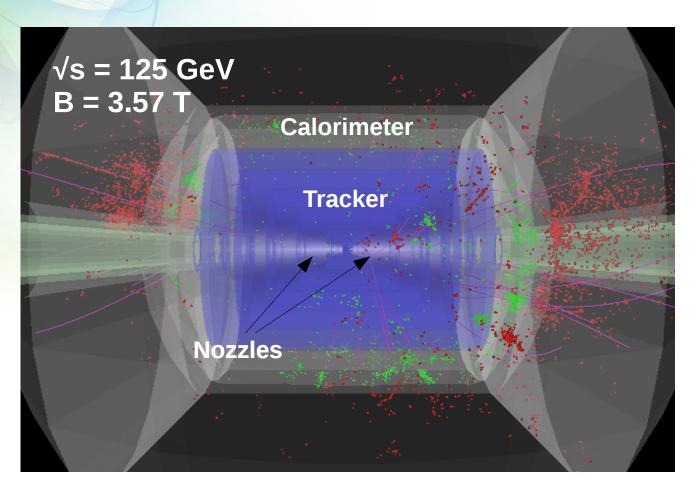
√s = 350 Gev				
Process	σ [fb] @ CLIC	σ [fb] @ Muon Collider		
$ ^{+} ^{-} \rightarrow HZ$	133	136		
$ ^{+} ^{-} \rightarrow ^{+} ^{-} H (ZZ \text{ fusion})$	7	3.3		
$I^{+}I^{-} \rightarrow \nu_{\mu} \nu_{\mu} H \text{ (WW fusion)}$	34	32		
	√s = 1.4 TeV			
Process	σ [fb] @ CLIC	σ [fb] @ Muon Collider		
I⁺I⁻ → HZ	8	7.3		
$ ^{+} ^{-} \rightarrow ^{+} ^{-} H (ZZ \text{ fusion})$	28	30		
$I^{+}I^{-} → ν_{\mu} v_{\mu} H$ (WW fusion)	276	294		
	√s = 3 TeV			
Process	σ [fb] @ CLIC	σ [fb] @ Muon Collider		
I⁺I⁻ → HZ	2	1.48		
$ ^{+} ^{-} \rightarrow ^{+} ^{-} H (ZZ \text{ fusion})$	48	51.4		
$I^{+}I^{-} \rightarrow v_{\mu}v_{\mu} H$ (WW fusion)	477	500		

1/c - 250 Col

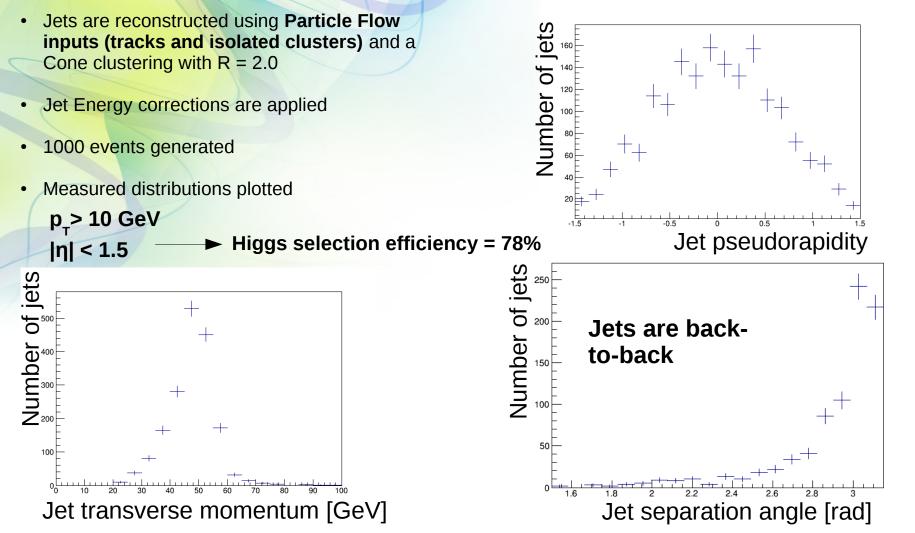
H→**bb** at Muon Collider

H → bb has the highest branching ratio:

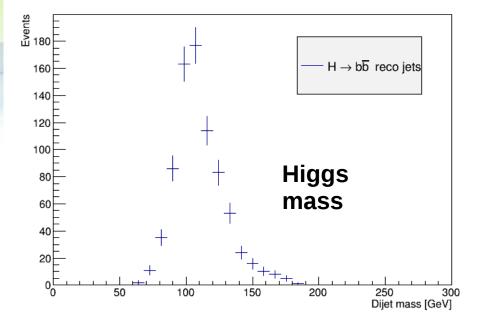
- Coupling with b
- Coupling with μ (Higgs Factory)
- Coupling with W (multi-TeV)
- We chose this channel to test our **full** detector simulation.
- At multi-TeV → Physics backgrounds are orders of magnitude smaller than signal.
- BUT beam-induced background is the real issue.

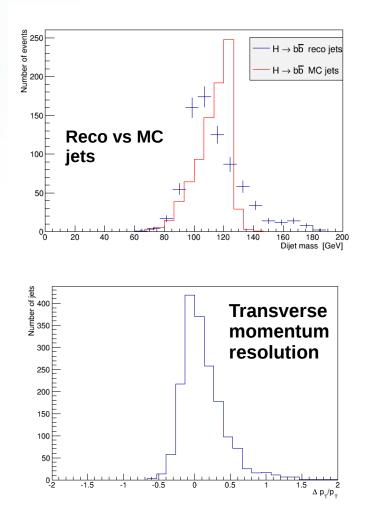

Processes with 2 b-quarks in the final state

Process	σ [<u>pb]</u> @ 125 <u>GeV</u>	σ [pb] @ 1.5 <u>TeV</u>	σ [<u>pb]</u> @ 10 <u>TeV</u>
$\mu^{+}\mu^{-} \rightarrow \gamma^{*}/Z \rightarrow b\overline{b}$	19	0.046	0.0014
$\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} \to \gamma^{\ast}/Z \ \gamma^{\ast}/Z \ \to b \overline{b} + X$	0.11	0.029	0.0013
$\mu^{+}\mu^{-} \rightarrow \gamma^{*}/Z \ \gamma \rightarrow b\overline{b} + \gamma$	23	0.12	0.0034
μ⁺μ⁻ →H →bb (s-channel)	40	-	-
$\mu^{+}\mu^{-} \rightarrow HZ \rightarrow b\overline{b} + X$	-	0.004	~0.0001
μ⁺μ⁻ →μ⁺μ⁻ H(→b͡b) (ZZ fusion)	-	0.018	0.055
$\mu^{+}\mu^{-} \rightarrow \chi_{\mu}\chi_{\mu} H(\rightarrow \underline{b}\overline{b})$ (WW fusion)	-	0.18	0.54


$H \rightarrow b\overline{b}$ in simulation

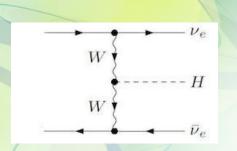
- This is how a signal event looks in the ILCRoot simulation.
- Tracks and calorimeter hits displayed (see Nazar's talk).
- Beam-induced background not present here.
- Center of mass energy considered for comparisons: 125 GeV and 1.5 TeV.

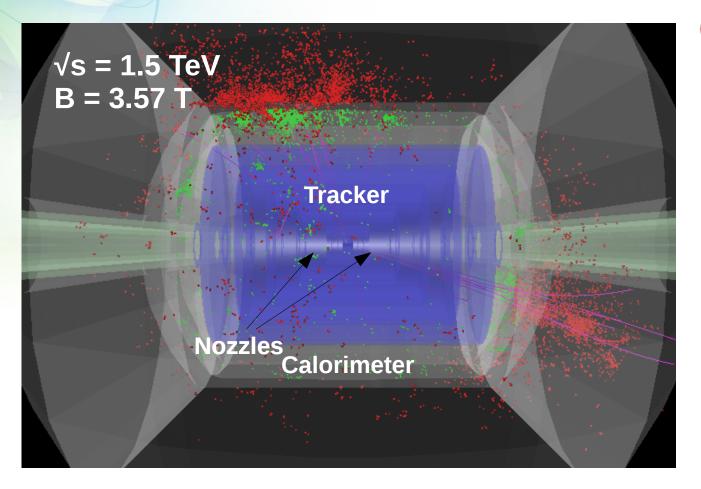



$H \rightarrow b\overline{b}$ reconstruction at $\sqrt{s} = 125$ GeV (NF

$H \rightarrow bb$ mass distribution at $\sqrt{s} = 125$ GeV (NF

- Higgs mass peak resolution → 15%
- Excellent result for distinguish it from Z → bb and not-resonant backgrounds

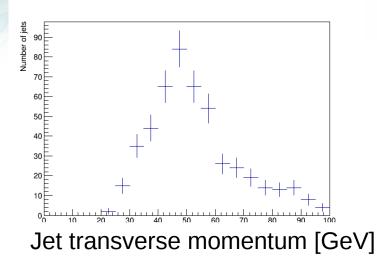


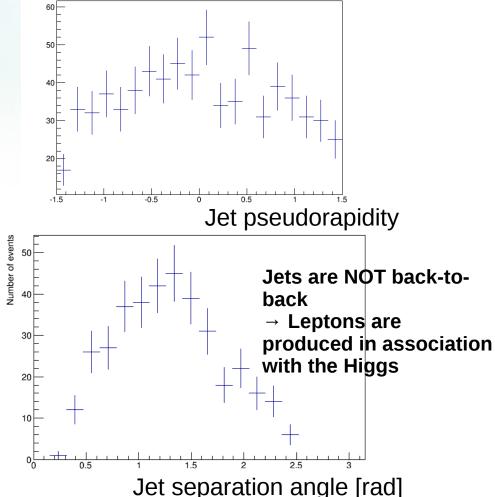

Istituto Nazionale di Fisica Nuclear

$H \rightarrow b\overline{b}$ at $\sqrt{s} = 1.5$ TeV

WW fusion is the main production channel: 2 neutrinos in association

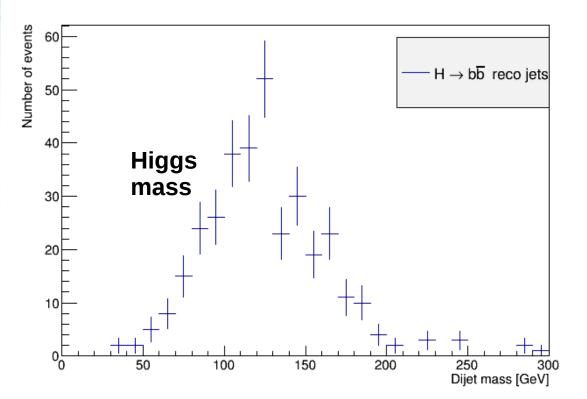
$H \rightarrow b\overline{b}$ reconstruction at $\sqrt{s} = 1.5$ TeV (



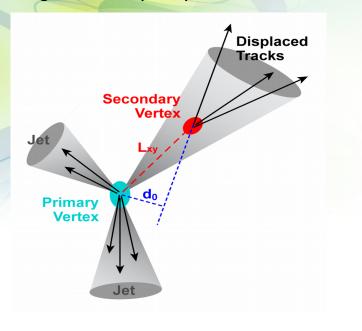

10

- Jets are reconstructed using Particle Flow inputs (tracks and isolated clusters) and a Cone clustering with **R** = **1.0**
- 500 events generated

p₇> 10 GeV |η| < 1.5


Higgs selection efficiency = 76% Almost identical to Higgs Factory

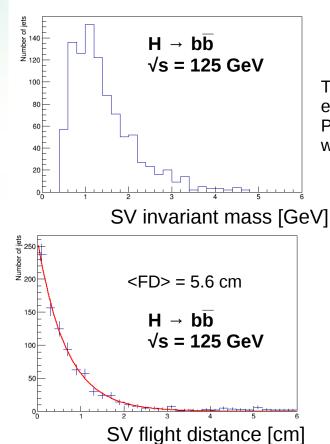
$H \rightarrow bb$ mass distribution at $\sqrt{s} = 1.5$ TeV (INFN)


- Higgs mass peak resolution = 30%
- Worst resolution with respect to Higgs Factory case (15%)
- Improvements under study:
 - → B field
 - → Jet radius
 - → Particle Flow inputs

stituto Nazionale di Fisica Nuclea

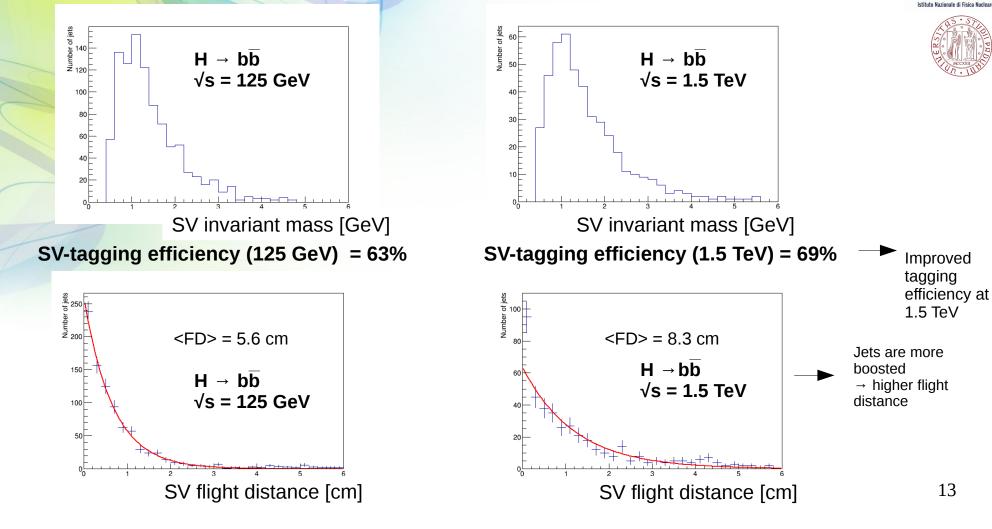
b-tagging algorithm:

3-tracks secondary vertex reconstruction inside the jet cone (similar to LHCb) → tracks with significant impact parameter are used



SV-tagging efficiency (N_{tag}/N_{rec}) at \sqrt{s} = 125 GeV \rightarrow 63% similar to LHC experiments

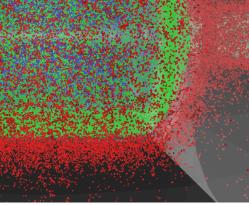
b-tagging

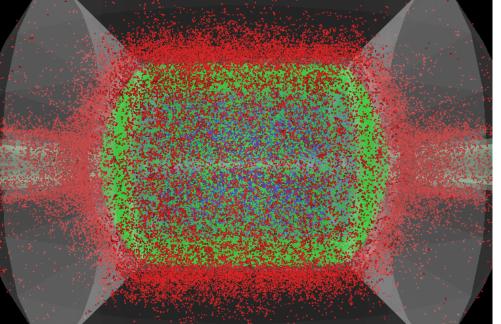

First b-tagging study at Muon Collider

The pion mass is assigned to each track Peak at ~1 GeV consistent with LHCb result

A cut on the SV mass and flight distance can help to reduce the background contamination

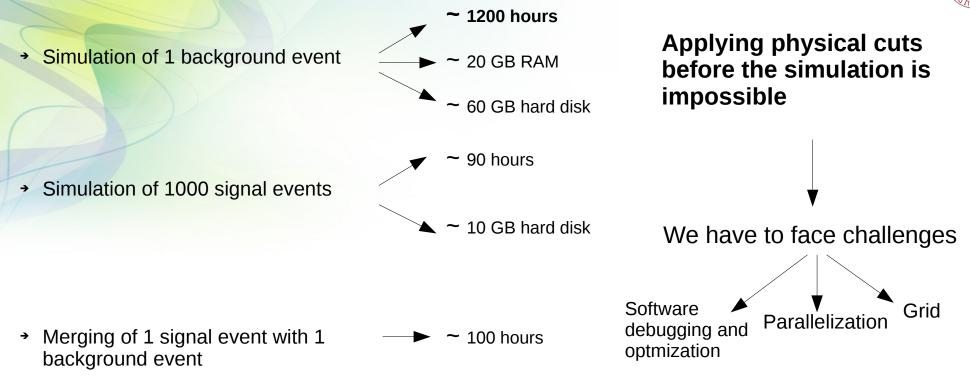
b-tagging $\sqrt{s} = 125$ GeV vs $\sqrt{s} = 1.5$ TeV (INFN)




Effects of the beam-induced background

 We understood the Higgs reconstruction @ Muon Collider in the absence of beam-induced background Jets reconstruction

b-tagging


- What can be the effect of the beam induced background?
- A significant amount can be removed with detector-level requirements (see Nazar's talk)
- Random hits assigned to signal tracks and calorimeter clusters \rightarrow momentum degradation
- \rightarrow Fake tracks and calorimeter clusters \rightarrow to be removed with the jet clustering (anti-kt?)
- Use Regions of Interest algorithms for reconstruction, as proposed for HL-LHC.

Computational challenge

 The effects of the beam-induced background are impossible to predict without a full detector simulation of signal + background as it is now.

Tests done on Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz (8x)

Goals and Conclusions

Full detector simulation works correctly

We demonstrated:

 $H \rightarrow b\overline{b}$ reconstructed properly without machine background

In the absence of the beam-induced background physical performance are at the LHC level (without detector optimization!)

Goals: Simulate a signal + background sample

Obtain efficiencies and resolutions as a function of the kinematic

Apply them to a parametric simulation (as example Delphes)

A big effort is needed on detector optimization design, simulation, reconstruction algorithms implementations and on the full development of a computing framework suitable for this brand new machine.

Obtain a realistic estimation of the precision on any measurement/search @Muon Collider

