
The COSY Synchrotron in Jülich

Andreas Lehrach, FZ Jülich & RWTH Aachen

Forschungszentrum Jülich

At a Glance

Forschungszentrum Jülich focuses on use-inspired basic research. It faces up to the challenges of the present and pursues research for a future worth living. As a member of the Helmholtz Association, Forschungszentrum Jülich is among the major interdisciplinary research centres in Europe.

1.46 funding turnover at Project Management Jülich in billions of euros

82 new patent applications

of these applications European or international

40

354

collaborations with industry


4 new JARA Institutes scl

partnerships with graduate schools/research training groups for doctoral researchers' gualifications

18

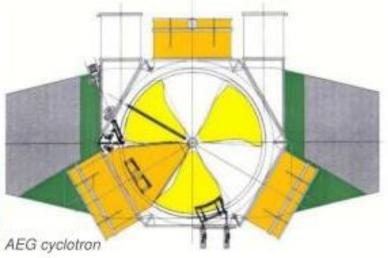
Institute for Nuclear Physics

The **Institut für Kernphysik** (IKP) is conducting basic research in the fields of nuclear and elementary particle physics. The physics program addresses two big questions of modern physics, namely the matter-anti-matter asymmetry of our universe and a basic understanding of the building blocks matter is comprised of.

The major part of the experimental program is conducted at the cooler synchrotron and storage ring COSY, with its capability to provide phase-space cooled proton and deuteron beams with momenta up to 3.7 GeV/c to internal as well as external target stations, is a unique facility on a world-wide scale.

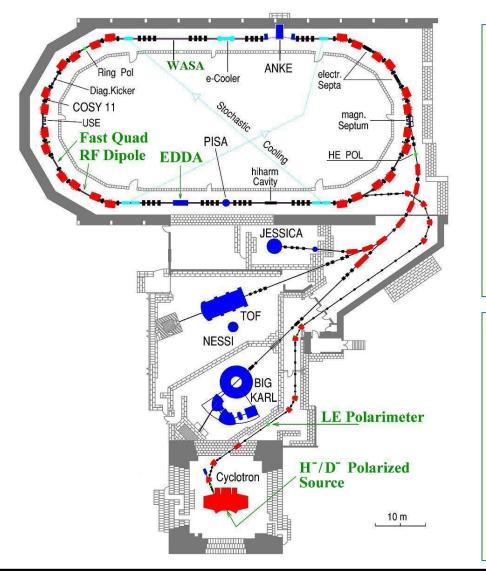
Divisions

- Experimental Hadron Structure (IKP-1)
- Experimental Hadron Dynamics (IKP-2)
- Theory of the strong interactions (IKP-3/IAS-4)
- Large Scale Nuclear Physics Equipment (IKP-4)


IKP has roughly 120 coworkers

COSY Injector

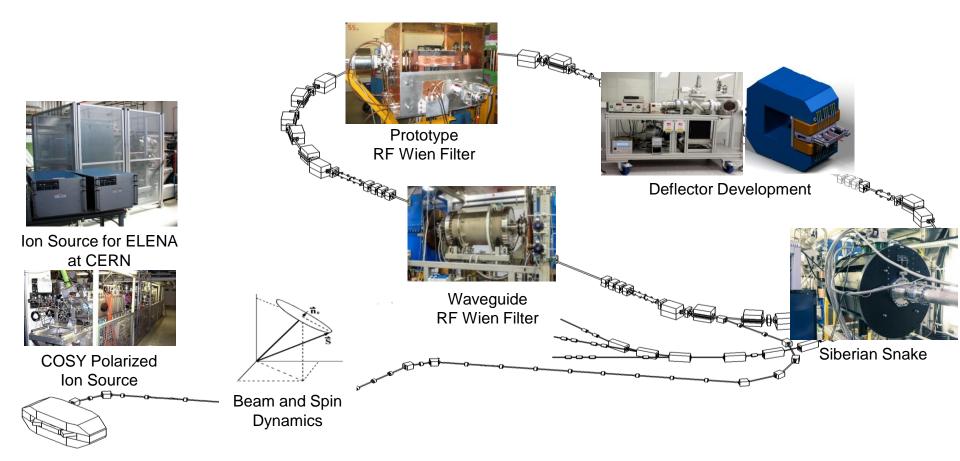
routinely 45 MeV H⁻ and 75 MeV D⁻ for COSY with 20 ms stripping injection/cycle AEG design Request for quote: 1961 First internal beam: 1968 Upgrade for COSY: 1990 Pole diameter 3.3 m / 700 t iron $\langle B \rangle_{max} = 1.35 T B_{hill} = 1.97 T$ 20 - 30 MHz (h=3) 22.5-45 MeV/A2-4.5 keV/A injection


3 ion sources (2 multicusp +pol. CBS)

COSY Facility

COSY Accelerator Facility

lons: (unpol. and pol.) p and d			
Momentum:		.7 GeV/c for p .7 GeV/c for d	
Circumference:		184 m	
Experimental areas:		4 internal 3 external	


Beam cooling:

- Electron cooling at injection beam accumulation high-brightness beams
- Stochastic cooling above 1.5 GeV/c luminosity preservation

Beam Physics Pellet Target 100 kV Electron Cooler SQUID Beam **Position Monitor Barrier Bucket Cavity Stochastic Cooling** 2 MV Electron Cooler

Accelerator component tests and beam experiments at COSY

Spin Physics

Accelerator component tests and spin experiments at COSY

COSY Parameter

General parameter	
Circumference	183.5 m
lons	(Un-)polarized protons and deuterons
Injection	Charge exchange of H ⁻ and D ⁻ ions
Momentum range	300 - 3700 MeV/c
Experimental areas	4 internal, 3 external
Extraction mechanism	Kicker extraction, stochastic extraction
Cycle length	10 s to several hours, depending on experimental requirements
Internal targets	Fiber targets, gas cluster targets, polarised atomic beam targets
External targets	Solid state targets, liquid hydrogen and deuterium targets
Polarization	Up to 75%
Electron cooling	Transverse and longitudinal cooling, used at injection energy
Stochastic cooling	Transverse and longitudinal cooling, used above 1.5 or 3.0GeV/c (p/d)
Beam Current Measurement	Beam Current Transformer (BCT) for DC beam intensity control
Beam Position Measurement	Beam Position Monitor (BPM), 30 horizontal and vertical BPMs used for closed orbit measurement
Tune measurement	Dynamic tune measurement during acceleration with noise excitation; Schottky pickup and stripline for flattop measurements
Beam Profile Measurement	Residual gas profile monitor for transverse beam profile

Ion Optics and Machine Cycles

Ion optical conditions	
Gamma transition	$g_{tr} = 2.2$ at injection, shifted dynamically during acceleration to about 10
Betatron Tunes	Q _{hor} ~ 3.6, Q _{vert} ~ 3.55
Max. Twiss parameters	b-functions: 30m in both planes; D _{max} = 15 m
Min. Twiss parameters	b-functions: 2m in both planes; $D_{min} = 0 m$
Transverse emittances	15-30 π mmm mrad (geom., 3σ uncooled at injection), below 3 π mm mrad (geom., 3σ cooled at injection)
Momentum resolution	$\Delta p/p = 10^{-3}$ (uncooled) to 10^{-4} (cooled)
Internal experiments	$b_{hor} = 2 \text{ to } 5 \text{ m}; b_{vert} = 2 \text{ to } 5 \text{ m}; D = 0 \text{ m} \text{ (straight sections)}$
External experiments	$b_{hor} < 1 m; b_{vert} < 1 m$

Type of beam preparation			
Beam injection and accumulation	20 ms		
Cooling and single injection	10 s		
Cooling and stacking injection	1 to 15 min		
Acceleration	2 to 3 s		
Beam preparation for experiments	up to 3 s		
Extraction	20 s to 15 min		
Magnet down ramp	2 to 3 sec		

Number of Particles (Peak Values)

Operation mode	
Unpolarized protons:	
Single injection	1.5·10 ¹¹
Single injection with electron cooling	1.4·10 ¹⁰ (10s)
Multiple injection with electron cooling and stacking	5.0·10 ¹⁰ (1-5min)
Polarized protons:	
Single injection	1.0·10 ¹⁰
Single injection with electron cooling	5.0·10 ⁹ (10s)
Multiple injection with electron cooling and stacking	1.2·10 ¹⁰ (15min)
Unpolarized deuterons:	
Single injection	1.3·10 ¹¹
Single injection with electron cooling	4.0-10 ¹⁰ (10s)
Polarized deuterons:	
Single injection	6.0·10 ⁹