Structure of Heavy Nuclei and associated.

 R\&CD
Decay spectroscopy of ${ }^{255} \mathbf{R f}$

Rikel CHAKMA
Supervisors: Araceli LOPEZ-MARTENS and Karl HAUSCHILD

CSNSM, Orsay
Université Paris-Saclay

Outline

1. Introduction and Motivation
2. Production
3. Experimental Setup
4. Calibration and the Experiment
5. Analysis Method
6. Preliminary results
7. Geant4 Simulation
8. Conclusion

${ }^{255} \mathbf{R f}$

Proton

number Z

PERIODIC TABLE OF ELEMENTS

Rf is the first transactinide element
Rf is a superheavy nucleus

Superheavy: ${ }^{255} \mathbf{R f}$

Minimum time required
for hydrogen molecule to
form
Axial elongation
R. D. Herzberg, The chemistry of superheavy elements $2^{\text {nd }}$ Edition, P. 89

Predicted shell structure around IN ~152 and Z~100

R. Chasman et al., Rev. Mod. Phys. 49, 833 (1977)

proton

What is known about ${ }^{255} \mathbf{R f}$?

- In 1975, Ogennessian's group in Dubna measured $T_{1 / 2}>1 \mathrm{~s}$
- In 2006, GSI group studied its decay and found $T_{1 / 2}=1.68 \pm 0.09 \mathrm{~s}$
- In 2015, GSI group populated an isomeric state from the alpha decay of ${ }^{259} \mathrm{Sg}$

Ch. Theisen et al., Nucl. Phys. A 944 (2015) 333

Production : fusion-evaporation reaction

1 out of $\sim 10^{11}$ beam particles leads to a reaction of interest
\Rightarrow Need to select the needle in the hay stack!

ANR SHELS@Dubna

VASSILISSA (Energy filter)

\rightarrow SHELS (velocity filter)
Gain in transmission, especially for asymmetric reactions
A. Popeko et al., Nucl. Instr. Meth. B 376 (2016) 140

$\overline{A N R}$
 GABRIFLA@SHFLS

ANR-CLODETTE (2013-2017) \& RFBR

Detectors

- Implantation detector 128×128 strips $=16384$ pixels
- 4 sides $\times 2$ tunnel detectors $=8 \times(16+16)=256$ strips
- 4 High purity Ge side detectors and 1 clover with 4 crystals
- 5 BGO shields surrounding the Ge detectors
- Since it is a triggerless system all the signals are recorded.
- Each signal has a time stamp, channel number and other markers.

Decay types

Gamma decay
 $\rightarrow+$
$\rightarrow-$

 $\rightarrow-1$ CH_{-1} | -1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

$\rightarrow+$ $\rightarrow 1$. $-1 \quad-\quad$ - $1-1-10$ $\longrightarrow \rightarrow$ $\rightarrow+1$						
						\rightarrow $\rightarrow>$

Each: 16×16 strips

Experiment

Calibration: (Source and In beam)

- Alpha: ${ }^{170} \mathrm{Er}\left({ }^{50} \mathrm{Ti}, 4 \mathrm{n}\right){ }^{216} \mathrm{Th}$
- Electron: ${ }^{133} \mathrm{Ba}$ Source
- Gamma: ${ }^{164} \mathrm{Dy}\left({ }^{50} \mathrm{Ti}, 2 \mathrm{n}\right){ }^{212} \mathrm{Ra}$

2 Experiments (2 Gains x 256 DSSD +256 Tunnel +8 Gamma $)=1552$ channels

Main Reaction

${ }^{207} \mathrm{~Pb}\left({ }^{50} \mathrm{Ti}, 2 \mathrm{n}\right){ }^{255} \mathrm{Rf}$

2 Runs: May and Oct 2017 (veto removed), each lasted about 3 weeks
Beam energy $\simeq 250 \mathrm{MeV}$, intensity $\simeq 8.5$ $\mathrm{e} \mu \mathrm{A}==\sim 400 \mathrm{pnA}$

Methodology: Position and time correlation

Genetic correlation in every pixel of the DSSD

Recoil \Rightarrow Decay1 \Rightarrow Decay2 \Rightarrow Decay3

Range in Silicon
alpha (8 MeV) $\sim 48 \mu \mathrm{~m}$
fission fragment (120 MeV) $\sim 18 \mu \mathrm{~m}$
Pixel size $760 \times 760 \mu \mathrm{~m}^{2}$

Alpha generation	ggmother if any	gmother if any	mother if any	Ref. Alpha
Entry i in the correlation tree	g: grand gg: great-grand		tunnel	tunnel

[^0]Lifetime fit of alpha decay channel

What do we see in the data

recoil decay correlation

Lifetime fit of fission decay channel

Total number of ${ }^{255} \mathrm{Rf}$ produced ≈ 7560 in 2 Runs

Results: ${ }^{\mathbf{2 5 5} \mathbf{R f}}$
γ following ER before ${ }^{255} \mathrm{Rf}$

Ongoing work: (Trying to figure out the decay scheme)

2 (and maybe 3 ?) isomers

1. Gamma-gamma coincidences
2. Gamma-ICE correlations \qquad E2>=300
3. electromagnetic nature of transitions from conversion electrons \& intensity of K-X rays observed

Results: ${ }^{251}$ No

$\alpha-\gamma$ coincidence matrix

Is there evidence of $5 / 2+$ state in our data?

Geant4 Simulation: Why?

1. Test level scheme and interpret the experimental results
2. summing problem

Current limitation of Geant4: Auger electrons

No atomic deexcitation for element Z > 100 i.e. no ICE, no Fluorescence and no

What did I do?

- Modified some low energy electromagnetic classes in Geant4 source code
- Added Binding Energy and Electronic Shell Data up to Rf
- Added Fluorescence Data and Auger Data up to Rf
- References: 1. Table of isotopes 2. Handbook of chemistry and physics

Does it work now?

Test with ${ }^{251}$ No : successful, Enough for my need.

Conclusion and Perspectives

- We see two (or maybe 3) isomers in ${ }^{255} \mathrm{Rf}$.
- Need further investigation to figure out the decay scheme of these states and establish (E^{*}, I, π)
- ${ }^{251}$ No level scheme by GSI group: complete???
- Geant4 simulation to reproduce the experimental spectra (test of level schemes)
- Possibly meet a theoretician for some calculation

Goal: Determine the microscopic nature of the states in 255Rf (and in particular the isomers)

Remarks:

1. Could not participate in my thesis Experiment
2. But, participated in other similar experiments such as in the production of ${ }^{\mathbf{2 5 6},{ }^{257} \mathbf{R f} \text {, }}$ 250, 252, 254, ${ }^{256}$ No
3. On the R\&D side I participated once in preamplifier tests and will get more involved in the future

Backup

How do these events appear in our Electronics

2 Gains

2 Resolutions in our ADC

1. 13 bits: $2^{13}=8192$

Resolution determines how
2. 12 bits : $2^{12}=4096$ small an input can be resolved

We want to detect

1. Internal conversion electrons \sim few hundreds keV
2. Alpha $\sim 7-10 \mathrm{MeV}$
3. Fission ~ more than 200 MeV

Small signal need more amplification (High Gain) and use 13bits resolution of ADC

Need less amplification (Low
Gain) and use the remaining
12bits resolution
Raw DSSD low gain

Results: ${ }^{251}$ No
$\alpha-\gamma$ coincidence matrix

[^0]: Look forward and backward in time

