
CERN Program Library

CERNLIB
Short Writeups

Application Software and Databases

Computing and Networks Division

CERN Geneva, Switzerland

Copyright Notice

CERNLIB – CERN Program Library Short writeups

c Copyright CERN, Geneva 1996

Copyright and any other appropriate legal protection of these computer programs and associated docu-
mentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written consent
of the Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific insti-
tutes associated with the CERN experimental program or with whom CERN has concluded a scientific
collaboration agreement.

CERNwelcomes comments concerning the Program Library, but undertakes no obligation for the main-
tenance of the programs, nor responsibility for their correctness, and accepts no liability whatsoever
resulting from the use of its programs.

Requests for information should be addressed to:

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person: Jamie Shiers /CN
Technical Realization: Michel Goossens /CN

Edition – June 1996

Introduction

The CERN Program Library is a large collection of general-purpose programs maintained and offered in
both source and object code form on the CERN central computers. Most of these programs were developed
at CERN and are therefore oriented towards the needs of a physics research laboratory. Nearly all, however,
are of a general mathematical or data-handling nature, applicable to a wide range of problems.
The library is heavily used at CERN and it is distributed in binary or source form to several hundred labora-
tories and computer centres outside CERN.

Contents and Organization of the Library

The library contains about 2500 subroutines and complete programs which are grouped together by logical
affiliation into little over 450 program packages. 80% of the programs are written in Fortran77 and the
remainder in C and in assembly code, usually with a FORTRAN version also available.
A unique code is assigned to each package. This code consists of one letter and three or four digits, the
letter indicating the category within our classification scheme. A package consists of one or more related
subprograms with one package name and one or more user-callable entry names, all described briefly in a
“Short write-up”, and if necessary, an additional “Long write-up”.
A complete list of program packages with titles and entries sorted by class is given at the beginning of this
manual. Then follow all the short write-ups, while the Index at the end of the volume shows the page number
(as printed near the inner margin) were a package is defined (in boldface) or referenced.

Acknowledgements

K.S. Kölbig has done most of the work for having this manual nicely formated, particularly in the area of
getting the many mathematical formulae correct.

About the documentation

This document has been produced using LATEX1 with the class and the package, devel-
oped at CERN. A printable version of each of the routines described in this manual can be obtained as a
compressed PostScript file from CERN by anonymous ftp. For instance, if you want to transfer the descrip-
tion of routine E112, then you would type the following (commands that you have to type are underlined): 2

1Leslie Lamport, LATEX – A Document Preparation System, second edition. Addison–Wesley, 1994
2You can of course issue multiple commands in one run. If you do not have the utility on your machine, you can

get an non-compressed, ready-to-print version by omitting the suffix, i.e. in the example above, .

1 Front – i

Front – ii 2

Chapter 1: Catalog of Program Packages and Entries

Elementary Functions

Prime Numbers and Prime Factor Decomposition
Binomial Coefficient
Arc Tangent Function
Hyperbolic Arcsine
Value of a Polynomial
Integral of type

Equations and Special Functions

Zero of a Function of One Real Variable
Numerical Solution of Systems of Nonlinear Equations
Zeros of a Real Polynomial
Zero of a Function of One Real Variable
Roots of a Cubic Equation
Roots of a Quartic Equation
Zeros of a Complex Polynomial
Number of Zeros of a Complex Function
Error Function and Complementary Error Function
Normal Frequency Function
Gamma Function for Positive Argument
Gamma Function for Real Argument
Logarithm of the Gamma Function
Gamma Function for Complex Argument
Logarithm of the Gamma Function for Complex Argument
CoulombWave, Bessel, and Spherical Bessel Functions for Complex Argument(s) and
Order
Bessel Functions J and Y of Orders Zero and One
Modified Bessel Functions I and K of Orders Zero and One
Riemann Zeta Function
Psi (Digamma) and Polygamma Functions
Psi (Digamma) and Polygamma Functions for Complex Argument
Jacobian Elliptic Functions sn, cn, dn
Jacobian Elliptic Functions sn, cn, dn for Complex Argument
Nielsen’s Generalized Polylogarithm
Fresnel Integrals
Fermi-Dirac Function
Arctangent Integral
Clausen Function

3 Catalog – 1

Modified Bessel Functions I and K of Order 1/4, 1/2 and 3/4
Whittaker Function M of Complex Argument and Complex Indices
Legendre and Associated Legendre Functions
Conical Functions of the First Kind
Dilogarithm Function
Incomplete Gamma Functions
Complex Error Function
Sine and Cosine Integrals
Exponential Integral
Complex Exponential Integral
Dawson’s Integral
Modified Bessel Functions I and K of Order 1/3 and 2/3
Modified Bessel Functions K of Certain Order
Struve Functions of Orders Zero and One
Bessel Functions J and I with Positive Argument and Non-Integer Order
Bessel Functions J with Complex Argument and Non-Integer Order
Zeros of Bessel Functions J and Y
Elliptic Integrals of First, Second, and Third Kind
Complete Elliptic Integrals of First, Second, and Third Kind
Elliptic Integral for Complex Argument
Jacobian Theta Functions

Integration, Minimization, Non-linear Fitting

Integration by Simpson’s Rule
Adaptive Gaussian Quadrature
Adaptive Gaussian Quadrature
Cauchy Principal Value Integration
Integration over a Triangle
Gaussian Quadrature with Five- and Six-Point Rules
N-Point Gaussian Quadrature
Trapezoidal Rule Integration with an Estimated Error
Gaussian Quadrature for Multiple Integrals
Adaptive Complex Integration Along a Line Segment
Adaptive Multidimensional Monte-Carlo Integration [Obsolete]
Adaptive Quadrature for Multiple Integrals over -Dimensional Rectangular Regions
Multidimensional Integration or Random Number Generation [Obsolete]
First-order Differential Equations (Runge-Kutta)
First-order Differential Equations (Gragg–Bulirsch–Stoer)
First-order Differential Equations (Runge–Kutta–Merson)
Second-order Differential Equations (Runge–Kutta–Nyström)

Catalog – 2 4

Elliptic Partial Differential Equation
Fast Partial Differential Equation Solver
Numerical Differentiation
Constrained Non-Linear Least Squares and Maximum Likelihood Estimation
Minimum of a Function of One Variable
Function Minimization and Error Analysis
Fitting Chisquare and Likelihood Functions [Obsolete]
Solution of a Linear Fredholm Integral Equation of Second Kind
Real Fast Fourier Transform
Complex Fast Fourier Transform
Real Fast Fourier Transform
Complex Fast Fourier Transform

Interpolation, Approximations, Linear Fitting

Polynomial Interpolation
Maximum and Minimum Elements of Arrays
Largest Absolute Number in Scattered Vector
Multidimensional Linear Interpolation
Function Interpolation
Binary Search for Element in Ordered Array
Least Squares Polynomial Fit
Least Squares Polynomial Fit [Obsolete]
Polynomial Splines / Normalized B-Splines
Cubic Splines and their Integrals
Solution of Overdetermined Linear System in the Chebychev Norm
Constrained and Unconstrained Linear Least Squares Fitting
Least-Squares Fit to Straight Line
Least-Squares Fit to Parabola [Obsolete]
Chebyshev Series Coefficients of a Function
Summation of Chebyshev Series
Conversion of Chebyshev to Power and Power to Chebyshev Series
Summation of Trigonometric Series

Matrices, Vectors and Linear Equations

Linear Algebra Package
Elementary Vector Processing
Elementary Matrix Processing
Matrix Multiplication
Linear Equations, Matrix Inversion
Repeated Solution of Linear Equations, Matrix Inversion, Determinant

5 Catalog – 3

Symmetric Positive-Definite Linear Systems
Rotate a Three-Dimensional Polar Coordinate System
TC Matrix Manipulation Package [Obsolete]
Manipulation of Triangular and Symmetric Matrices
Scalar Product of Two Space-Time Vectors
Vector Product of Two 3-Vectors
Rotating a 3-Vector
Vector Algebra
Search Operations on Sparse Vectors
Bit Vector Manipulation Package
Direct or Tensor Matrix Product
Banded Linear Equations
Linear Homogenous Inequalities

Statistical Analysis and Probability

Upper Tail Probability of Chi-Squared Distribution
Inverse of Chi-Square Distribution
Kolmogorov Distribution
Kolmogorov Test
Student’s T-Distribution and Its Inverse
Inverse of Gaussian Distribution
Gamma Distribution
Landau Distribution
Approximate Vavilov Distribution and its Inverse
Vavilov Density and Distribution Functions
Random Number Generator [Obsolete]

Operation Research Techniques and Management Science

Linear Optimization Using the Simplex Algorithm
Assignment Problem

Input/Output

EP Standard Format Input/Output Package
KUIP - Kit for a User Interface Package
Format-Free Input Processing [Obsolete]

Output and Graphical Data Presentation

Print Large Characters
Print Banner Text
Reasonable Intervals for Histogram Binning

Catalog – 4 6

Executive Routines

COMIS - Compilation and Interpretation System

Source Code Maintenance

Data Handling

Sort One-Dimensional Array

Sort One-Dimensional Array into Itself

Sort One-Dimensional Character Array into Itself

Sort Rows of a Matrix

Sort Rows of a Matrix

Find Power-of-Ten Scale for Printing

Conversion To and From IEEE Number Format

Portable Conversion Between Type CHARACTER and Type INTEGER

Concentrate and Disperse Character Strings [Partially obsolete]

Package for Handling Bits and Bytes

Handling Packed Vectors of Bytes

Increment a Byte of a Packed Vector

Unpack Full Words into Bytes

Pack/Unpack Continuous Byte-strings

Search for Byte-Content

Number of One-Bits in a Word

Convert Between Character String and Packed ASCII Form

Utility Routines for Character String Parsing and Construction

Utility Package for Character Manipulation

Fast VAX Byte Inversion

Pack Bytes into Full Words

Set or Retrieve a Bit in a String

Move Bit String

Set or Retrieve a Bit String

Handling Bits and Bytes, Bit Zero the Least Significant

Fortran Emulation of VM/CMS NAMEFIND Command

Locating a String of Same Words

Decoding Options Characters

Locate the One-Bits of a Word or an Array

Occupied Length of a Character String

Find One-Bits in a String

7 Catalog – 5

Debugging, Error Handlng

Error Processing for Sections A-H of KERNLIB [Partially obsolete]
Error Processing for MATHLIB
Address of a Variable
Detect Indefinite and Infinite in an Array
Print Trace-Back
Memory Dump

Service or Housekeeping Programming Aids

Dynamic Data Structure and Memory Manager
High Level Interface to Graphics and Zebra
PAW - Physics Analysis Workstation Package
SIGMA - System for Interactive Graphical Mathematical Applications
Distributed File and Tape Management System
Client Server Routines and Utilities
Distributed Database Management System
Dynamic Memory Management [Obsolete]
Indent Fortran Source
FLOP - Fortran Language Oriented Parser
Fortran 77 to Fortran 90 source form conversion tool
Wylbur Phoenix - a Line Editor for ASCII Text Files [Obsolete]

Magnet and Beam Design, Electronics

Solution of Poisson’s or Laplace’s Equation in Two-Dimensional Regions

QuantumMechanics, Particle Physics

Lorentz Transformation
Lorentz Transformations
Wigner 3-j, 6-j, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients
Clebsch-Gordan Coefficients in Rational Form
Beta-Term in Wigner’s D-Function

Random Numbers and General Purpose Utilities

Uniform Random Numbers [Obsolete]
Arrays of Uniform Random Numbers [Obsolete]
Uniform Random Number Generator
Uniform Random Number Generator
Uniform Random Numbers of Guaranteed Quality
Double Precision Uniform Random Numbers
Gaussian-distributed Random Numbers

Catalog – 6 8

Correlated Gaussian-distributed Random Numbers
Random Three-Dimensional Vectors [Obsolete]
Random Three-Dimensional Vectors
Gamma or Chi-Square Random Numbers
Poisson Random Numbers
Binomial Random Numbers
Multinomial Random Numbers
Random Numbers According to Any Histogram
Random Numbers According to Any Histogram [Obsolete]
Random Numbers According to Any Function [Obsolete]
Random Numbers According to Any Function
Permutations and Combinations
Preset Parts of an Array
Copy an Array
Copy a Scattered Vector
Search a Vector for a Given Element
Adjusting an Angle to Another Angle
Find Compatible Node-Nets in an Incompatibility Graph
Volume of Intersection of a Circular Cylinder with a Sphere

High Energy Physics Simulation, Kinematics, Phase Space

Transport, Second-Order Beam Optics
Beam Transport Simulation, Including Decay
General Monte-Carlo Phase-Space
N-Body Monte-Carlo Event Generator

Statistical Data Analysis and Presentation

Find Histogram-Channel
Statistical Analysis and Histogramming
HPLOT : HBOOK Graphics Interface for Histogram Plotting

Miscellaneous System-Dependent Facilities

Print KERNLIB Version Numbers
Job Time and Date
Calendar Date Conversion
Usage Monitor for VAX/VMS
Abnormal Termination of Fortran Programs
Intercept a Fortran Abend on IBM
Routines to Handle Control-C Interrupts on Vax
Restart of Next Event

9 Catalog – 7

Calling a Subroutine by its Address [Obsolete]
Identify Job as Interactive
Identify Job as Running in Batch Mode
Short List Reading and Writing
Returns Command Line Arguments
Immediate Interface Routines to the C Library
Get the Name of the Executing Module
Convert File-name to and from UNIX Syntax
VAX Fortran Interface for Reading and Writing ’Foreign’ Tapes
Random Access I/O Using Keywords [Obsolete]
Handle Fixed-length Records on Unix Streams
Handle Unix Disk Files
Terminal Dialog Routines

Catalog – 8 10

PRMFCT CERN Program Library B002

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.11.1995
Language : Fortran Revised:

Prime Numbers and Prime Factor Decomposition

Subroutine subprogram

sets the first prime numbers into an array;

performs the decomposition of a positive number into its prime factors:

performs the decomposition of the factorial of a positive number into its prime factors:

Note that this allows in particular to handle quotients of factorials of rather large numbers in an exact way.

Structure:

subprogram
User Entry Names:
Files Referenced:

Usage:

Sets the first prime numbers into an array.

() The number of prime numbers requested.

() One-dimensional array of length . On exit, , () contains
the -th prime numbers , where

() One-dimensional array of length . On exit, , () contains
the value .

() Contains, on exit, the number .

Performs the decomposition of () or () into its prime factors.

() The number itself () or its factorial () to be decomposed into
prime factors.
() One-dimensional array of length . On exit, , () contains
the -th prime numbers , where .

() One-dimensional array of length . On exit, , () contains
the power corresponding to the prime number .

() Contains, on exit, the index defined by and for .

11 B002 – 1

Restrictions:

.
or .

Error handling:

Error and and .
Error out of range.
In both cases, and , () are set to zero and a message is written on

, unless subroutine (N002) has been called.

B002 – 2 12

RBINOM CERN Program Library B100

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 15.11.1995

Binomial Coefficient

Function subprograms and calculate the binomial coefficient

for real and integer . Function subprogram calculates the binomial coefficient only for integer
.

On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: , ,
Obsolete User Entry Names:
Files Referenced:

Usage:

In any arithmetic expression,

, or

has the value of the binomial coefficient. is of type , is of type
and has the same type as the function name. and are of type .

Restrictions:

Function subprogram can compute only binomial coefficients which lie in the integer range of the
machine.

Accuracy:

Full machine accuracy.

Error handling:

If the result of would lie outside the integer range of the machine, is set equal to zero and
an error message is printed.

13 B100 – 1

ATG CERN Program Library B101

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 15.03.1993

Arc Tangent Function

Function subprogram calculates, for real arguments and , , an angle such that

and

Note that using the Fortran intrinsic function instead of would result in

Structure:

subprogram
User Entry Names:

Usage:

In any arithmetic expression,

has the value of (in radians). and are of type .

Notes:

This function subprogram is equivalent to the statement function

where .

14 B101 – 1

ASINH CERN Program Library B102

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Hyperbolic Arcsine

Function subprograms and calculate the hyperbolic arcsine

for real argument .
On CDC and Cray computers, the double precision version is not available

Structure:

subprograms
User Entry Names: ,

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 66.

15 B102 – 1

RPLNML CERN Program Library B105

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Value of a Polynomial

Function subprograms , calculate the value of the polynomial

or

for real values , whereas function subprograms , calculate the value of the polynomial

or

for complex values .
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , ,

Usage:

For (type), (type),

has, in any arithmetic expression, the value or ;
for (type), (type),

has, in any arithmetic expression, the value or .

(type according to) Arguments or , respectively.
() Degree of or .
(type according to) One-dimensional arrays of dimension where , containing the
coefficients or in or , respectively.
() Either for or for .

Method:

The Horner scheme is used.

Notes:

A reference with or different from or returns the value zero.

16 B105 – 1

RSRTNT CERN Program Library B300

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.03.1993
Language : Fortran Revised:

An integral of type

Subroutine subprograms and calculate, based on indefinite integration, the definite integral

for and , provided that for and the limits
are such that the integral converges. In particular, the Cauchy principal value is taken if and
.

On CDC and Cray computers, the double-precision version is not provided.

Structure:

subprograms
User Entry Names : ,
Files Referenced :
External References: (N002), (Z035)

Usage:

For (type), (type),

() Power of .
() Power of .
(type according to) Coefficients .
(type according to) Limits of integration .
(type according to) Contains, on exit, the value provided , the value zero other-
wise.
() Contains, on exit, the value if the integral exists in the sense described above,
the value otherwise.

Restrictions:

1. 2. ; or .

Error handling:

Error Restriction 1 is not satisfied. Error Restriction 2 is not satisfied.
In both cases, is set equal to zero and is set equal to , and a message is written on
, unless subroutine (N002) has been called.

References:

1. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, (Academic Press, New York
1980) Sect. 2.26

17 B300 – 1

RZEROX CERN Program Library C200

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.05.1990
Language : Fortran Revised: 01.12.1994

Zero of a Function of One Real Variable

Function subprograms and compute, to an attempted specified accuracy, a zero of a
real-valued function lying in a given interval , where .
On computers other than CDC or Cray, only the double precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: User-supplied subprogram

Usage:

For (type), (type),

has, in any arithmetic expression, the value .

(type according to) On entry, and must specify the end points of the search interval. Un-
changed on exit.
(type according to) On entry, must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.
() On entry, must be equal to the maximum permitted number of references to the
function within the iteration loop. Unchanged on exit.
(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
() On entry, or defines the algorithm for finding (see Method
and Notes).

Method:

Two algorithims are incorporated in this subprogram. These are described in Ref. 1 as “Algorithm M”
() and “Algorithm R” (). Both are mixtures of linear interpolation, rational interpolation
and bisection.

Accuracy:

These subprograms try to compute two numbers and lying in the interval such that

1.

2.

3.

If successful, the value of is assigned to the function name.

18 C200 – 1

Notes:

1. should be used for fairly simple functions whose evaluation is cheap in comparison with
the calculations performed in one iteration step of or .

2. should be used for more expensive functions. Convergence should be faster than for
, but the evaluation steps are more expensive.

3. For functions which have a pole near the exact zero, is recommended because of the special
character of the interpolation formula which is used.

Error handling:

1. . The function value is set equal to zero.

2. has a value other than or . The function value is set equal to zero.

3. The number of references to exceeds . The function value is set equal to the last computed
value of (see Accuracy)

For each error a message is printed.

Source:

The subprogram is based on Algol programs described in Ref. 1.

References:

1. J.C.P. Bus and T.J. Dekker, Two efficient algorithms with garanteed convergence for finding a zero of
a function, ACM Trans. Math. Software 1 (1975) 330–345.

C200 – 2 19

RSNLEQ CERN Program Library C201

Author(s) : J.J. Moré, M.Y. Cosnard Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 01.06.1989
Language : Fortran Revised: 01.12.1994

Numerical Solution of Systems of Nonlinear Equations

Subroutine subprograms and compute a vector , which approximates
an exact solution of the system of n nonlinear equations with n unknowns

These subroutines incorporate two convergence test, making use of arguments and respectively.
If , denotes the result of the current iteration, and the result of the previous iteration,
the calculation is terminated if either of the following tests is successful:

Test 1 :
Test 2 :

where the maxima are taken over
On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names :
Files Referenced :
External References: User-supplied subprogram

Usage:

For (type), (type),

() Number of equations and variables.
(type according to) One-dimensional array of length . On entry, , must
contain an estimate to a solution of the system of equations. On exit, contains the final
estimate to .
(type according to) One-dimensional array of length . On exit, , con-
tains the final value of the residual .
(type according to) Accuracy parameter for Test 1.
(type according to) Accuracy parameter for Test 2.
() Maximum permitted number of iterations, where each iteration involves N calls to the
user-supplied subroutine . The recommended value for is .
() If no intermediate results are printed.
If the values of and , are printed after each iteration.
() On exit, the value of shows the reason why execution was terminated as follows:

Unacceptable input arguments (or or .

20 C201 – 1

Test 1 is successful.
Test 2 is successful.
Test 1 and Test 2 are both successful.
Number of iterations is .
Approximate (finite difference) Jacobian matrix is singular
Iterations are not making good progress.
Iterations are diverging.
Iterations are converging, but either (i) is too small, or (ii) convergence is very slow
because the Jacobian is nearly singular near or because the variables are badly scaled.

Name of a user-supplied subprogram, declared in the calling program.
(type according to) Array containing at least elements required as working-space.

The user-supplied subprogram should be of the form

Statements which set equal to the value of without changing any other
element of array .

where and are of type .
Subroutine should not change the value of the argument unless the user wants to terminate the exe-
cution of , in which case should be set equal to a negative integer, whose value will be copied into
argument of before exit.

Method:
A modification of Brent’s method as described in Ref. 1.
Error handling:
See description of argument .

Notes:

1. Whenever possible the equations should be numbered in order of increasing nonlinearity.

2. These subroutines do not use any techniques which attempt to obtain global convergence. Conver-
gence may therefore fail to occur if the initial estimate is too far from an exact solution.

Source:
This subroutine has been adapted from the Fortran program published in Ref. 2.

References:

1. J.J. Moré and M.Y. Cosnard, Numerical solution of nonlinear equations, ACM Trans. Math. Software
5 (1979) 64–85.

2. J.J. Moré and M.Y. Cosnard, Algorithm 554 BRENTM, A FORTRAN subroutine for the numerical
solution of systems of nonlinear equations, Collected Algorithms from CACM (1980).

C201 – 2 21

RMULLZ CERN Program Library C202

Author(s) : H.-H. Umstätter Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.06.1992
Language : Fortran Revised:

Zeros of a Real Polynomial

Subroutine subprogram and compute the zeros of the polynomial

of degree with real coefficients and .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

SUBROUTINE subprograms
User Entry Names : ,
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

(type according to) One-dimensional array of dimension , where , containing the
coefficients .
() The degree .
() The maximum number of iterations permitted.
(for , for) One-dimensional array of length . On exit,
contains an approximation to the zero , listed in roughly decreasing order of .

Method:

The method of Muller (see Ref. 1) is used. This is based on iterated inverse quadratic interpolation followed
by deflation to remove each zero as found.

Accuracy:

For well-conditioned polynomials (i.e. polynomials whose zeros are not unduly sensitive to small errors
in the coefficients), the relative error of a computed zero of multiplicity is of order where
is the machine precision expressed in decimal digits. For , the approximations to the single
multiple zero are uniformly distributed on a small circle of radius of order around the exact zero.
Therefore, if the polynomial is well-conditioned, the true value of the multiple zero will be close to the
centre of this circle.

Error handling:

Error .
Error The number of iterations exceeds .
In both cases, a message is written on , unless subroutine (N002) has been called. If the
number of iterations exceeds , those zeros which have not been found are set to .

22 C202 – 1

Notes:

For difficult cases which lead to too many iterations the following transformations may be applied, singly
or together, to obtain a better-conditioned polynomial:

1. Reverse the order of the coefficients to obtain a polynomial whose zeros are .

2. If the zeros are clustered, or are too unsymmetrically positionedwith respect to the origin, compute
by synthetic division (see Ref. 3) the coefficients of the polynomial whose argument is ,
where is the arithmetic mean of the zeros. The mean of the zeros of this new
polynomial is situated at the origin, which is where the subprogram starts searching. Then, provided

for most , will be more accurate zeros.

References:

1. D.E. Muller, A method for solving algebraic equations using an automatic computer, MTAC (later
renamed Math. Comp.) 10 (1956) 208–215.

2. J.W. Daniel, Correcting approximations to multiple roots of polynomials, Numer. Math. 9 (1966)
99–102.

3. F.B. Hildebrand, Introduction to numerical analysis, McGraw-Hill, New York (1956), Section 10.9.

C202 – 2 23

RZERO CERN Program Library C205

Author(s) : T. Pomentale Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 20.04.1970
Language : Fortran Revised: 15.03.1993

Zero of a Function of One Real Variable

Subroutine subprograms and compute, to an attempted specified accuracy, a zero of a real-
valued function lying in a given interval , where .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035), user-supplied subprogram

Usage:

For (type), (type),

(type according to) On entry, and must specify the end-points of the search interval. Un-
changed on exit.
(type according to) On exit, is the computed approximation to a zero of the function .
(type according to) On exit, the value of is such that , unless an error condition is
detected (see Error Handling).
(type according to) On entry, must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.
() On entry, must be equal to the maximum permitted number of references to the
function within the iteration loop. Unchanged on exit.
(type according to) Name of a user-supplied subprogram, declared in the
calling program.

The user-supplied function subprogram must be of the form andmust set .
The argument is set by before each reference to as follows:

First reference.
Subsequent references.
Final reference, before a normal () exit.

Method:

Amixed strategy is used, based on the Muller method of parabolic interpolation supplemented by bisection.

24 C205 – 1

Accuracy:

The routine tries to compute a value such that

If this accuracy is obtained with fewer than references to the function within the iteration loop, the
subroutine exits with positive.

Error handling:

Error : . is set equal to zero and is set equal to .
Error : The number of calls to exceeds . is set equal to zero and is set to .
A message is written on , unless subroutine (N002) has been called.

C205 – 2 25

RRTEQ3 CERN Program Library C207

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.01.1988
Language : Fortran Revised: 01.12.1994

Roots of a Cubic Equation

Subroutine subprograms and compute the three roots of

for real coefficients .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

For (type), (type),

(type according to) Coefficients in .
(type according to) One-dimensional array of length . On exit, is set as described below.
(type according to) On exit, is set to the value of the discriminant of :

One real root and two complex conjugate roots , ;
Three real roots , , , where at least ;
Three distinct real roots , , .

Method:

The classical method of Tartaglia-Vieta is used. In certain cases, the solutions are improved by Newton
iteration.

Accuracy:

Depends on the coefficients . The values of , , and of may be inaccurate if is
very small, even in the case of “exact” coefficients.

26 C207 – 1

RRTEQ4 CERN Program Library C208

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.01.1988
Language : Fortran Revised: 01.12.1994

Roots of a Quartic Equation

Subroutine subprograms and compute the four roots of

for real coefficients .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
External References: (C207), (C207)

Usage:

For (type), (type),

(type according to) Coefficients in .
(for , for) One-dimensional array of length . On exit,
contains the roots of .

(type according to) On exit, is set to the value of the discriminant of the cubic resolvent
of .
() On exit, specifies the type of the roots:

Four real roots in ;
Two pairs of complex conjugate roots, one pair in , , the other in , ;
Two real roots in , , and one pair of complex conjugate roots in , .

Method:

The equation is solved by the classical procedure, i.e., by solving its cubic resolvent and by combining the
square roots of these solutions appropriately.

Accuracy:

Depends on the coefficients . The values of and of may be inaccurate if is
very small. may be uncertain in such cases.

27 C208 – 1

CPOLYZ CERN Program Library C209

Author(s) : T. Pomentale Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.06.1992
Language : Fortran Revised:

Zeros of a Complex Polynomial

Subroutine subprograms and compute the zeros of the polynominal

of degree with complex coefficients and .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

(type according to) One-dimensional array of dimension , where , containing the
coefficients .
() The degree .
() The maximum number of iterations permitted.
(type according to) One-dimensional array of length . On entry, must contain
starting approximations for the zeros . If no starting approximations are available, the should
be set to zero. On exit, contains an approximation to the zero .
(for , for) One-dimensional array of dimension . On
exit, contain an estimated radius of a circle centered at within which the
true zero is expected to lie.

Notes:

Note that, because of accumulation of rounding errors, unreliable results can be obtained for large even
for well-conditioned polynomials.

Error handling:

Error .
Error The number of iterations exceeds .
Error An estimated radius cannot be computed for a certain value of .
In all cases, a message is written on , unless subroutine (N002) has been called.

References:

1. T. Pomentale, Homotopy iterative methods for polynomial equations, J. Inst. Maths. Applics. 13
(1974) 201–213.

28 C209 – 1

NZERFZ CERN Program Library C210

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Number of Zeros of a Complex Function

Function subprogram calculates the number of zeros of a complex function inside a closed
polygon in the complex -plane. must be analytic inside this polygon.

Structure:

subprogram
User Entry Names:
Files Referenced :
External References: (N002), (Z035), User-supplied subprogram

Usage:

In any arithmetic expression,

has a value equal to the number of zeros inside the defined polygon.

Name of a user-supplied subprogram, declared in the calling program. This
subprogram must set .
One-dimensional array of length containing the vertices of the polygon in the -plane.
Number of vertices.

, and (in) are of type on computers other than CDC or Cray, and of type on
CDC and Cray computers.

Method:

The logarithmic residual (winding number) of is found by integrating numerically along
the edges of the polygon.

Notes:

No zero or singularity of should lie on or too near the polygon. The edges of the polygon should not
cross each other. Numerically unstable functions (e.g. polynomials of high degree) can result in unreliable
values or in timing problems.

Error handling:

Error The integration is not successful. This often indicates that the polygon passes through or too
near to a zero or singularity. The function value is set to zero, and a message is written on , unless
subroutine (N002) has been called.

29 C210 – 1

ERF CERN Program Library C300

Author(s) : G.A. Erskine Library: MATHLIB or Fortran Compiler Library
Submitter : K.S. Kölbig Submitted: 20.04.1970
Language : Fortran Revised: 07.06.1992

Error Function and Complementary Error Function

Function subprograms , and , compute the error and complementary error functions

defined for all values of the real argument .
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , ,

Usage:

In any arithmetic expression,

or has the value erf(),
or has the value erfc(),

where , , are of type , , , are of type , and has the same type
as the function name.

Method:

Computation by rational Chebyshev approximation.

Accuracy:

The system-supplied versions (see Notes) have full machine accuracy. The CERN-supplied versions of
and have full single-precision accuracy (slightly less on CDC and Cray computers). The CERN-

supplied versions of and have an accuracy of 15 significant digits.

Notes:

On some computers, one or both of these functions is available in the system-supplied Fortran mathematical
library. In this case the system-supplied version will be loaded instead of the CERN version.

References:

1. W.J. Cody, Rational Chebyshev approximations for the error function, Math. Comp. 22 (1969) 631–
637.

30 C300 – 1

FREQ CERN Program Library C301

Author(s) : G.A. Erskine Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.06.1992
Language : Fortran Revised:

Normal Frequency Function

Function subprograms and compute the normal frequency function

defined for all values of the real argument .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,

Usage:

In any arithmetic expression,

or has the value freq(),

where is of type , is of type , and has the same type as the function
name.

Method:

Computation by rational Chebyshev approximation for the error function, using the formula

Accuracy:

has full single-precision accuracy (slightly less on CDC and Cray computers). has an accuracy
of 15 significant digits.

References:

1. W.J. Cody, Rational Chebyshev approximations for the error function, Math. Comp. 22 (1969) 631–
637.

31 C301 – 1

GAMMA CERN Program Library C302

Author(s) : K.S. Kölbig Library: MATHLIB or Fortran Computer Library
Submitter : Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Gamma Function for Positive Argument

Function subprograms , and calculate the gamma function

for real argument .
The quadruple-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: , ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

, or has the value ,

where is of type , is of type , is of type , and
has the same type as the function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

The system-supplied version (see Notes) has full machine accuracy. The CERN version of (except
on CDC and Cray computers) has full single-precision accuracy. The CERN version of ,
(and of , on CDC and Cray computers) have an accuracy which is approximately one digit
less than machine precision.

Error handling:

Error : . The function value is set equal to zero, and a message is written on unless
subroutine (N002) has been called.

Notes:

If the function or is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 4.

32 C302 – 1

GAMMF CERN Program Library C303

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06 1992
Language : Fortran Revised:

Gamma Function for Real Argument

Function subprograms and calculate the gamma function

for real argument .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. (and of on
CDC and Cray computers) has an accuracy which is approximately one digit less than machine precision.

Error handling:

Error : The function value is set equal to zero, and a message is written
on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 4.

33 C303 – 1

ALGAMA CERN Program Library C304

Author(s) : K.S. Kölbig Library: MATHLIB or Fortran Compiler Library
Submitter : Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Logarithm of the Gamma Function

Function subprograms , and compute the logarithm of the gamma function

for real argument .
The quadruple-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: , ,
Obsolete User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

, or has the value ,

where is of type , is of type , is of type , and
has the same type as the function name.

Method:

Rational approximations.

Accuracy:

The system-supplied version (see Notes) has full machine accuracy. The CERN-supplied version of
(except on CDC and Cray computers) has full single-precision accuracy. For most values of the argument
, the CERN-supplied versions of , (and of , on CDC and Cray computers)
have an accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error . The function value is set equal to zero, and a message is written on on ,
unless subroutine (N002) has been called.

Notes:

If the function or is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. W.J. Cody and K.E. Hillstrom, Chebyshev approximations for the natural logarithm of the gamma
function, Math. Comp. 21 (1967) 198–203.

2. J.F. Hart et al., Computer approximations (John Wiley Sons, New York 1968) 287.

34 C304 – 1

CGAMMA CERN Program Library C305

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 02.05.1966
Language : Fortran Revised: 15.03.1993

Gamma Function for Complex Argument

Function subprograms and calculate the gamma function

Re

for complex arguments .
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value

where is of type , is of type , and has the same type as the function
name.

Method:

The method is described in Ref. 1.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error : The function value is set equal to zero, and a message is written
on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.II, (Academic Press, New York 1969)
304–305

35 C305 – 1

CLGAMA CERN Program Library C306

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.03.1994
Language : Fortran Revised:

Logarithm of the Gamma Function for Complex Argument

Function subprograms and calculate the logarithm of the gamma function

for complex . The imaginary part Im is calculated in such a way that it is
continuous for , i.e. it is not taken mod .
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the function
name.

Method:

The method is described in Ref. 1.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:

Error : The function value is set equal to zero, and a message is written
on , unless subroutine (N002) has been called.

References:

1. K.S. Kölbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex argument, Computer Phys. Comm. 4 (1972) 221–226.

36 C306 – 1

CCLBES CERN Program Library C309

Author(s) : I.J. Thompson, A.R. Barnett Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 15.01.1988
Language : Fortran Revised: 15.11.1995

CoulombWave, Bessel, and Spherical Bessel Functions for Complex Argument(s) and
Order

Subroutine subprograms and calculate any one of the following sequences of functions:

1. Regular and irregular Coulomb wave functions
and their first derivatives with respect to , ,
or simple combination of these;

2. Spherical Bessel functions
and their first derivatives with respect to , ,
or simple combination of these (spherical Hankel functions);

3. Bessel functions
and their first derivatives with respect to , ,
or simple combination of these (Hankel functions);

4. Modified Bessel functions
and their first derivatives with respect to , ;

for complex arguments , complex order , and
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Internal Entry Names: , , , , , , ,
Files Referenced:
External References: (C306), (C306), (C317), (C317)

Usage:

For (type), (type),

(type according to) Argument .
(type according to) Argument (ignored if).
(type according to) Order of the first function in the computed sequence.
() Specifies the order of the last function in the computed sequence.
().
(type according to) One-dimensional arrays with dimension where is in each case

. On exit, each of may contain the value of a function
of order , or its first order derivative, , as specified jointly by

and .

37 C309 – 1

(type according to) One-dimensional array with dimension , where . On
exit, provided , contains the Coulomb phase shift for

.
() Specifies, in conjunction with the absolute value of , the type of functions
which are stored.
() The absolute value of specifies, in conjunction with , the type of func-
tion which are stored, and also specifies which of the arrays are in fact set to
meaningful values. The sign of specifies whether or not the functions are multiplied
by a scaling factor.
() On exit, is set to zero if no error condition is detected. Otherwise
is set as described under Error handling.
()

Suppress printing of error messages.
Print error messages.

The type of function which is stored in array depends only on , while the type of function which is
stored in array depends both on and on . Arrays and (if set) contain the first order
derivatives with respect to of the functions in and , respectively. Using the abbreviations ()

the choice of function is given by the following table:

Array
or

all values

If the phase shifts are stored in array . Otherwise is not set.
Which of arrays are in fact set is determined by according to the following table:

1, 11, 21 set set set set
2, 12, 22 set set - -

3 set - set -
4 set - - -

In both the tables above, a dash indicates that the corresponding array does not contain meaningful values
on exit. These arrays are, however, used internally as working space, and must therefore be dimensioned
correctly. The sign of specifies whether or not the functions are to be multiplied by a scaling factor,
depending only on , which will bring their values closer to unity when is large, or is small and

. The same scaling factor is applied to the first order derivatives in or as is applied to the
functions in or , respectively.

C309 – 2 38

No scaling factor.
Let Im if , Re if ; then the scaling factors for and are

Method:

The method is described in the References.

Restrictions:

See Ref. 1, in particular Sect. 4.

Accuracy:

The absolute values of the results are usually accurate to within two or three decimal digits of the machine
precision. For details of exceptions see Ref. 1, Sect. 4.

Error handling:

If an error condition is detected, is set to one of the following values and a message is printed if
.

An arithmetic error occurred during the final recursion. Correct results are available up to and
including subscript value .
One of the continued fraction calculations failed or there was an arithmetic error before any results
could be calculated.
Argument out of range.
One or more functions corresponding to could not be calculated. Some values corresponding
to may be correct.
Excessive internal cancellation probably renders the result meaningless.

Source:

This program package is a modified version of the CPC Program Library package (see Ref. 1). The
changes are formal, not computational.

References:

1. I.J. Thompson and A.R. Barnett, COULCC: A continued-fraction algorithm for Coulomb functions
of complex order with complex arguments, Comput. Phys. Comm. 36 (1985) 363–372.

2. I.J. Thompson and A.R. Barnett, Coulomb and Bessel functions of complex arguments and order, J.
Comput. Phys. 64 (1986) 490–509.

Long Write-up:

A copy of Ref. 1 is available in the Program Library Office.

39 C309 – 3

BESJ0 CERN Program Library C312

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 18.10.1967
Language : Fortran Revised: 15.03.1993

Bessel Functions J and Y of Orders Zero and One

Function subprograms , , , and , , , calculate the
Bessel functions

for real arguments , where for and .
On CDC and Cray computers, the double-precision versions etc. are not available.

Structure:

subprograms
User Entry Names: , , , , , , ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,
or has the value ,
or has the value ,

where etc. are of type , etc. are of type , and has the same type
as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument , etc. (and etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error : for or . The function value is set equal to zero, and a message is written
on unless subroutine (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 322–
324.

40 C312 – 1

BESI0 CERN Program Library C313

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Modified Bessel Functions I and K of Orders Zero and One

Function subprograms , , , and , , , calculate the
modified Bessel functions

for real arguments , where for and .
On CDC and Cray computers, the double-precision versions etc. are not available.

Structure:

subprograms
User Entry Names: , , , , , , , ,

, , , , , , ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,
or has the value ,
or has the value ,
or has the value ,
or has the value ,
or has the value ,
or has the value ,

where etc. are of type , etc. are of type , and has the same type
as the function name.

Method:

Approximation by rational functions (for , for), by an algorithm based on power
series (for), or else by truncated Chebyshev series.

Accuracy:

etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument , etc. (and etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error : for or . The function value is set equal to zero, and a message is written
on unless subroutine (N002) has been called.

41 C313 – 1

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 329,
331, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.

C313 – 2 42

RRIZET CERN Program Library C315

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Riemann Zeta Function

Function subprograms and calculate the Riemann zeta function

for real arguments , where is defined by analytic continuation for . For , has a
pole of order one.
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (C302), (C302), (N002), (Z035)

Usage:

In any arithmetic expression,

or

has the value if , and if , where is of type , is of type
, and where has the same type as the function name.

Method:

Rational Chebyshev approximation. For the reflection formula for is used.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error . The function value is set to zero, and a message is written on , unless
subroutine (N002) has been called.

References:

1. W.J. Cody, K.E. Hillstrom, and H.C. Thather, Jr., Chebyshev approximations for the
Riemann zeta function, Math. Comp. 25 (1971) 537–547.

43 C315 – 1

RPSIPG CERN Program Library C316

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions
Function subprograms and calculate either the logarithmic derivative of the gamma function
(the psi, or digamma, function)

or one of the other polygamma functions

for real arguments and .
Note that the Euler constant (also denoted by) and the Catalan constant

can be calculated by using this subprogram.
On CDC and Cray computers, the double-precision version is not available.
Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)
Usage:
In any arithmetic expression,

or has the value ,

where is of type , is of type , and where has the same type as
the function name. is of type .
Method:
Rational Chebyshev approximation (), approximation by truncated Chebyshev series (), and
functional relations.
Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.
Error handling:
Error or .
Error .
In both cases, the function value is set to zero, and a message is written on , unless subroutine

(N002) has been called.
References:

1. W.J. Cody, A.J. Strecock and H.C. Thather, Jr., Chebyshev approximations for the psi function, Math.
Comp. 27 (1973) 123–127.

2. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York, l975) 5–6.

44 C316 – 1

CPSIPG CERN Program Library C317

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.11.1995
Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions for Complex Argument

Function subprograms and calculate either the logarithmic derivative of the gamma function
(the psi, or digamma, function)

or one of the other polygamma functions

for complex arguments and .
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and where has the same type as the
function name. is of type .

Method:

The method for described in Ref. 1 is adapted accordingly.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately two
significant digit less than the machine precision.

Error handling:

Error or .
Error .
In both cases, the function value is set to zero, and a message is written on , unless subroutine

(N002) has been called.

References:

1. K.S. Kölbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex arguments, Computer Phys. Comm. 4 (1972) 221-226.

45 C317 – 1

RELFUN CERN Program Library C318

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB
Submitter : Submitted: 30.01.1980
Language : Fortran Revised: 01.12.1994

Jacobian Elliptic Functions sn, cn, dn

Function subprograms and calculate, for real argument and real modulus , the Jacobian
elliptic functions , and . The function is the inverse of the elliptic integral
of the first kind and is defined implicitly by

sn(x, k)

The functions and are defined by

This definition can be extended for (Ref. 2) by means of

where . For and these functions are elementary:

Note that for the Jacobian elliptic functions are periodic (with respect to) with period if
and if , where is the complete elliptic integral of the first kind.

On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

For (type), (type),

(type according to) The argument .

(type according to) The value of (the square of the modulus).

(type according to) On exit, .

(type according to) On exit, .

(type according to) On exit, .

46 C318 – 1

Method:

The sequence of the Gaussian arithmetic-geometric mean is used together with the Gauss transformation
and, where appropriate, the Jacobi imaginary transformation. For values , the reciprocal modulus
transformation is performed. For details see References.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, (and on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

, , where is the complete elliptic integral of the
first kind. (See entries and in (C347)).

References:

1. M. Abramowitz and I.A. Stegun, ed., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Sections 16.12 and 17.6, 9th printing with corrections, (Dover, New York
1972).

2. H.E. Salzer, Quick calculation of Jacobian elliptic functions, Comm. ACM 5 (1962) 399.

3. L.V. King, On the dirct numerical calculation of elliptic functions and integrals, Cambridge Univ.
Press (1924) 32.

4. D.J. Hofsommer and R.P. van de Riet, On the numerical calculation of elliptic integrals of the first
and second kind and the elliptic functions of Jacobi, Numer. Math. 5 (1963) 291–302.

5. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).

C318 – 2 47

CELFUN CERN Program Library C320

Author(s) : H.-H. Umstätter Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 30.01.1980
Language : Fortran Revised: 07.06.1992

Jacobian Elliptic Functions sn, cn, dn for Complex Argument

Function subprograms and calculate, for complex argument and real modulus , the
Jacobian elliptic functions , and . The function is the inverse of the elliptic
integral of the first kind and is defined implicitly by

sn(z, k)

The functions and are defined by

For and these functions are elementary:

Note that the Jacobian elliptic functions are doubly-periodic in the -plane. For details see the relevant
treatises or handbooks.
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
External References: (N002), (Z035)

Usage:

For (type), (type),

(type according to) The argument .
(for , for) The value of (the square of the modulus).
(type according to) On exit, .
(type according to) On exit, .
(type according to) On exit, .

Method:

The Jacobian elliptic functions with complex argument are computed from their representations
in terms of Jacobian elliptic functions with real arguments or (Ref. 1, formula 125.01). See also the
Short Write-up for (C318).

48 C320 – 1

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, (and on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

, where is the complementary modulus, and is the
complete elliptic integral of the first kind. (See entries and in (C347)).

Error handling:

Error . The function value is set equal to zero, and a message is written on ,
unless subroutine (N002) has been called.

References:

1. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).

C320 – 2 49

CGPLG CERN Program Library C321

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 12.09.1985
Language : Fortran Revised: 15.03.1993

Nielsen’s Generalized Polylogarithm

Function subprograms and calculate the complex-valued generalized polylogarithm function

for real arguments and integer and satisfying ; i.e., one of the
functions , , , , , , , , , . If , is real, and the imaginary
part is set equal to zero.
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , is of type for and of type
for , and where and are of type .

Method:

The method is described in Ref. 1. Note that the imaginary part of the function defined as in Ref.
1 has the opposite sign to the imaginary part of the function defined by (*). See Ref. 2.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the argu-
ment , (and on CDC and Cray computers) has an accuracy of approximately two significant
digits less than the machine precision. The loss of accuracy is greater when is very close to .

Error handling:

Error : or or . The function value is set equal to zero, and a message is
written on , unless subroutine (N002) has been called.

References:

1. K.S. Kölbig, J.A. Mignaco and E. Remiddi, On Nielsen’s generalized polylogarithms and their nu-
merical calculation, BIT 10 (1970) 38–71.

2. K.S. Kölbig, Nielsen’s generalized polylogarithms, SIAM J. Math. Anal. 17 (1986) 1232–1258.

50 C321 – 1

RFRSIN CERN Program Library C322

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.05.1987
Language : Fortran Revised: 01.12.1994

Fresnel Integrals

Function subprograms , and , calculate the Fresnel integrals

for real arguments .
On CDC and Cray computers, the double-precision versions , are not available.

Structure:

subprograms
User Entry Names: , , ,
Obsolete User Entry Names: ,

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,

where , are of type , , are of type , and has the
same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

and (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument , and (and and on CDC and Cray computers) have
an accuracy of approximately one significant digit less than the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v. II, (Academic Press New York, 1969)
328–329.

51 C322 – 1

RFERDR CERN Program Library C323

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.05.1987
Language : Fortran Revised: 01.12.1994

Fermi-Dirac Function

Function subprograms and calculate the Fermi-Dirac function

for real argument , and
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type is of type , and has the same type as the
function name. = , or or .

Method:

Rational approximation.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has, for , an accuracy of 7-10 digits
and for , an accuracy of 10 to 14 digits.

Error handling:

Error : The function value is set equal to zero, and a message is written on ,
unless subroutine (N002) has been called.

References:

1. W.J. Cody and H.C. Thacher,Jr., Rational approximations for Fermi-Dirac integrals of order ,
and , Math. Comp. 21 (1967) 30–40.

52 C323 – 1

RATANI CERN Program Library C324

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.05.1987
Language : Fortran Revised: 01.12.1994

Arctangent integral

Function subprograms and calculate the arctangent integral

Ti

for real argument .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

In any arithmetic expression,

or has the value Ti ,

where is of type , is of type , and has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 67.

53 C324 – 1

RCLAUS CERN Program Library C326

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Clausen Function

Function subprograms and calculate the Clausen function

for real arguments .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the
function name.

Method:

For , the function is approximated by truncated Chebyshev series. For outside this range, the
relations and are used.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy in the interval .
For most values of the argument , (and on CDC and Cray computers) has an
accuracy of approximately one significant digit less than the machine precision. Accuracy is lost near the
zero of at and for large values of .

References:

1. K.S. Kölbig, Chebyshev coefficients for the Clausen function , J. Comput. Appl. Math. 64
(1995) 295–297.

54 C326 – 1

BSIR4 CERN Program Library C327

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.05.1987
Language : Fortran Revised: 15.03.1993

Modified Bessel Functions I and K of Order 1/4, 1/2 and 3/4

Function subprograms , and , calculate the modified Bessel functions

and

for real arguments and . The value is permitted for the functions if
. Note that the functions are even with respect to .

On CDC and Cray computers, the double-precision versions etc. are not available.

Structure:

subprograms
User Entry Names: , , , , , , ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,
or has the value ,
or has the value ,

where etc. are of the type , etc. are of the type , and has the
same type as the function name. is of type and must have one of the values .

Method:

Approximation by rational functions (for , for), by an algorithm based on power
series (for), or else by truncated Chebyshev series. The cases are elementary.

Accuracy:

etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument , etc. (and etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error : , or , respectively, or . The function value is set equal
to zero, and a message is written on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 350,
357, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.

55 C327 – 1

CWHITM CERN Program Library C328

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.01.1988
Language : Fortran Revised: 15.03.1993

Whittaker Function M of Complex Argument and Complex Indices

Function subprograms and compute the Whittacker function

for complex arguments and complex indices , where is Kummer’s function (See Ref. 1).
The -plane is cut along the negative real axis.
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (C306), (C306), (C309), (C309),

(N002), (Z035)

Usage:

In any arithmetic expression,

or has the value

where and . is of type , is of type , and , and
have the same type as the function name.

Method:

For or equal to a negative integer, reduces to a polynomial in . For other
values, a regular Coulomb wave function is computed by using subprogram (C309) in
conjunction with functional relations.

Restrictions:

; Re if Im .

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, (and on CDC and Cray computers) has an accuracy of approximately two to
three decimal digits less than the machine precision.

Error handling:

Error : with and .
Error : .
In both cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called. An error message is also written on if the internal call to
or returns (see Short write-up for (C309)).

56 C328 – 1

References:

1. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).

2. L.J. Slater, Confluent hypergeometric functions, (University Press, Cambridge 1960)

C328 – 2 57

RASLGF CERN Program Library C330

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.05.1987
Language : Fortran Revised: 01.12.1994

Legendre and Associated Legendre Functions

Subroutine subprograms and calculate, for a given real argument , and a
given integer value of the order , a sequence of either unnormalized or normalized Legendre or
Associated Legendre functions of degree , defined by

respectively, where

is the Legendre polynominal of degree . Note that some authors use an additional factor in the
definition (1).
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

() Unnormalized functions (1),
Normalized functions (2).

(type according to) The argument .
() The order (upper index) of all functions in the computed sequence. It is permissible
for to be negative.
() Specifies the degree of the last function in the computed sequences.
(type according to) One-dimensional array of dimension () where .
On exit, , contains or as specified by . (See Notes).

Method:

The functions are for calculated by means of the standard recurrence relation.

58 C330 – 1

Restrictions:

1. .

2. or .

3. If :
if and ; (on VAX/VMS).

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Notes:

In accordance with the definitions, for .

Error handling:

Error : .
Error : and .
Error : and incompatible.
In all cases, a message is written on , unless subroutine (N002) has been called. The initial
contents of array is left unchanged.

C330 – 2 59

RFCONC CERN Program Library C331

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 01.12.1994

Conical Functions of the First Kind

Function subprograms and calculate the (real valued) conical function of the first kind

for real , and , where is the Legendre (or spherical) function of the first kind
and .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (C305), (C305), (C306), (C306),

(C312), (C312), (C312), (C312),
(C313), (C313), (C313), (C313),
(C347), (C347), (C347), (C347),
(N002), (Z035)

Usage:

For (type), (type),

has, in any arithmetic expression, the value .

(type according to) Variable .
(type according to) The imaginary part of the index, .
() Order . (or .

Method:

Either (i) series expansions based on the Gaussian hypergeometric function and evaluated by direct summa-
tion or from rational approximations, or (ii) asymptotic expressions in terms of Bessel functions. For
the conical functions (for) can be expressed in terms of complete elliptic integrals. For details see
Ref. 1.

Restrictions:

, , or .

60 C331 – 1

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers), an accuracy of not less than 10 significant
digits is usually obtained. If and are not too large the accuracy increases to about 12-13 significant
digits.

Error handling:

Error : or or and .
Error : Problems of convergence for a hypergeometric function.
In both cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

Notes:

This program is an (only formally) modified version of the CPC Program Library Package (see
Ref. 1).

References:

1. K.S. Kölbig, A program for computing the conical functions of the first kind for
and , Computer Phys. Comm. 23 (1981) 51–61.

2. M.I. Zhurina and L.N. Karmazina, Tables and formulae for the spherical functions , (Perg-
amon Press, Oxford 1966).

C331 – 2 61

RDILOG CERN Program Library C332

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 19.10.1966
Language : Fortran Revised: 01.12.1994

Dilogarithm Function

Function subprograms and calculate the dilogarithm function

Li

for real arguments .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

In any arithmetic expression,

or has the value Li ,

where is of type , is of type , and has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 67.

62 C332 – 1

RGAPNC CERN Program Library C334

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.05.1990
Language : Fortran Revised: 01.12.1994

Incomplete Gamma Functions

Function subprograms , and , calculate the incomplete gamma function

and the complementary incomplete gamma function

respectively, for real arguments and . is Kummer’s function (see Ref. 3).
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
Uses Entry Names: , , ,
Obsolete User Entry Names: ,
Files Referenced:
External References: (C304), (C304), (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,

where and are of type , and are of type , and
have the same type as the function name.

Method:

The method is described in Ref. 1.

Accuracy:

and (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the arguments, , (and , on CDC and Cray computers) have an
accuracy of approximately two significant digits less than the machine precision.

Restrictions:

For : Either (i) , or (ii) and .
For : Either (i) , or (ii) and .

63 C334 – 1

Error handling:

Error : .
Error : For and and ; for and .
Error : Problems with convergence (unlikely).
In all cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

Notes:

When speed is more important than accuracy, e.g. for applications in statistics, use (G106) for
computing . Note, however, that in this case the arguments and must be interchanged.

Source:

The subprograms are based on a Fortran program for the incomplete gamma functions published in Ref. 2.

References:

1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466–481.

2. W. Gautschi, Algorithm542, Incomplete gamma functions, CollectedAlgorithms from CACM (1979).

3. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).

C334 – 2 64

CWERF CERN Program Library C335

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Complex Error Function

Function subprograms and calculate the complex error function

for complex arguments , where .
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the function
name.

Method:

The method is described in Ref. 2.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the argu-
ment , (and on CDC and Cray computers) has an accuracy of approximately two significant
digits less than the machine precision.

Notes:

This subprogram is a modified version of the algorithm presented in Ref. 1.

References:

1. W. Gautschi, Algorithm 363, Complex Error Function, Collected Algorithms from CACM (1969).

2. W. Gautschi, Efficient Computation of the Complex Error Function, SIAM J. Numer. Anal. 7 (1970)
187–198.

3. K.S. Kölbig, Certification of Algorithm 363 Complex Error Function, Comm. ACM 15 (1972) 465–
466.

65 C335 – 1

RSININ CERN Program Library C336

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 01.12.1994

Sine and Cosine Integrals

Function subprograms , and , calculate the sine and cosine integrals

Si

Ci

for real arguments , where is Euler’s constant.
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , ,
Obsolete User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value Si(),
or has the value Ci(),

where and are of type , and are of type , and
has the same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

and (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument , , (and , on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error for or . The function value is set equal to zero, and a message is
written on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.II, (Academic Press, New York l969)
325–326

66 C336 – 1

REXPIN CERN Program Library C337

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Exponential Integral

Function subprograms and calculate the exponential integral

for real arguments . For , the real part of the principal value of the integral is taken.
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,

where and are of type , and are of type , and
has the same type as the function name.

Method:

Polynomial and rational approximations.

Accuracy:

and (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument , , (and , on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error : . The function value is set equal to zero, and a message is written on , unless
subroutine (N002) has been called.

References:

1. W.J. Cody and H.C. Thatcher,Jr., Rational Chebyshev approximations for the exponential integral
, Math. Comp. 22 (1968) 641–649.

2. W.J. Cody and H.C. Thatcher,Jr., Chebyshev approximations for the exponential integral Ei(x), Math.
Comp. 23 (1969) 289–303.

67 C337 – 1

CEXPIN CERN Program Library C338

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.05.1990
Language : Fortran Revised: 15.03.1993

Exponential Integral for Complex Argument

Function subprograms and calculate the the exponential integral

for complex arguments .
The double-precision version is available only on computers which support a Fortran
data type.

Structure:
subprograms

Use Entry Names : ,
Files referenced :
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and has the same type as the function
name.

Method:
Padé approximants are used to compute in the following (partly overlapping) regions of
the -plane:

(i) ,

(ii) ,

(iii) .

In the remaining region, consisting mainly of a strip along the negative real axis, is computed by
numerical integration (which is very much slower than the evaluation of the Padé approximations).

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:
Error : Numerical integration not successful (unlikely). The function value is set equal to zero, and
a message is written on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, the special functions and their approximations, v. II, (Academic Press, New York 1969)
198–199, 402–416.

68 C338 – 1

RDAWSN CERN Program Library C339

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 01.12.1994

Dawson’s Integral

Function subprograms and calculate the Dawson integral

for real arguments .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

In any arithmetic expression,

or has the value ,

where is of type is of type , and has the same type as the
function name.

Method:

Rational approximation.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. W.J. Cody, K.A. Paciorek and H.C. Thacher,Jr., Chebyshev approximations for Dawson’s integral,
Math. Comp. 24 (1970) 171–178.

69 C339 – 1

BSIR3 CERN Program Library C340

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Modified Bessel Functions I and K of Order 1/3 and 2/3

Function subprograms , and , calculate the modified Bessel functions

and

for real arguments and . The value is permitted for the functions if .
Note that the functions are even with respect to .
On CDC and Cray computers, the double-precision versions etc. are not available.

Structure:

subprograms
User Entry Names: , , , , , , ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,
or has the value ,
or has the value ,

where etc. are of the type , etc. are of the type , and has the
same type as the function name. has one of the values .

Method:

Approximation by rational functions (for , for), by an algorithm based on power
series (for), or else by truncated Chebyshev series.

Accuracy:

etc. (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument , etc. (and etc. on CDC and Cray computers) has an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error : or , repectively, or .
The function value is set equal to zero, and a message is written on , unless subroutine
(N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 352,
355, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.

70 C340 – 1

BSKA CERN Program Library C341

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Modified Bessel Functions K of Certain Order

Subroutine subprograms and calculate the sequence of modified Bessel functions

for real argument and a chosen .
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , ,
Files Referenced:
External References: (C313), (C313), (C313), (C313),

(C313), (C313), (C313), (C313),
(C327), (C327), (C327), (C327),
(C340), (C340), (C340), (C340),
(N002), (Z035)

Usage:

Single-precision version:

or

() Argument .
() Numerator and denominator of . Only the pairs

are permitted. For example, and corresponds to .
() Specifies the order of the last Bessel function in the computed sequence.
() One-dimensional array with dimension () where .
On exit, , , contains for , for ,
respectively.

Double-precision version:

or

where and are of type .

Method:

The well-known recurrence relation for modified Bessel functions is used.

Restrictions:

, . Only the pairs () given above are permitted.

71 C341 – 1

Error handling:

Error : .
Error : Pair () not permitted.
Error : .
In all cases, a message is written on , unless subroutine (N002) has been called. The initial
contents of array is left unchanged.

C341 – 2 72

RSTRH0 CERN Program Library C342

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.11.1971
Language : Fortran Revised: 01.12.1994

Struve Functions of Orders Zero and One

Function subprograms , and , calculate the Struve functions

for real arguments and .
On CDC and Cray computers, the double-precision versions , are not available.

Structure:

subprograms
User Entry Names: , , ,
Obsolete User Entry Names: ,
External References: (C312), (C312), (C312), (C312)

Usage:

In any arithmetic expression,

or has the value ,
or has the value ,

where , are of type , , are of type , and has the
same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

and (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument , , (and , on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v.II (Academic Press, New York 1969)
370–371.

73 C342 – 1

BSJA CERN Program Library C343

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 24.01.1986
Language : Fortran Revised: 15.03.1993

Bessel Functions J and I with Positive Argument and Non-Integer Order

Subroutine subprograms , , , and , calculate the sequences of Bessel
functions

for real argument , , and .
The quadruple-precision versions and are available only on computers which support a

Fortran data type.

Structure:

subprograms
User Entry Names: , , , , ,
Files Referenced:
External References: (C302), (C302), (C302), (N002), (Z035)

Usage:

Single-precision version:

or

() Argument .
() Order of the first Bessel function in the computed sequence.
() Specifies the order of the last Bessel function in the computed sequence. It is
permissible for to be negative.
() Requested number of correct significant decimal digits.
() One-dimensional array with dimension () where .
On exit, , , contains , , or , the plus sign
of the subscript being taken if , the minus sign if .

Double-precision version:

or

where , and are of type .

Quadruple-precision version:

or

where , and are of type .

Method:

For , the method of computation is a variant of Miller’s backwards recurrence algorithm (see Ref. 1).
The requested accuracy is obtained, when possible, by a judicious choice of the initial value of the recursion
index, together with at least one repetition of the recursion with this index increased by 5. For , only
the first two functions in the sequence are computed in this way. The remaining functions are computed by
the standard Bessel function recurrence relation.

74 C343 – 1

Restrictions:

, , .

Accuracy:

If is close to a zero of one of the functions , the accuracy of that particular function will be less
than significant digits. There may also be a loss of accuracy in any of the computed functions if is close
to 0 or 1, and in other special situations.

Error handling:

Error : .
Error : or .
Error : .
Error : Difficulties of convergence. Try smaller .
In all cases, a message is written on , unless subroutine (N002) has been called. If Error 1
to 3 occurs, the initial contents of array is left unchanged. If the requested accuracy cannot be obtained
after the initial recursion index has been increased fifty times (Error 4), the contents of array is undefined.

Source:

The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236, Bessel functions of the first kind, Collected Algorithms from CACM
(1972)

C343 – 2 75

CBSJA CERN Program Library C344

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 24.01.1986
Language : Fortran Revised: 15.03.1993

Bessel Functions J with Complex Argument and Non-Integer Order

Subroutine subprograms , and calculate a sequence of Bessel functions

for complex arguments , , and .
The quadruple-precision version is available only on computers which support a For-
tran data type.
Structure:

subprograms
User Entry Names: , ,
Files Referenced:
External References: (C302), (C302), (C302), (N002), (Z035)
Usage:
Single-precision version:

() Argument .
() Order of the first Bessel function in the computed sequence.
() Specifies the order of the last Bessel function in the computed sequence.
() Requested number of correct significant decimal digits.
() One-dimensional array with dimension (0:) where .
On exit, , , contains .

Double-precision version:

where is of type , and are of type .
On computers whose Fortran compiler does not support arithmetic (e.g. CDC and Cray) the
storage conventions for and are as follows:

() Array of declared dimension containing Re in and Im in .
() Two-dimensional array with dimensions where . On exit,

contains Re and contains Im , .

Quadruple-precision version:

where is of type , and are of type .
Method:
The method is an extension to complex arguments of a variant of Miller’s backwards recurrence algorithm
(see Ref. 1). The requested accuracy is obtained, when possible, by a judicious choice of the initial value of
the recursion index, together with at least one repetition of the recursion with this index increased by 5.

Restrictions:
Im if Re , , .

76 C344 – 1

Accuracy:

If does not lie on the real axis, the requested accuracy is usually obtained. There may be a loss of accuracy
if is close to 0 or 1, and in other special situations.

Error handling:

Error : with and .
Error : or .
Error : or .
Error : Difficulties of convergence. Try smaller .
In all cases, a message is written on , unless subroutine (N002) has been called. If Error 1
to 3 occurs, the initial contents of array is left unchanged. If the requested accuracy cannot be obtained
after the initial recursion index has been increased fifty times (Error 4), the contents of array is undefined.

Source:

The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236: Bessel functions of the first kind, Collected Algorithms from CACM
(1965)

C344 – 2 77

RBZEJY CERN Program Library C345

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.08.1989
Language : Fortran Revised: 01.12.1994

Zeros of Bessel Functions J and Y

Subroutine subprograms and calculate, for real order , the first zeros

of the Bessel functions , respectively. The prime denotes the derivative of the
function with respect to .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

(type according to) Order .
() Number of zeros wanted.
() defines the function for which the zeros are to be calculated:

zeros of ,
zeros of ,
zeros of ,
zeros of .

(type according to) The requested relative accuracy.
(type according to) One-dimensional array of length at least. On exit, , ()
contains the first positive (in the case and , non-negative) zeros of the function
defined by .

Method:

Initial approximations to the zeros are computed from asymptotic expansions. These values are improved by
higher-order Newton iteration making use of the differential equation for the Bessel functions. (For details
see Ref. 1).

Error handling:

Error : A message is written on , unless subroutine (N002) has been called.
The contents of is left unchanged. acts as do nothing.

78 C345 – 1

Source:

The subroutine is based on Algol procedures published in the References.

References:

1. N.M. Temme, An algorithmwith Algol60 program for the computation of the zeros of ordinary Bessel
functions and those of their derivatives, J. Comput. Phys. 32 (1979) 270–279.

2. N.M. Temme, On the numerical evaluation of the ordinary Bessel function of the second kind, J.
Comput. Phys. 21 (1976) 343–350.

C345 – 2 79

RELI1 CERN Program Library C346

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Elliptic Integrals of First, Second, and Third Kind

Function subprograms , , and , , calculate, for real argument , the
elliptic integrals of the first, second and third kind, respectively.
On CDC and Cray computers, the double-precision versions , and are not available.
Mainly for reasons of numerical stability, the algorithms are based on the following definitions:
First kind:

Second kind:

Third kind:

Note that . For , the integral is defined by its principal
value.
For the integral of the second kind, a special entry-mode argument is provided which allows
to be calculated when , i.e. when is imaginary.
Other common definitions of the elliptic integrals and their relations to , , are listed here for
convenience ():
First kind:

Second kind:

80 C346 – 1

Third kind:

Structure:

subprograms
User Entry Names: , , , , ,
Files Referenced:
External References: (B102), (B102), (N002), (Z035)

Usage:

In any arithmetic expression, with ,

or has the value ,
or has the value ,
or has the value ,

where , , are of type , where , , are of type ,
and , , , and have the same type as the function name. is of type .
The notation indicates that, when calling or , the parameters and must be set as
follows:
If : and ,
if : and Im (real).

Method:

The evaluation of and is based on the Landen transformation, that of on the Bartky transformation.
for is calculated by using a transformation of the arguments. See Ref. 1 and 2 for details.

Accuracy:

The functions (except on CDC and Cray computers) have full single-precision accuracy. The
functions on CDC and Cray, and the functions on all computers have an accuracy
approximately two significant digits less than the machine precision.

Restrictions:

1. and if .
2. and or .
3. and .

Error handling:

Error Restriction 1 is not satisfied.
Error Restriction 2 is not satisfied.
Error Restriction 3 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

C346 – 2 81

Source:

The subprograms are based on the Algol60 procedures el1, el2 in Ref. 1 and el3 in Ref. 2.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

2. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions III, Numer. Math. 13
(1969) 305–315.

82 C346 – 3

RELI1C CERN Program Library C347

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Complete Elliptic Integrals of First, Second, and Third Kind

Function subprograms , , and , , calculate the complete
elliptic integrals of the first, second and third kind, respectively.
Function subprograms and calculate a general complete elliptic integral.
Function subprograms , and , calculate the complete elliptic integrals K
and E .
On CDC and Cray computers, the double-precision versions etc. are not available.
Mainly for reasons of numerical stability, the algorithms are based on the following definitions:
First kind:

Second kind:

Third kind:

Note that . For , the integral is defined by its principal value.
The general integral:

For , this integral is defined by its principal value. See Notes for special cases.
The functions K(k) and E(k):

83 C347 – 1

Other common definitions of the complete elliptic integrals and their relations to , , are listed here
for convenience ():

First kind:

Second kind:

Third kind:

Structure:

subprograms
User Entry Names: , , , , ,

, , , , ,
Obsolete User Entry Names: , ,

,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression, with and ,

or has the value ,
or has the value ,
or has the value ,
or has the value ,
or has the value K ,
or has the value E ,

where etc are of type , etc are of type , and , , , ,
and have the same type as the function name.
The redundant parameter in and permits improved accuracy when is small, i.e.

. In this case, should be calculated using higher-precision arithmetic and then truncated
before calling the subprogram.

C347 – 2 84

Method:

The evaluation of , , is based on the Landen transformation, that of on the Bartky transformation.
For details, see Ref. 1–3. For K and E Chebyshev approximations are used (see Ref. 4).

Accuracy:

The functions (except on CDC and Cray computers) have full single-precision accuracy. The
functions on CDC and Cray, and the functions on all computers have an accuracy
approximately two significant digits less than the machine precision.

Restrictions:

1. and .
2. and or and .
3. and .
4. and .
5. and , and .

Error handling:

Error Restriction 1 is not satisfied.
Error Restriction 2 is not satisfied.
Error Restriction 3 is not satisfied.
Error Restriction 4 is not satisfied.
Error Restriction 5 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

Notes:

Every linear combination of the three special complete elliptic integrals K , E , may be ex-
pressed in terms of :

Special examples are

If then will evaluate any linear combination of K , E , without cancellation (such as
would occur, for example, if (K E were to be computed from values of K and E which
had been computed separately.
Other functions which can be represented by are the Jacobian Zeta function and the Heuman
Lambda function (see Ref. 5):

(Quoted from Ref. 3, slightly modified).

85 C347 – 3

Source:

The subprograms for , are based on the Algol60 procedures cel1, cel2 in Ref. 1, those for on cel3
in Ref. 2, and those for on cel in Ref. 3.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

2. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions II, Numer. Math. 7
(1965) 353–354.

3. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions III, Numer. Math. 13
(1969) 305–315.

4. W.J. Cody, Chebyshev approximations for the complete elliptic integrals and , Math. Comp. 19
(1965) 105–112.

5. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971) 33–37.

C347 – 4 86

CELINT CERN Program Library C348

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Elliptic Integral for Complex Argument

Function subprograms and calculate, for complex argument and real comple-
mentary modulus a general elliptic integral of the second kind:

which contains the elliptic integrals of the first and second kind as special cases:

The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression, with ,

or has the value ,

where is of type , is of type , is of the same type as the function
name, and , , are of type for and of type for .

Method:

The evaluation of is based on the Gauss transformation. For details, in particular for the conformal
mapping provided by , see Ref. 1.

Accuracy:

(except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error Re . The function value is set equal to zero, and a message is written on ,
unless subroutine (N002) has been called.

87 C348 – 1

Notes:

For other forms of the elliptic integrals see the write-up for (C346).

Source:

The subprogram is based on the Algol60 procedure elco2 given in Ref. 1.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

C348 – 2 88

RTHETA CERN Program Library C349

Author(s) : G.A. Erskine Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.06.1992
Language : Fortran Revised:

Jacobian Theta Functions

Function subprograms and calculate the Jacobian theta functions

for real arguments and . and are undefined if is an integer; otherwise
.

Note that several conflicting definitions of these functions occur in the literature. In particular, the argument
in the trigonometric terms is often defined to be instead of .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprogram
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where is of type , is of type , and are of the same type as the
function name, and is of type .

Method:

If differs from or by an integer, it follows from the periodicity and symmetry properties
of the functions that and . In a region for which the approximation
is sufficiently accurate, is set equal to the first term of the transformed series

89 C349 – 1

and is set equal to the first two (i.e.) terms of

where . Otherwise the trigonometric series for and are used.
For all , and are computed from , .

Restrictions:

1. .
2. .
3. If and , must not be an integer.

If and , must not be an integer.

Error handling:

Error Restriction 1 is not satisfied.
Error Restriction 2 is not satisfied.
Error Restriction 3 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

Accuracy:

For (and for on CDC and Cray computers), the error when is less than approximately
does not exceed two decimal digits in the last place. For larger values of (provided the computed result is
non-zero), the error is at worst comparable in magnitude to the mathematical error which would be caused
by one-bit rounding errors in the arguments and .
On computers other than CDC and Cray, non-zero values of have full machine accuracy.

Notes:

Successive references using the same value of are executed faster than those in which changes.
Many functional relations, including relations between the theta functions and the Jacobian elliptic func-
tions, are given in Refs. 1–4.

References:

1. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of math-
ematical physics, Springer-Verlag Berlin (1966) 371–377.

2. F. Tölke, Praktische Funktionenlehre, Bd. II, Springer-Verlag Berlin (1966) 1–38.

3. P.F. Byrd andM.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd Edition,
Springer-Verlag Berlin (1971) 315–320.

4. E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th Edition, Cambridge University
Press, Cambridge (1946) Chapter 21.

C349 – 2 90

SIMPS CERN Program Library D101

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.01.1988
Language : Fortran Revised: 15.03.1993

Integration by Simpson’s Rule

Function subprograms and use Simpson’s rule to compute an approximate value of the
integral

On CDC or Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or

has the approximate value of the integral , where is of type and is of type
, and , , have the same type as the function name. is of type .

One-dimensional array with dimension , where , containing the value of at
equally-spaced points , with and .
End-points of integration interval.
As defined above. must be positive and even.

Error handling:

Error : or odd. The function value is set equal to zero, and a message is written on ,
unless subroutine (N002) has been called.

91 D101 – 1

RADAPT CERN Program Library D102

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Adaptive Gaussian Quadrature

Subroutine subprograms and calculate, to an attempted specified accuracy, the value of the
integral

by adaptive subdivision of the interval , calculating the integrals over the subintervals using
and (D106).
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
External References: (D106), (D106), user-supplied subprogram.

Usage:

For (type), (type),

(type according to) Name of a user-supplied subprogram, declared in
the calling program. This subprogram must set .
(type according to) End-points of integration interval. Note that may be less than .
() Specifies how the adaptation is to be done:

use the subdivisions as determined in the previous call to ,
fully automatic, adapt until tolerance attained,

first split interval into n equal segments, then adapt as necessary to attain tolerance.
(type according to) Specified relative tolerance.
(type according to) Specified absolute tolerance.
The calculation comes to an end if either or is satisfied, or the number of
segments exceeds . Either or can be set to zero, in which case only the
other is used.
(type according to) The calculated approximation for .
(type according to) An estimated absolute uncertainty on this approximation.

Method:

The automatic adaption is done as follows: At each step, the total integral is estimated as the sum of the
integrals over the subdivisions, and the squared uncertainty is estimated as the sum of the squares of the
uncertainties over all subdivisions. If this uncertainty is too big (failing both the absolute and relative
tolerance criteria) then the subinterval with the largest absolute uncertainty is divided in half.

92 D102 – 1

Accuracy:

The true accuracy is usually very close to the uncertainty returned by the subroutine, sometimes it is much
better, but very seldom worse. Even on functions with (integrable) singularities, the results are usually
reliable, as long as the singularity is “wide enough” to be detected in the early stages, which can be controlled
by the value of .

D102 – 2 93

GAUSS CERN Program Library D103

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 02.05.1966
Language : Fortran Revised: 15.03.1993

Adaptive Gaussian Quadrature

Function subprograms , and compute, to an attempted specified accuracy, the value
of the integral

The quadruple-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: , ,
Files Referenced:
External References: (N002), (Z035), user-supplied subprogram

Usage:

In any arithmetic expression,

, or

has the approximate value of the integral .

Name of a user-supplied subprogram, declared in the calling program. This
subprogram must set .
End-points of integration interval. Note that may be less than .
Accuracy parameter (see Accuracy).

is of type , is of type , is of type , and the argu-
ments , , , and (in) have the same type as the function name.

Method:

For any interval we define and to be the 8-point and 16-point Gaussian quadrature
approximations to

and define

Then, with = or ,

94 D103 – 1

where, starting with and finishing with , the subdivision points are given
by

with equal to the first member of the sequence for which . If, at any stage
in the process of subdivision, the ratio

is so small that is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of over the interval , the
argument may be considered as specifying a bound on the relative error of in the case , and
a bound on the absolute error in the case . More precisely, if is the number of sub-intervals
contributing to the approximation (see Method), and if

then the relation

will nearly always be true, provided the routine terminates without printing an error message. For functions
having no singularities in the closed interval the accuracy will usually be much higher than this.

Error handling:

Error The requested accuracy cannot be obtained (see Method). The function value is set equal
to zero, and a message is written on unless subroutine (N002) has been called.

Notes:

Values of the function at the interval end-points and are not required. The subprogram may
therefore be used when these values are undefined.

D103 – 2 95

RCAUCH CERN Program Library D104

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 10.08.1967
Language : Fortran Revised: 01.12.1994

Cauchy Principal Value Integration
Function subprograms and compute the Cauchy principal value integral

where has a singularity inside or outside the interval such that the Cauchy principal value exists.
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.
Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referencend:
External References: (D103), (D103), (N002),

(Z035), user-supplied subprogram
Usage:
For (type), (type),

has, in any arithmetic expression, the approximate value of the integral .

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
(type according to) End-points of the integration interval. Note that may be less than .
(type according to) The absissa of the singularity.
(type according to) Accuracy parameter (see under in the in short write-up for
(D103)).

Method:
The method described in Ref. 1 is used for decomposition of the integral. The resulting integrals are
computed by (D103).
Accuracy:
See short write-up for (D103).
Error handling:
Error : or .
Error : The requested accuracy cannot be obtained (see short write-up for (D103)).
The function value is set equal to zero, and a message is written on , unless subroutine
(N002) has been called.
References:

1. I.M. Longman, On the numerical evaluation of Cauchy principal values of integrals, MTAC (later
renamed Math. Comp.) 12 (1958) 205–207.

96 D104 – 1

RTRINT CERN Program Library D105

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 02.05.1966
Language : Fortran Revised: 01.12.1994

Integration over a Triangle

Function subprograms and compute an approximate value of the integral

evaluated over the interior of an arbitrary triangle in the -plane. An attempted accuracy may, optionally,
be specified.
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

has, in any arithmetic expression, the approximate value of the integral .

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
()

No subdivision of the given triangle.
Subdivision of the given triangle (see Method).

()
A 7-point integration formula is used.
A 25-point integration formula is used.
A 64-point integration formula is used.

(type according to) Accuracy parameter (see Accuracy).
(type according to) The coordinates of the vertices of .

97 D105 – 1

Method:

An approximation to is found by computing the -point formula for the triangle . The value of
has no influence on the result.

After computing , the triangle is subdivided into two subtriangles and , the corresponding ap-
proximations and are computed, and a test is made to see whether

If this test is satisfied, the routine terminates by setting the function value to . If it fails, the process of
subdivision and testing continues according to a tree structure. The routine terminates either because the test
is passed successfully by all the subtriangles at some level, or because a maximum number of subdivisions
is reached (see Error Handling).

Accuracy:

Unless there is severe cancellation of positive and negative values of over ,the argument may,
if , be considered as specifying a bound on the relative error of in the case , and a bound
on the absolute error in the case .

Restrictions:

”Mild” singularities are permitted if they coincide with the vertices of . Any other singularity lying inside
or on its boundaries will most likely lead to too many subdivisions (see Error Handling), or cause a

wrong result.

Error handling:

Error : .
Error : The number of subdivisions has reached 35 without success.
In both cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

References:

1. K.S. Kölbig, A Fortran program and some numerical test results for the integration over a triangle,
CERN 64–32 (1964).

D105 – 2 98

RGS56P CERN Program Library D106

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Gaussian Quadrature with Five- and Six-Point Rules

Subroutine subprograms and calculate an approximation and uncertainty for the integral

equal respectively to the mean value and the difference of the results and obtained by the five- and
six-point Gaussian integration rules.
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
External References: User-supplied subprogram.

Usage:

For (type), (type),

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
(type according to) End-points of integration interval. Note that may be less than .
(type according to) The calculated approximation for , i.e. ,
(type according to) An estimated uncertainty on this approximation, i.e. .

99 D106 – 1

RGQUAD CERN Program Library D107

Author(s) : G.A. Erskine Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.06.1992
Language : Fortran Revised:

N-Point Gaussian Quadrature

Function subprograms and calculate the approximate value of the integral

using the -point Gauss-Legendre quadrature formula corresponding to the interval .
Subroutine subprograms and store, for subsequent use, the abscissae and the weights of
the -point Gauss-Legendre quadrature formula corresponding to the interval .
The following values of may be used: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.

, and , are independent subprograms: it is not necessary, for instance, to call
in order to use , or vice-versa.

On CDC and Cray computers, the double-precision versions and are not provided.

Structure:

and subprograms
User Entry Names: , , ,
Internal Entry Names: ,
Files Referenced:
External References: (N002), (Z035), User-supplied subprogram

Usage:

To calculate the integral:

For (type), (type),

has, in any arithmetic expression, the value which is an approximation to the given integral.

To store the abscissae and the weights :

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
(type according to) End-points and of the integration interval.
() Number of quadrature points.
(type according to) One-dimensional arrays. On exit, and contain and

, respectively.

Method:

The values of and are computed by linearly scaling values obtained from a stored table corresponding
to the interval .

100 D107 – 1

Accuracy:

The absolute error of and is proportional to the value of the th derivative of at some
internal point of the interval (see Ref. 1).

Error handling:

Error The value does not appear in the list given above. A message is written on , unless
subroutine (N002) has been called. If the subprogram referenced is or , the function
value is set equal to zero.

References:

1. A.H. Stroud and D. Secrest, Gaussian quadrature formulas, (Prentice-Hall, Englewood Cliffs 1966).

D107 – 2 101

TRAPER CERN Program Library D108

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.03.1968
Language : Fortran Revised:

Trapezoidal Rule Integration with an Estimated Error

Let a function be given by its values at certain discrete points . Let the function
values be accompanied by an estimated standard deviation (square root of the variance). Subroutine
subprogram then approximates the integral

by a linear combination of the using the trapezoidal rule. It calculates the standard deviation of by

The function values and are calculated by linear interpolation.

Structure:

subprogram
User Entry Names:

Usage:

() Arrays of length containing , respectively.
() Number of function values
() Limits of integration.
() On exit, contains an approximate value of the integral .
() On exit, contains an approximate value of the standard deviation .

If no are given, the array should be filled with zeros.

Restrictions:

Although there are no restrictions on and (may be less than), care must be taken if one or both of
them is either smaller than or bigger than . In these cases or are extrapolated linearly
from and or and respectively, which may lead to unreasonable results. If or

, and will be set to zero. It is assumed that all the are distinct. No test is made for this.

Notes:

This program should only be used for the problem described above. For general-purpose numerical integra-
tion to a preassigned accuracy use (D103).

102 D108 – 1

RGMLT CERN Program Library D110

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1988
Language : Fortran Revised: 15.03.1993

Gaussian Quadrature for Multiple Integrals

Function subprogram packages and compute an approximate value of an n-dimensional inte-
gral of the form

where .
Each subprogram integrates over only one variable. The integral is computed by means of a set of
nested calls to these subprograms.
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: , , , , , ,

, , , , ,
Files Referenced:
External References: (N002), (Z035), user-supplied subprograms

Usage:

1. Let be one of the integers . Then, in any arithmetic expression,

or

has the approximate value of the integral with respect to of the function specified below.

is of type , is of type , and the arguments , , and
have the same type as the function name. and are of type .

Name of a user-supplied subprogram, declared in the calling
program.
End points of the integration interval for variable .
Number of equal subintervals into which the interval is divided.
Number of Gaussian quadrature points to be used in each of the subintervals. (If

has any value other than or , the value is assumed).
0ne-dimensional array of dimension .

103 D110 – 1

2. The subroutine should be of the form

where , and are of type for and of type for , and
where is of type .

An integer , whose value is set by .
One-dimensional array with declared dimension , whose contents is set by .
One-dimensional array with declared dimension , whose contents must be set by
as described below.
One-dimensional array which must be the same as the array appearing as an actual argument
in all calls to , , (, ,).

The subprogram () which calls subroutine sets the value of and places in array
a set of values of the variable . Then, if denotes the function which is to be integrated
with respect to , it is the job of subroutine to set to the appropriate value of , to compute
for each of these values of (taking the remaining variables from , ,

respectively) and place the results in array . (See Examples).

Method:

Integration with respect to each variable is performed by applying the 6- or 8-point Gaussian quadrature
formula to each of the equal sub-intervals.

Notes:

1. The time needed to compute an -dimensional integral by means of these subprograms is approxi-
mately

This should be kept in mind when choosing the values of .

2. The accuracy of a particular calculation can be estimated by repeating the integration with different
values of (e.g., 8 instead of 6) or by changing , the latter usually being less economical.

Error handling:

Error : . A message is written on , unless subroutine (N002) has been
called. Execution is halted on a instruction.

Examples:

To calculate (in type) the integral

using 6-point Gaussian quadrature over each of subdivisions of the corresponding interval.
In the main program, write for instance

D110 – 2 104

For the subprograms , write for instance

105 D110 – 3

CGAUSS CERN Program Library D113

Author(s) : G.A. Erskine Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 07.12.1970
Language : Fortran Revised: 15.03.1993

Adaptive Complex Integration Along a Line Segment

Function subprograms and compute, to an attempted specified accuracy, the value of the
complex integral

The path of integration is the directed line segment in the complex -plane. The function must be
single-valued on this segment.
The double-precision version is available only on computers which support a Fortran
data type.

Structure:

subprograms
User Entry Names: ,
Files Referenced:
External References: (N002), (Z035), user-supplied subprogram

Usage:

In any arithmetic expression,

or

has the approximate value of the integral .

Name of a user-supplied subprogram, declared in the calling program. This
subroutine must set .
End-points of integration interval.
Accuracy parameter (see Accuracy).

is of type , is of type , and the arguments , , , and (in) have
the same type as the function name. is of type for and of type for

.

Method:

For any line segment we define and to be the 8-point and 16-point Gaussian quadra-
ture approximations to

and define

106 D113 – 1

Then, with = or ,

where, starting with and finishing with , the subdivision points are given
by

with equal to the first member of the sequence for which . If, at any
stage in the process of subdivision, the ratio

is so small that is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of over the interval , the
argument may be considered as specifying a bound on the relative error of in the case , and
a bound on the absolute error in the case . More precisely, if is the number of sub-intervals
contributing to the approximation (seeMethod), and if

then the relation

will nearly always be true, provided the routine terminates without printing an error message. For functions
having no singularities in the closed interval the accuracy will usually be much higher than this.

Error handling:

Error : The requested accuracy (seeMethod) cannot be obtained. The function value is set equal to
zero, and a message is written on , unless subroutine (N002) has been called.

Notes:

Values of the function at the end-points of the line segment and are not required. The subprogram
may therefore be used when these values are undefined.

D113 – 2 107

RIWIAD CERN Program Library D114

Author(s) : B. Lautrup Library: MATHLIB
Submitter : Submitted: 23.07.1971
Language : Fortran Revised: 10.01.1986

AdaptiveMultidimensional Monte-Carlo Integration

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) (D120)

is an adaptive multidimensional integration subroutine based on an original by G. Sheppey. It
permits numerical integration of a large class of functions, in particular those that are irregular at the border
of the integration region. The integral is always performed over the unit hypercube.

Structure:

subprogram
User Entry Names:
Files Referenced:
External References: (V104) user-supplied subprogram

Block Names and Lengths: , , , ,
, ,

Usage:

See Long Write-up for a description of all features. Here only the standard use is described.
The block must always be set by the user:

() Relative accuracy desired.
() Number of dimension parameters.
() Number of subvolumes allowed.
() Maximal number of iterations.

The integrand is defined by a user-supplied subprogram having the array as parameter,
for example

108 D114 – 1

This program defines as a function of the 7 variables . The sequence

will then integrate over the 7 variables , all in the interval from 0 to 1, i.e. over the
7-dimensional unit hypercube. The result will be printed in detail in a readily understandable form.
The program allows extensive user control via the blocks. See Long Write-up for details.

Method:

is iterative and in a given iteration it divides the unit hypercube into a certain number of subvolumes
by means of a given set of intervals on each axis. Within each subvolume it estimates the mean value and
variance of the integrand by random sampling, and then calculates the Riemann sum over the subvolumes.
Using the variances found projected onto each axis it calculates a set of new interval divisions to be used
in the next iteration. It returns when the desired accuracy is obtained or when the maximum number of
iterations has been performed.

Restrictions:

There is, in principle, no limitations on the number of dimensions, although the present version only allows
up to 9-dimensional integrals. The maximal dimensionality can easily be increased.

Notes:

1. The program is rather slow and should preferably be used only when other methods (for instance
Gaussian quadrature) fail due to the irregular behaviour of the integrand. The time consumption is
essentially proportional to the product of and .

2. The non-CDC/Cray implementation of has , i.e.
all non- variables are , including the user-supplied external function.

D114 – 2 109

RADMUL CERN Program Library D120

Author(s) : A.C. Genz, A.A. Malik Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 15.11.1995
Language : Fortran Revised:

Adaptive Quadrature for Multiple Integrals over -Dimensional Rectangular Regions

Subroutine subprograms and compute, to an attempted specified accuracy, the value of the
integral

over an -dimensional rectangular region, where , () are constants.
On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
External References: User-supplied subprogram

Usage:

For (type), (type),

(type according to) Name of a user-supplied subprogram, declared in the
calling program.
() Number of dimensions ().
(type according to) One-dimensional arrays of length . On entry, and ,
(), contain the lower and upper limits of integration, respectively. Note that
correspond to .
() Minimum number of function evaluations requested. Must not exceed .
() Maximum number () of function evaluations to be allowed.
(type according to) Specified relative accuracy.
(type according to) One-dimensional array of length , used as working space.
() Length (() (())) of .
(type according to) Contains, on exit, an approximate value of the integral .
(type according to) Contains, on exit, an estimation of the relative accuray of .
() Contains, on exit, the number of function evaluations performed.

110 D120 – 1

() On exit:
Normal exit. . At least and at most calls to the function
were performed.

is too small for the specified accuracy . and contain the values
obtainable for the specified value of .

is too small for the specified number of function evaluations.
and contain the values obtainable for the specified value of .

, or , or , or .
and are set equal to zero.

The user-supplied subprogram should be of the form

.

where and are of type .

Method:

An integration rule of degree seven is used together with a certain strategy of subdivision. For a more
detailed description of the method see References.

Error handling:

See description of argument .

Notes:

1. Multi-dimensional integration is time-consuming. For each rectangular subregion, the routine requires
function evaluations. Careful programming of the integrand might result in

substantial saving of time.

2. Numerical integration usually works best for smooth functions. Some analysis or suitable transfor-
mations of the integral prior to numerical work may contribute to numerical efficiency.

Source:

This subroutine is an adapted version of Fortran program published in Ref. 1.

References:

1. A.C. Genz and A.A. Malik, Remarks on algorithm 006: An adaptive algorithm for numerical integra-
tion over an -dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295–302.

2. A. vanDoren and L. de Ridder, An adaptive algorithm for numerical integration over an -dimensional
cube, J. Comput. Appl. Math. 2 (1976) 207–217.

A copy of the text part of the References is available.

D120 – 2 111

DIVON4 CERN Program Library D151

Author(s) : J.H. Friedman, M.H. Wright (Stanford) Library: MATHLIB
Submitter : F. James Submitted: 01.12.1981
Language : Fortran Revised: 14.08.1985

Multidimensional Integration or Random Number Generation

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) (D120)

is designed for integration of scalar functions of several variables, especially functions not smooth
enough to be integrated reliably using Gaussian quadrature. It can also be used effectively to generate
random points in a multidimensional space, with point density given by any bounded function. The heart
of the package is an algorithm for recursive multi-dimensional partitioning of the space into subregions of
approximately constant function value (minimum range criterion).

Structure:
package

User Entry Names: , , , , , , , ,
, , , , , , , ,
, , , , , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , ,

Files Referenced: Printer and optional user-defined external file
External References: (V105), user-supplied subprogram

Usage:
The function (integrand) is defined by a user-supplied subprogram which must have the name

and must calculate the integrand in double-precision mode:

() Number of integration variables.
() Array containing the coordinates of the point in the integration volume at
which is to be evaluated.

See Long Write-up for details.
References:

1. J.H. Friedman and M.H. Wright, A Nested Partitioning Procedure for Numerical Multiple Integration.
ACM Trans. Math. Software 7 (1981) 76–92.

112 D151 – 1

RRKSTP CERN Program Library D200

Author(s) : G.A. Erskine Library: MATHLIB
Submitter : Submitted: 01.09.1983
Language : Fortran Revised: 01.03.1994

First-order Differential Equations (Runge–Kutta)

Subroutine subprograms and advance the solution of the system of simultaneous
first-order differential equations

by a single step of length in the independent variable .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names :
Files Referenced :
External References: user-supplied subprogram

Usage:

For (type), (type),

() Number of equations.
(type according to) The step-length .
(type according to) On entry, must be equal to the initial value of the independent variable .
On exit, is equal to .
(type according to) One-dimensional array of length . On entry, , must
contain . On exit, , contains approximate values .
Name of a user-supplied subprogram, declared in the calling program.
(type according to) Array containing at least elements required as working-space.

The user-supplied subroutine should be of the form

where the variable and the one-dimensional arrays and are of type . This subroutine must set

Method:

Using boldface quantities to denote vectors of length , the computational sequence is as follows:

The error per step is proportional to .

113 D200 – 1

Error handling:

acts as do nothing.

References:

1. F.B. Hildebrand, Introduction to numerical analysis, (McGraw-Hill, New–York 1956) Sect. 6.16.

D200 – 2 114

RDEQBS CERN Program Library D201

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 01.12.1994

First-order Differential Equations (Gragg–Bulirsch–Stoer)

Subroutine subprograms and advance the solution of the system of simultaneous
first-order differential equations

from a specified value to a specified value of the independent variable .
On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names:
Files Referenced :
External References: (N002), (Z035), user-supplied subprogram

Usage:

For (type), (type),

() Number of equations.
(type according to) Initial value of the independent variable .
(type according to) Final value of the independent variable .
(type according to) One-dimensional array of length . On entry, , must
contain . On exit, , contains approximate values .
(type according to) On entry, must contain the proposed initial step-length . On exit,
contains the last computed step-length (See alsoMethod and Notes).
(type according to) The requested absolute accuracy . (should not be smaller than approxi-
mately times the machine precision).
Name of a user-supplied subprogram, declared in the calling program.
(type according to) Array containing at least elements required as working-space.

The user-supplied subroutine should be of the form

where the variable and the one-dimensional arrays and are of type . This subroutine must set

115 D201 – 1

Method:

For the first integration step, starting at , the step-length is chosen to be the smallest of the numbers
for which not more than 9 stages of internal extrapolation yield an estimated error less

than . This procedure is repeated until is reached. (For details, see Ref. 1).

Error handling:

Error : If the requestec accuracy cannot obtained, a message is written on , unless subroutine
(N002) has been called.

For , or or , control is returned to the calling program without any change in .

Notes:

For well-conditioned systems of equations any reasonable value of the initial step length may be chosen.
For ill-conditioned systems, the initial value of may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong results in such cases.

Source:

This subroutines is based on an Algol60 procedure given in Ref. 1. The adaption for integration over a given
interval (not only over one step) is due to G. Janin.

References:

1. R. Bulirsch and J. Stoer, Numerical treatment of ordinary differential equations by extrapolationmeth-
ods, Numer. Math. 8 (1966) 1–13.

D201 – 2 116

RDEQMR CERN Program Library D202

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 01.12.1994

First-order Differential Equations (Runge–Kutta–Merson)

Subroutine subprograms and advance the solution of the system of simultaneous
first-order differential equations

from a specified value to a specified value of the independent variable . The integration step-length
is automatically adjusted to keep the estimated error per step less than a specified value.
On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names:
Files Referenced :
External References: (N002), (Z035), User-supplied subprogram

Usage:

For (type), (type),

() Number of equations.
(type according to) Initial value of the independent variable .
(type according to) Final value of the independent variable .
(type according to) One-dimensional array of length . On entry, , must
contain . On exit, , contains approximate values .
(type according to) On entry, must contain the proposed initial step-length . On exit,
contains the last computed step-length (See alsoMethod and Notes).
(type according to) The requested absolute accuracy . (should not be smaller than approx-
imately times the machine precision).
Name of a user-supplied subprogram, declared in the calling program.
(type according to) Array containing at least elements required as working-space.

The user-supplied subroutine should be of the form

where the variable and the one-dimensional arrays and are of type . This subroutine must set

117 D202 – 1

Method:

The method is a modification by Merson of the Runge–Kutta method. The initial value of the step-length
is taken to be the first of the numbers for which the estimated relative error at the end of
the step is less than . At each susequent step, an estimate of the integration error for that step (proportional
to) is computed. If the corresponding relative error exceeds , the current step-length is halfed; if it is
less than the step-length is doubled. This process is continued until is reached. (For details, see
Ref. 1).

Error handling:

Error : If the requestec accuracy cannot obtained, a message is written on , unless subroutine
(N002) has been called.

For , or or , control is returned to the calling program without any change in .

Notes:

For well-conditioned systems of equations any reasonable value of the initial step length may be chosen.
For ill-conditioned systems, the initial value of may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong results in such cases.

References:

1. G.N. Lance, Numerical methods for high-speed computers, (Iliffe & Sons, London 1960) 56

D202 – 2 118

RRKNYS CERN Program Library D203

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised: 01.12.1994

Second-order Differential Equations (Runge–Kutta–Nyström)

Subroutine subprograms and advance the solution of the system of simultaneous
second-order differential equations

where , by a single step of length in the independent variable .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names:
External References: User-supplied subprogram

Usage:

For (type), (type),

() Number of equations.
(type according to) The step-length .
On entry, must be equal to the initial value of the independent variable . On exit, is equal to

.
(type according to) One-dimensional array of length . On entry, , must
contain . On exit, , contains approximate values .
(type according to) One-dimensional array of length . On entry, , must
contain . On exit, , contains approximate values .
Name of a user-supplied subprogram, declared in the calling program.
(type according to) Array containing at least elements required as working-space.

The user-supplied subroutine should be of the form

where the variable and the one-dimensional arrays , and are of type . This subroutine
must set

119 D203 – 1

Method:

Using boldface quantities to denote vectors of length , the computational sequence is as follows:

The error per step is proportional to .

Error handling:

For or , control is returned to the calling program without any change in or .

References:

1. L. Collatz, The numerical treatment of differential equations, (Springer-Verlag Berlin 1960) 537

D203 – 2 120

EPDE1 CERN Program Library D300

Author(s) : J. Hornsby Library: MATHLIB
Submitter : R. Keyser Submitted: 02.05.1966
Language : Fortran Revised: 30.01.1980

Elliptic Partial Differential Equation

solves an elliptic partial differential equation of general form (Poisson’s equation being a special
case) over a two-dimensional region using a finite difference method. The region may be of any shape and
on its boundary either the dependent variable or a relation involving its derivative may be specified.

Structure:

subprograms
User Entry Names:
Files Referenced: Reader, Printer, ,
External References: User-supplied

Usage:

See Long Write-up.

121 D300 – 1

ELPAHY CERN Program Library D302

Author(s) : R.C. Le Bail Library: MATHLIB
Submitter : Submitted: 20.03.1972
Language : Fortran Revised: 01.12.1981

Fast Partial Differential Equation Solver

uses fast Fourier transform techniques for the solution, over a rectangular domain, of the following
elliptic, parabolic or hyperbolic part differential equation:

where is the unknown function, the known source term, and given coefficients. A
large variety of boundary conditions can be specified on the sides of the rectangle.

Structure:

subprogram
User Entry Names:
Internal Entry Names: , , , ,
External References: (D700)

Block Names and Lengths: ,

Usage:

() Two-dimensional array, dimensioned in the calling program. On input it
contains the source term and on return it contains the unknown function .
() Number of divisions along . must be of the form .
() Number of divisions along .
() Mesh spacing along .
() Mesh spacing along .
() One-dimensional array of dimension , containing the coefficients .
() Controls the type of boundary conditions on the left and right
sides of the rectangular domain:

Imposed periodicity along ; , not given.
Given derivative on either vertical side.
Given value on either vertical side.
Given value on the left side, given derivative on the right side.

() One-dimensional array of size containing values or derivatives for the left side; the
interpretation depends on .
() One-dimensional array of size containing values or derivatives for the right side; the
interpretation depends on .

122 D302 – 1

() Controls the type of boundary conditionson the lower und upper
sides of the rectangular domain:
Elliptic equation ():

Given value on both lower and upper sides.
Given derivative on both lower and upper sides.
Given value on lower side, given derivative on upper side.
Given derivative on lower side, given value on upper side.

Parabolic equation ():
Specify array only. (If y=time, are initial values and the future cannot
be specified).

Given value on lower side.
Given derivative on lower side.

Hyperbolic equation ():
The array specifies the value, the array the derivative.

.
() One-dimensional array of size containing values or derivatives for the lower side;
the interpretation depends on .
() One-dimensional array of size containing values or derivatives for the upper side;
the interpretation depends on .

Notes:

If , specify of length and of length in the calling
program. If , specify of length . In either case, make sure your program is
loaded before (D302) (this is automatic unless you recompile D302 in the same job).

References:

1. R.C. Le Bail, Use of fast Fourier transforms for solving partial differential equations in physics, J.
Comput. Phys. 9 (1972) 440–465

A copy of Ref. 1 is available.

D302 – 2 123

RDERIV CERN Program Library D401

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 01.12.1994

Numerical Differentiation

Subroutine subprograms and compute an approximate numerical value of the derivative
of a function at a specified point .

On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names : ,
Obsolete User Entry Names:
Files Referenced :
External References: (N002), (Z035), user-supplied subprogram

Usage:

For (type), (type),

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This subprogram must set .
(type according to) The specified point for which the derivative is to be calculated.
(type according to) On entry, must contain a scaling factor , which can usually be set
equal to 1. On exit, it contains the last value of this factor (see Method).
(type according to) On exit, contains an approximation to .
(type according to) On exit, contains an estimate of the relative error of .

Method:

The method is based on an extension to numerical differentiation of Romberg’s principle of sequence extrap-
olation, originally developed for numerical integration. The subroutine starts by computing the 10 numbers

with
even
odd

where the scaling factor is initially set to . This procedure is repeated up to 9 times, with replaced
by each time, until the sequence is found to be monotone. A Romberg-like triangular table

with appropriate weights is then computed for and is
set equal to .

124 D401 – 1

Restrictions:

The function must be differentiable at and in a neighbourhood of . Misleading results will be
obtained if this is not true.

Error handling:

Error : If the function is such that, after 9 successive reductions of by a factor 1/10, the
sequence is not monotone, an error message is written , unless subroutine (N002) has
been called. is set equal to zero, is set equal to one in this case.

References:

1. H. Rutishauser, Ausdehnung des Rombergschen Prinzips, Numer. Math. 5 (1963) 48–54.

D401 – 2 125

LEAMAX CERN Program Library D501

Author(s) : W. Mönch, B. Schorr Library: MATHLIB
Submitter : W. Mönch Submitted: 15.03.1993
Language : Fortran Revised:

Constrained Non-Linear Least Squares and Maximum Likelihood Estimation

is a portable collection of subprograms for solving general non-linear least squares problems, non-
linear data fitting problems, and maximum likelihood estimations.
Subroutine subprograms , , and , , calculate an approxima-
tion to a minimum of an objective function , with respect to unknown parameters

:

(S) The general non-linear least squares problem

(F) The least squares data fitting problem

(M) The maximum likelihood estimation

subject to bounds on the variables of the form

The functions and are arbitrary non-linear functions with
respect to the argument . In the case of the data fitting problem (F), a set of observation data

with their corresponding weights has to be provided, whereas
for the maximum likelihood estimation (M), the set of data points belongs to
the input of the problem.
These subprograms are based on the algorithm described by Moré (Ref. 1) for finding the solution of
a general non-linear least squares problem by using the Levenberg-Marquardt algorithm. The method is
completed by an active set strategy for handling simple box constraints to the unknown parameters (see
Long Write-up for details). The necessary derivatives can either be supplied by the user (subprogram)
or are approximated numerically. In the case of a non-linear data fitting problem, approximations to the
covariance matrix and the standard deviations of the model parameter estimators are also provided.
On computers other than CDC or Cray, only the double-precision versions , , are
available. On CDC and Cray computers, only the single-precision versions , , are
available.

126 D501 – 1

Structure:

subprograms
User Entry Names: , , , , ,
Internal Entry Names: , , , , , ,
External References: (F001), (F001), (F001), (F001),

(F001), (F001), (F002), (F002),
(F002), (F002), (F002), (F002),
(F002), (F002), (F002), (F002),
(F003), (F003), (F003), (F003),
(F003), (F003), (F003), (F003),
(F003), (F003), (F003),
(F004), (F004), (F012), (F012)

User-supplied subprogram

Usage:

For (type), (type):
(S) General non-linear least squares problem

(F) Least squares data fitting problem

(M) Maximum likelihood estimation

Name of user-supplied subprogram, declared in the calling program.
This subprogram must provide the values of the functions , , and,
if , the values of the derivatives and

(see Examples).
() Cases (F) and (M): dimension of a data point (observation) .
() Case (S): number of non-linear functions ; cases (F) and (M): number of data points
(observations).
() Number of unknown parameters .
() Cases (F) and (M): declared first dimension of array in the calling program, .
() Cases (S) and (F): declared first dimension of array in the calling program,

.
(Type according to) Cases (F) and (M): two-dimensional array of dimension . On
entry, must contain the data set (the -th column of belongs to the data point ,

).
(type according to) Case (F): one-dimensional array of length , contains, on entry, the data
set .
(type according to) Case (F): one-dimensional array of length , contains, on entry, the
weights of the data points.

D501 – 2 127

(Type according to) One-dimensional array of length . On entry, must contain the
starting value of for the Levenberg-Marquardt algorithm. On exit, contains an approxi-
mation to of a minimum point (if the algorithm was successful).
(Type according to) One-dimensional array of length . On entry, must contain the
lower bound of .
(Type according to) One-dimensional array of length . On entry, must contain the
upper bound of .
()

The derivatives are approximated by divided differences.
The derivatives are to be supplied by subprogram .

Other values for are treated as .
(Type according to) User-supplied tolerance used to control the termination criterion.
should be chosen according to the accuracy required by the problem and the machine accuracy
(recommended value on entry: between for , and for , respectively).
() Maximum permitted number of iterations.
() Printing control.

no printing of intermediate results,
printing of intermediate results at every -th iteration; if , printing of all input
parameters of , , , respectively, in addition.

() On exit, contains the number of free variables at the solution point.
() One-dimensional array of length for cases (S) and (F), and of length for
case (M), used as working space. On exit, the first elements of contain the indices of
the free variables at the solution point.
(Type according to) On exit, contains the value of the objective function at the solution
point.
(Type according to) One-dimensional array of length . On exit, contains the
derivative of with respect to (j-th component of the gradient of) at the solution
point.
(Type according to) Cases (S) and (F): two-dimensional array of dimension . On exit,

contains an approximation to the covariance matrix.
(Type according to) Cases (S) and (F): one-dimensional array of length . On exit,
contains an approximation to the standard deviation of the estimator of the model parameter .
(Type according to) One-dimensional array of length
for cases (S) and (F), and of length for case (M), used as working space.
() Error indicator. On exit:

No error or warning detected.
At least one of the constants , , , , , is illegal or at least for one the relation

is not true.
The maximum number of iterations has been reached.
The objective function or its derivative is not defined for the current values of the param-
eter vector .
Cases (S) and (F): The routines , , in the Linear Algebra package

(F001) were unable to solve the linear least squares problem or the subprogram
(F012) was unable to compute the covariance matrix.

Case (M): the routine (F012) was unable to solve the normal equations.

128 D501 – 3

Examples:

For the user-supplied subprogram write for instance in the case :

(S) Objective function (Brown badly-scaled function,):

.

(F) Objective function (Bard function,):

.

D501 – 4 129

(M) Objective function ():

.

In all three cases the parameters , , , , , are as declared above. The other parameters
are the following:

(Type according to) Case (S): one-dimensional array of length . must contain the function
value at , on exit.
Cases (F) and (M): must contain the function value at , on exit.
(Type according to) If values of are supplied by . For other values of the
parameter is not referenced.
Case (S): two-dimensional array of dimension . must contain the value of the
partial derivative at , , on exit.
Cases (F) and (M): one-dimensional array of length . must contain the value of the partial
derivative , , on exit.
(Type according to) Cases (F) and (M): one-dimensional array of length for one data point

(in contrast to above declaration).

References:

1. J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, In: Numerical Analysis,
G.A. Watson (Ed.), Lecture Notes in Mathematics 630, Springer-Verlag, New York (1977) 105-116.

2. Å.Björck: Solution of Equations in (Part 1: Least Squares Methods). In: Handbook of Numerical
Analysis, P.G.Ciarlet, J.L.Lions (Eds.), North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990,
467-636.

3. R.Fletcher: Practical Methods of Optimization. John Wiley and Sons, Chichester, 2nd Edition, 1987.

130 D501 – 5

RMINFC CERN Program Library D503

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.11.1993
Language : Fortran Revised:

Minimum of a Function of One Variable

Subroutine subprograms and calculate, to a limited specified accuracy, the abscissa of
a single local minimum of a real-valued function lying in a given interval , together with the
function value at the minimum. Although this subprogram may find a minimum under other conditions (see
Notes), the search interval should contain exactly one local minimum point with .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
External References: User-supplied subprogram

Usage:

For (type), (type),

(type according to) Name of a user-supplied subprogram, declared in the
calling program. This function must set .
(type according to) On entry, and must specify the end-points of the search interval.
(type according to) On entry, must be equal to the accuracy parameter (see Accuracy).
(type according to) On entry, must be equal to the parameter specifying a tolerance
interval near and (see Accuracy).
(type according to) On exit, is the computed approximation to the abscissa of a minimum of
the function .
(type according to) Contains, on exit, the value of .
() On exit, is if the relations and are both true (i.e.
if is the abscissa of a local minimum lying inside the interval), and otherwise
(see Notes).

Method:

The so-called golden section search is applied (see References). This method uses a fixed number of
function evaluations, where .

Accuracy:

The accuracy depends on the behaviour of the function and is difficult to measure. For example, a flat
minimum results in poor accuracy. This implies that the subprograms are not intended to replace the usual
procedures when a minimum of a function is needed in the exact mathematical sense. In any case, a choice
of in double-precision and of in single-precisionmode usually results in a relative error
of which is smaller than or in the order of . A suggested value of is .

131 D503 – 1

Notes:

1. As a rule, the specified interval should contain strictly one local minimum.

2. If this is not the case, and if is monotonous in , the subprograms find the minimum at the
correct endpoint or . is set to in this case.

3. In all other possible cases, the behaviour of the subprograms is not easy to predict. In particular, in
the case of several minimal points inside , one of them is found, but not necessarily the one with
the smallest value of the function.

References:

1. R. Fletcher, Practical methods of optimization (John Wiley & Sons, Chichester 1987) 39–40.

2. W. Krabs, Einführung in die lineare und nichtlineare Optimierung für Ingenieure (BSB B.G. Teubner,
Leipzig 1983) 84–86

D503 – 2 132

MINUIT CERN Program Library D506

Author(s) : F. James, M. Roos Library: PACKLIB
Submitter : F. James Submitted: 03.05.1967
Language : Fortran Revised: 15.01.1994

Function Minimization and Error Analysis

The package performs minimization and analysis of the shape of a multi-parameter function. It is
intended to be used on Chisquare or likelihood functions for fitting data and finding parameter errors and
correlations. The more important options offered are:

Variable metric (Fletcher) minimization
Monte Carlo minimization
Simplex (Nelder and Mead) minimization
Parabolic error analysis (error matrix)
MINOS (non-linear) error analysis
Contour plotting
Fixing and restoring parameters
Global minimization

Structure:

subprograms
User Entry Names: , , , , , , , ,

,
Internal Entry Names: , , , , , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , ,

Usage:

can be used either

as a “master” batch program which reads and executes commands appearing in the input data stream;

or

as a “master” interactive program which reads and executes commands given from the terminal;

or

as a Fortran callable “slave” package, called from the user program or from an intermediate package
such as or ;

or

any combination of the above.

See Long Write-up for details.

133 D506 – 1

FUMILI CERN Program Library D510

Author(s) : I. Silin Library: MATHLIB
Submitter : A. Kobine Submitted: 05.04.1971
Language : Fortran Revised: 18.11.1985

Fitting Chisquare and Likelihood Functions

OBSOLETE
Please note that this routine has been obsoleted in CNL 211. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (D501)

minimizes the objective functions and ML defined by:

and

with respect to the parameters where, for each , is a data-point with user estimated
error, , the are co-ordinates of that point and is a theoretical function predicting for a
given set of and .
The method makes use of a particular property concerning the dependence of the objective function (
or) on the theoretical function () for faster convergence.

Structure:

subprograms
User Entry Names: , ,
Internal Entry Names: , , , , , ,
Files Referenced: Printer
External References: User-supplied and (optional) subprograms

Block Names and Lengths: , , , , ,
, , , ,

, , , ,
, , ,

Usage:

See Long Write-up.

References:

1. Preprint YINDR-810, 1961 (Dubna) (CERN Library, preprint P. 810).

134 D510 – 1

RFRDH1 CERN Program Library D601

Author(s) : G.A. Erskine and K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Solution of a Linear Fredholm Integral Equation of Second Kind

Subroutine subprograms , and function subprograms , calculate an approx-
imation to the solution of the Fredholm integral equation

over the interval . The function must not be identically zero. The interval may be divided into
subintervals , with .

The order (number of abscissae) of the Gaussian quadrature formula used for integrating over
is specified separately for each subinterval.

Function subprograms and evaluate numerically integrals of the form
where is an arbitrary function and is the solution of (1).
The following values of may be used: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.
On computers other than CDC and Cray, only the double-precision versions etc. are available. On
CDC and Cray computers, only the single-precision versions etc. are available.

Structure:

and subprograms
User Entry Names: , , , , ,
Files Referenced:
External References: (D107), (D107), (F010), (F010), (N002),

(Z035), user-supplied subprograms.
Usage:

For (type), (type), the first step in the solution of (1) must be the
execution of a statement of the form:

(type according to) Names of user-supplied subprograms, declared in the
calling program. Subprogram must set , subprogram must set .
() Number of subintervals in .
(type according to) One-dimensional array of dimension where . On entry, must
contain the ordered points of subdivision , with and .
() One-dimensional array of length . On entry, must contain the order (number of
absissae) of the Gaussian quadrature formula to be used in the interval

.
(type according to) Two-dimensional array of dimensions . Used as working
space and for communication between the subprograms.
() A number .
() On exit, .

135 D601 – 1

Once has been called, the function subprograms and may be referenced any number
of times without any further call to .
In any arithmetic expression,

has the value , where is the approximate solution of (1).
In any arithmetic expression,

has the approximate value of where is the approximate solution of (1).

(type according to) is the name of a user-defined subprogram, declared in the
calling program. This subprogram must set .

Method:

Let the sets and be defined by

and are respectively the weights and abscissae of the -point Gaussian quadrature formulae corre-
sponding to the interval . Subprograms or sets up and solves the following system
of simultaneous linear equations with unknowns :

where .

Function subprogram calculates .

Function subprogram calculates .

Accuracy:

The accuracy depends upon the extend to which the product can be represented by a polynomial
of degree for all in the interval .

Error handling:

Error In , the system of linear equations is singular. A message is written on ,
unless subroutine (N002) has been called.
If any of the values does not appear in the list given above, a message is written on by or

(D107) unless subroutine (N002) has been called.

D601 – 2 136

RFT CERN Program Library D700

Author(s) : C. Iselin Library: MATHLIB
Submitter : Submitted: 04.09.1972
Language : Fortran Revised: 15.01.1977

Real Fast Fourier Transform

Let the discrete Fourier transform be defined by

The subroutines of package compute this transform or its inverse

for real functions, with the restriction that is a power of 2.

Structure:

subprograms
User Entry Names: , , , ,
Internal Entry Names:
Files Referenced: Printer

Block Names and Lengths: ,

Usage:

or
or
or
or

() Number (such that) of input values (full period or half period).
() Input array. The input values are taken from for .
() Output array. The results are stored in for .
() Selects the mode of operation for as follows:

Analysis of a general real function.

or

assumes to define a full period of the function to
be analysed. The value is ignored. The results are returned in the following order:

.

The other values in are not changed.

137 D700 – 1

Synthesis of a general real function.

or

is exactly the inverse of as described above. The value is set equal to .

Analysis/Synthesis of a real even function.
For an even function, the transform is identical to its inverse.

or
or

all assume that define a half-period of the function
to be analysed and that the other half period is generated by even continuation. The results returned are the
cosine terms

Note that the full period has points.

Analysis/Synthesis of a real odd function.
For an odd function the transform is also identical to its inverse. All assume that

;

or
or

define a half-period of the function to be analysed and that the other half period is generated
by odd continuation. The results returned are the sine terms

.

Note that and that the values returned are and . Again
the full period has points.

Restrictions:

These subroutines work for any input such that the full period has at least four points, i.e., for general
functions, or for odd or even functions. If the number of data points exceeds 129 (), the calling
program must provide sufficient working storage by using the statement

where .

References:

1. C. Iselin, An approach to fast Fourier transform, CERN 71-19.

A copy of Ref. 1 is available.

D700 – 2 138

CFT CERN Program Library D702

Author(s) : R.C. Singeton (Stanford) Library: MATHLIB
Submitter : B. Fornberg Submitted: 03.05.1968
Language : Fortran Revised: 01.10.1974

Complex Fast Fourier Transform

A discrete Fourier transform is defined by:

and the inverse

satisfying . evaluates these sums using fast Fourier technique.
It is not required that is a power of 2. One-, two- and three-dimensional transforms can be performed.

Structure:

subprogram
User Entry Names:
Files Referenced: Printer

Usage:

Arrays and originally hold the real and imaginary components of the data, and return the real and
imaginary components of the resulting Fourier coefficients.
Multivariate data is indexed according to the Fortran array element successor function, without limit on
the number of implied multiple subscripts. The is called once for each variate. The calls for
a multivariate transform may be in any order. is the total number of complex data values. is the
dimension of the current variable. is the spacing of consecutive data values while indexing the
current variable. The sign of determines the sign of the complex exponential, and the magnitude of
is normally one.
For a single-variate transform, (number of complex data values), e.g.

A tri-variate transform with , is computed by

and

The data may alternatively be stored in a single array , then the magnitude of changed to
two to give the correct indexing increment and the second parameter used to pass the initial address for the
sequence of imaginary values, for example:

139 D702 – 1

Arrays , , , , and are used for temporary storage. If the
available storage is insufficient the program is terminated by a .

must be the maximum prime factor of . must be the number of prime factors of . In
addition, if the square-free portion of has two or more prime factors, then must be .
Storage in allows for a maximum of 11 factors of . If has more than one square-free factor, the
product of the square-free factors must be 210.

Notes:

is very general since the number of points is not restricted to powers of two, as is the case for
(D700) and (D701). For the routines in (D701) are considerably faster.

References:

1. R.C. Singleton, An Algorithm for Computing the Mixed Radix F.F.T., IEEE Trans. Audio Electroa-
coust., AU–1(1969) 93–107.

2. Reprinted in: L.R. Rabiner and C.M. Rader: Digital Signal Processing, IEEE Press New York (1972)
294.

D702 – 2 140

RFSTFT CERN Program Library D705

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB
Submitter : Submitted: 22.04.1996
Language : Fortran Revised:

Real Fast Fourier Transform

Subroutine calculates the finite Fourier transform of a real periodic sequence ,
whose period must be a power of two. Either the direct transform

(1)

or the inverse transform

(2)

where are real and are complex numbers, may be calculated. Note that
, where denotes the complex conjugate of . Thus, only the numbers for which

are calculated.

Structure:

subprogram
User Entry Names:
External References: (D706)

Usage:

() On entry, is determined by the absolute value of via .
The direct transform (1) is calculated.
The inverse transform (2) is calculated.

Unchanged on exit.
() One dimensional array of dimension , where .
() One dimensional array of dimension , where .

On entry, .
On exit, , as defined by (1).

On entry, .
On exit, , as defined by (2).

141 D705 – 1

Method:

The subroutine uses (D705) with sequences reduced to half of their length as explaind in Ref. 1.

References:

1. E.O. Brigham, The fast Fourier transform, (Prentice-Hall, Englewood Cliffs, 1974) Ch. 10, Sect. 10,
Fig. 10-10.

D705 – 2 142

CFSTFT CERN Program Library D706

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB
Submitter : Submitted: 22.04.1996
Language : Fortran Revised:

Complex Fast Fourier Transform

Subroutine calculates the finite Fourier transform of a complex periodic sequence ,
whose period must be a power of two. Either the direct transform

(1)

or the unscaled inverse transform

(2)

where and are complex numbers, may be calculated.
If the in (2) have the values defined by (1), then . To ensure optimum
use of storage, the same array is used for input and output, and all intermediate calculations are carried out
in this array.

Structure:

subprogram
User Entry Names:

Usage:

() On entry, is determined by the absolute value of via .
The direct transform (1) is calculated.
The inverse transform (2) is calculated.

Unchanged on exit.
() One dimensional array of dimension , where .

On entry, .
On exit, , as defined by (1).

On entry, .
On exit, , as defined by (2).

Method:

The method is based on an algorithm of Cooley, Lewis and Welch (see References), with the following
modifications which increase speed for small values of : multiplications by are replaced by
addition or subtraction, and terms of the form are calculated recursively
using only square roots and divisions.

143 D706 – 1

References:

1. G. Dahlquist and Å. Björck, Numerical methods (Prentice-Hall, Englewood Cliffs, 1974) 416.

2. L.R. Rabiner and B. Gold, Theory and application of digital signal processing (Prentice-Hall, Engle-
wood Cliffs, 1975) 332.

D706 – 2 144

POLINT CERN Program Library E100

Author(s) : F. James Library: KERNLIB
Submitter : Submitted: 05.09.1966
Language : Fortran Revised: 18.11.1985

Polynomial Interpolation

Subroutine interpolates in a table of arguments and function values , using an inter-
polating polynomial of specified degree which passes through successive tabular points. The table
arguments need not be equidistant. Meaningful results can usually be obtained only for small values of
(typically less than 10).

Structure:

subprogram
User Entry Names:
Files Referenced: Printer
External References: (N001), (Z035)

Usage:

() One-dimensional array. must be equal to the value at of the function to be
interpolated, .
() One-dimensional array. must be equal to the table argument .
() is the degree of the interpolating polynomial.
() Argument at which the interpolating polynomial is to be evaluated.
() On exit, is set equal to the value at of the polynomial passing through the points

.

If lies outside the range of the points , the interpolation becomes an extrapolation, with
consequent loss of accuracy.

Method:

Newton’s divided difference formula is used.

Restrictions:

. If , the interpolation is performed as if had the value . The original value of is
unchanged on exit.

Error handling:

Error . A message is printed unless subroutine (N001) has been called.

Notes:

is intended for interpolation using all the tabulated points in the array . To use only the tabulated
points around the value of the argument , use (E105).

145 E100 – 1

MAXIZE CERN Program Library E102

Author(s) : K.S. Kölbig, H. Lipps Library: MATHLIB
Submitter : Submitted: 29.08.1968
Language : Fortran Revised: 01.12.1994

Maximum andMinimum Elements of Arrays

Function subprograms , , and , , give give the positions of
the maximum and minimum elements of a one-dimensional array.
On CDC and Cray computers, the double-precision versions and are not available.

Structure:

subprograms
User Entry Names: , , , , ,
Obsolete User Entry Names: ,

Usage:

In any arithmetic expression, for (type), (type), (type),

and

has the value of the location of, respectively, the maximum and minimum elements of the
successive elements of the array , relative to the element , where is of type .

Notes:

1. If there is more than one location at which the maximum or minimum is attained, the first location is
returned as the function value in each case.

2. If the function value is .

3. Clearly, should not exceed the dimension of the array .

4. The obsolete older entries (for) and (for) are kept for a transitional
period. They will eventually disappear.

146 E102 – 1

AMAXMU CERN Program Library E103

Author(s) : J. Zoll Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Largest Absolute Number in Scattered Vector

looks for the largest absolute value in a scattered vector of real numbers.

Structure:

subprogram
User Entry Names:

Usage:

In any arithmetic expression,

is set to the largest absolute value of numbers in any of the subsets of as specified by , and .

One-dimensional array, containing a number of subsets of real numbers.
Number of subsets to be examined.
Number of words in each subset.
Specifies the distance between the first elements of consecutive subsets.

Notes:

To find the largest element in a continuous vector, (F121) is faster than .

Examples:

sets equal to the largest absolute value of , , and .

147 E103 – 1

FINT CERN Program Library E104

Author(s) : C. Letertre Library: KERNLIB
Submitter : B. Schorr Submitted: 17.05.1971
Language : Fortran Revised: 27.11.1984

Multidimensional Linear Interpolation

Function subprogram uses repeated linear interpolation to evaluate a function) of
variables which has been tabulated at the nodes of an -dimensional rectangular grid. It is not necessary
that the table arguments corresponding to any coordinate be equally spaced.

Structure:

subprogram
User Entry Names:
Files Refernced: Printer
External References: (N001), (Z035)

Usage:

In any arithmetic expression,

has an approximate value of .

() Number of coordinates required to define the function .

() One-dimensional array. , must contain the coordinates of the point at
which the interpolation is to be performed.

() One-dimensional array. For must be equal to the number of
numerical values of variable which are stored in array .

() One-dimensional array of length not less than the sum of . The first
elements of must contain numerical values of the first variable in strictly increas-
ing order, the next elements of must contain numerical values of the second
variable in strictly increasing order, and so on.

() Multidimensional array with dimensions , , , containing values of
the function at the nodes of the rectangular grid defined by :

.

If any coordinate of the given point lies outside the range of the corresponding table arguments, the
interpolation for this coordinate is replaced by an extrapolation based on the two nearest table arguments,
with consequent loss of accuracy.

Method:

Repeated linear interpolation with respect to variables within the grid cell which contains the
given point . For , with replaced by for clarity, the procedure is equivalent to the
following:
Let be the tabulated values of . Let be the tabulated values of .
Let and be the subscripts for which .

148 E104 – 1

Then compute:

Restrictions:

1. . is set equal to zero if is not in this range.

2.

3. The table arguments for each variable must be in strictly increasing order.

There is no test for conditions 2 or 3.

Error handling:

or . is set equal to zero, and a message is printed unless subroutine
has been called.

Examples:

Given a function of two variables defined by a subprogram , to construct a table of values
of for , and to interpolate in this table to set
equal to an approximate value of . The program is written in a form which allows generalization
to functions of more than two variables.

E104 – 2 149

DIVDIF CERN Program Library E105

Author(s) : F. James Library: KERNLIB
Submitter : G.A. Erskine Submitted: 19.07.1973
Language : Fortran Revised: 27.11.1984

Function Interpolation

Function subprogram interpolates in a table of arguments and function values , using
an interpolatingpolynomial of specified degree which passes through tabular pointswhich are symmetrically-
positioned around the interpolation argument. The table arguments need not be equidistant.

Structure:

subprogram
User Entry Names:
Files Referenced: Printer
External References: (N001), (Z035)

Usage:

In any arithmetic expression,

has an approximate value of .

() One-dimensional array. must be equal to the value at of the function to be
interpolated, .
() One-dimensional array. must be equal to the table argument .
() Number of values in arrays and .
() Argument at which the interpolating polynomial is to be evaluated.
() Requested degree of the interpolating polynomial. If exceeds
the interpolation is carried out using a polynomial of degree instead of . The original value
of is unchanged on exit.

Method:

Newton’s divided difference formula is used. Except when lies near one end of the table (in which case
unsymmetrically-situated interpolation points are used), the interpolation procedure is as follows:
odd:

An interpolating polynomial passing through successive points symmetrically placed with
respect to is used.
even:

The mean of two interpolating polynomials is used, each passing through successive points ,
one polynomial having an extra point to the left of , the other having an extra point to the right of .
If lies too close to either end of the table for symmetrically-positioned tabular values to be used, the
values at the end of the table are used. If lies outside the range of the table, the interpolation becomes an
extrapolation, with corresponding loss of accuracy.

Restrictions:

The argument values must be in either strictly increasing order or strictly decreasing order.
No error message is printed if this is not true.

150 E105 – 1

Error handling:

Error : or . is set equal to zero and a message is printed unless subroutine
has been called.

Notes:

See also the write-up for (E100).

E105 – 2 151

LOCATR CERN Program Library E106

Author(s) : F. James, K.S. Kölbig Library: KERNLIB
Submitter : Submitted: 18.10.1974
Language : Fortran Revised: 15.11.1995

Binary Search for Element in Ordered Array

Integer function subprograms and perform a binary search in an array of non-decreasing
integer or real numbers to locate a specified value .

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
On CDC or Cray computers, the double-precision version is not available.

Usage:

In any arithmetic expression, for (type), (type), (type),

has the value according to the description below.

(type according to) One-dimensional array. The numbers must form a non-decreasing
sequence for .
() Number of elements in array .
(type according to) Search value .

Depending on four possible outcomes of the search, each subprogram returns the following value ,
):

for some with

for some with

If the value occurs more than once in the array , the result may correspond to any of the occurrences.

Method:

Repeated bisection of the subscript range.

Notes:

1. The number of comparisons performed is approximately proportional to . Therefore, for large
the binary search is considerably faster than a sequential search using a loop. However, for less
than about 40 a loop is faster.

2. The obsolete older entry is kept for a transitional period. It will eventually disappear.

152 E106 – 1

RLSQPM CERN Program Library E201

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Least Squares Polynomial Fit

Subroutine subprograms and fit a polynomial

of degree to equally-weighted data points (). The calculated coefficients are such that

Subroutine subprograms and fit a straight line to such points.
Subroutine subprograms and fit a parabola to such points.
An estimate of the standard deviation is calculated.
On CDC and Cray computers, the double-precision versions , and are not available.

Structure:

subprograms
User Entry Names: , , , , ,
External References: (F002), (F002), (F002), (F002), (F012)

Usage:

For (type), (type),

() Number of data points.
(type according to) One-dimensional array of length . On entry, contains the ab-
scissas .
(type according to) One-dimensional array of length . On entry, contains the ordi-
nates .
() Degree of the polynomial to be fitted.
(type according to) One-dimensional array of dimension , where . Contains, on
exit, in the coefficients .
(type according to) Contain, on exit, the coefficients , for or
for , respectively.
(type according to) Contains, on exit, the estimate .
() Error flag.

Normal case,
or or or ,

The matrix of normal equations is numerically singular.

In the case : , and on exit.

153 E201 – 1

Method:

The normal equations are solved. On computers other than CDC or Cray, double-precisionmode arithmetic
is used internally for , and .

Notes:

Meaningful results can usually be obtained only for small values of (typically).

References:

1. D.H. Menzel, Fundamental formulas of physics, v. 1, (Dover, New York 1960) 116–122.

E201 – 2 154

LSQ CERN Program Library E208

Author(s) : E. Keil Library: KERNLIB
Submitter : B. Schorr Submitted: 01.12.1969
Language : Fortran Revised: 27.11.1984

Least Squares Polynomial Fit

OBSOLETE
Please note that this routine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (E201)

Subroutine fits a polynomial of degree to equally-weighted data points (). The computed
coefficients of the fitted polynomial have values which minimize

For the case (straight line fit), subroutine is faster and easier to use than .
Meaningful results can usually be obtained only for small values of (typically less than 10).

Structure:

subprograms
User Entry Names: ,
Files Referenced: Printer
External References: (F002), (F012), (F012), (N001), (Z035)

Usage:

() Number of data points.

() One-dimensional array. must be equal to the data coordinate ,
.

() One-dimensional array. must be equal to the observed value ,
.

() On entry, must be equal to the number of coefficients of the polynomial to be
fitted. On exit, the value of may differ from this (see Error Handling).
() One-dimensional array. On exit from , is equal to the coefficient of in
the fitted polynomial, .

() On exit from , and are equal to the coefficients of the fitted straight line
.

() On exit from , is equal to if , to if the matrix of normal
equations is numerically singular, and to zero otherwise.

155 E208 – 1

Method:

Normal equations.

Error handling:

Error or or (subroutine). is replaced by zero.
Error The normal equations matrix is numerically singular (subroutine).
For each error, a message is printed unless subroutine has been called.

Notes:

On computers other than Cray and CDC double-precision arithmetic is used internally.

E208 – 2 156

NORBAS CERN Program Library E210

Author(s) : W. Mönch, B. Schorr Library: MATHLIB
Submitter : W. Mönch Submitted: 15.03.1993
Language : Fortran Revised:

Polynomial Splines / Normalized B-Splines

(malized sis plines) is a portable collection of subprograms for various calculations with
polynomial splines in one dimension (1D) and in two dimensions (2D). The polynomial splines are repre-
sented as linear combinations of normalized basis splines (B-splines).
On computers other than CDC or Cray, only the double-precision versions , etc. are available. On
CDC and Cray computers, only the single-precision versions , etc. are available.
The following outline provides the background material and the notations needed for describing the subpro-
grams and their parameters. For further information about splines and their applications see References, in
particular Ref. 7.

Case (1D):

Degree (order) of the B-spline .
Number of spline-knots .
Index of the B-spline .
Set of spline-knots , in non-decreasing order, with multiplicity
(i.e. no more than knots coincide).
Interval, defined by , .
Normalized B-spline of degree over with index . The value of is identically zero
outside the interval , and the normalization of is such that

Polynomial spline at in B-spline representation

Spline interpolation to a data set:
Given a data set ; determine coefficients of a polynomial interpolation spline

in B-spline representation with degree over a set of knots, such that the
following relations (interpolation conditions) hold:

The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots (Ref. 7, Theorem XIII.1 (Schoenberg-Whitney)).
Least squares spline approximation to a data set:
Given a data set ; determine coefficients of a polynomial approximation
spline in B-spline representation with degree over a set of knots, such that
following least squares problem is solved:

157 E210 – 1

Variation diminishing spline approximation to a function (Schoenberg):
For a given function on this spline approximation is defined by , with
(Ref. 7, p. 158-162)

Case (2D):
Degree of one-dimensional B-splines in -direction .
Degree of one-dimensional B-splines in -direction .
Number of spline-knots in -direction .
Number of spline-knots in -direction .
Index of B-spline in -direction.
Index of B-spline in -direction.
Set of spline-knots in -direction, in non-decreasing order,
with multiplicity (i.e. no more than knots coincide).
Set of spline-knots in -direction, in non-decreasing order,
with multiplicity (i.e. no more than knots coincide).
Interval in -direction, defined by , .
Interval in -direction, defined by , .
B-spline of degree over with index .
B-spline of degree over with index .
Product of two one-dimensional B-splines.
Two-dimensional polynomial spline at in B-spline representation

Spline interpolation to a data set:
Given a data set ; determine coefficients of a
two-dimensional polynomial interpolation spline in B-spline representation with degrees ,
over the sets of knots in -direction and of knots in

-direction, such that following relations (interpolation conditions) hold:

The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots , in the two-dimensional interpolation area .
Least squares spline approximation to a data set:
Given a data set ; determine coefficients of a
two-dimensional polynomial approximation spline in B-spline representation with degrees ,
over the sets of knots in -direction and of knots in

-direction, such that following least squares problem is solved:

Variation diminishing spline approximation to a function:
For a given function on this two-dimensional spline approximation is defined
by on , with

E210 – 2 158

The package contains and subprograms for solving the following problems.
To calculate:
(K) A set of spline-knots in the interval for normalized B-splines of degree , use sub-

program (1D). The knots are in non-decreasing order and determined in such a way that the
first knots coincide with , the last knots coincide with , and the remaining
knots are equidistant in .
Two sets , of spline-knots in and for B-splines of degrees and
in - and -direction, use subprogram (2D). and , are calculated by the same formulae
in -, and -direction, as in case (1D).

(B) The function ,

the -th derivative , or the integral

of a normalized B-spline , with fixed degree and index over a set of spline-knots, use
subprogram: (1D).
The function ,

the partial derivative , or the integral

of a two-dimensional B-spline , with fixed degrees , and indices , over the sets ,
of spline-knots, use subprogram (2D).

(P) The function ,

the -th derivative , or the integral

of a polynomial spline in B-spline representation with given coefficients , use subprogram
(1D).

The function ,

the partial derivative , or the integral

of a two-dimensional polynomial spline in B-spline representation with given coefficients
, use subprogram (2D).

(I) The coefficients of a one-dimensional polynomial interpolation spline in B-spline repre-
sentation to a user-supplied data set , use subprogram (1D).
The coefficients of a two-dimensional polynomial interpolation spline in B-spline
representation to a user-supplied data set , use subprogram (2D).

(A) The coefficients of a one-dimensional polynomial least squares approximation spline in
B-spline representation to a user-supplied data set , use subprogram (1D).
The coefficients of a two-dimensional polynomial least squares approximation spline
in B-spline representation to a user-supplied data set , use subprogram (2D).

(V) The coefficients of a one-dimensional polynomial variation diminishing spline approximation
in B-spline representation to a user-supplied function , use subprogram (1D).

The coefficients of a two-dimensional polynomial variation diminishing spline approximation
in B-spline representation to a user-supplied function , use subprogram

(2D).
(D) From given coefficients of a one-dimensional polynomial spline in B-spline representa-

tion, the corresponding coefficients of its -th derivative in B-spline representation,
use subprogram (1D).
From given coefficients of a two-dimensional polynomial spline in B-spline repre-
sentation, the corresponding coefficients of its partial derivative in
B-spline representation, use subprogram (2D).

159 E210 – 3

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , ,
, , , , , , , ,
, , , , , ,

Internal Entry Names: , , , ,
Files Referenced:
External References: (F001), (F001), (F001),

(F001), (F001), (F001),
(F002), (F002), (F002), (F002),
(F002), (F002), (F002), (F002),
(F003), (F003), (F003), (F003),
(N002), (Z035).

User-supplied subprogram

Usage:

For (type), (type):
(K) Knots

(B) Normalized B-splines

(P) Polynomial spline

(I) Spline interpolation

(A) Least squares spline approximation

(V) Variation diminishing spline approximation

(D) Coefficients of derivatives

E210 – 4 160

Case (1D):

Name of a user-upplied subprogram, declared in the calling program. This
subprogram must provide the value of the function for variation diminishing spline ap-
proximation.
() Degree of B-splines (for , otherwise).
() Number of knots ().
() Index of B-splines ().
() Number of data points (for spline interpolation ();
for spline approximation ()).
() Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.
(for and ; for).

Calculation of the integral of (), or the integral of ().
Calculation of the function value (), or the function value ().
Calculation of the -th derivative of (), or the -th derivative of
().

(Type according to) Independent variable of polynomial spline or B-spline .
(Type according to) One-dimensional array of length . On entry, must contain the -th
data point for spline interpolation () or spline approximation (). The data points
must be in ascending order.
(Type according to) One-dimensional array of length . On entry, must contain the -th
data point for spline interpolation () or spline approximation ().
() Controls the mode of supplying the knots for spline interpolation or approximation.

The knots are computed by the subprograms and . At the left and right
end-point of the interpolation (approximation) interval arise multiple knots. The
remaining knots are either equidistant () or are computed by using the data points

of interpolation (approximation) (.
The knots must be supplied by the user.

(Type according to) On entry, and must contain the left (right) end-point of the interval
for the calculation of a set of spline knots ().
(Type according to) One-dimensional array of length .
For and for , if On exit, contains the -th knot. In the
other cases, on entry, must contain the -th knot. The knots must be in non-decreasing order
with multiplicity .
(Type according to) One-dimensional array of length .
For and : On entry, must contain the -th coefficient of the polynomial
spline in B-spline representation.
For , and : On exit, contains the -th coefficient of the polynomial
interpolation or approximation spline in B-spline representation.
(Type according to) One-dimensional array of length .
On exit, contains the coefficient of the -th derivative of a polynomial spline in
B-spline representation.
(Type according to) One-dimensional array of length (), and of length

(); used as working space.
() Length of working array , ().
() One-dimensional array of length , used as working space.

161 E210 – 5

() Error indicator. On exit:
No error or warning detected.

At least one of the parameters , , , , is not in range or is not true.
The subprograms , , in the Linear Algebra package (F001)
were unable to solve the linear system of equations for calculating the coefficients of the
spline interpolation to a given data set.

Case (2D):

Name of a user-upplied subprogram, declared in the calling program. This
subprogram must provide the value of the function for variation diminishing spline
approximation.

() Degree of one-dimensional B-splines in - (-)direction (
for ; otherwise).

() Number of knots in - (-)direction (.
() Indices of B-splines ().

() Number of data points in - (-)direction (for
spline interpolation ; for spline approximation).

() Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.

(for and ;
, for).

Calculation of the integral of (), or the integral of ().
Calculation of the function value (), or the function value ().

Calculation of the -th partial derivative with respect to and the -th partial
derivative with respect to of (), or the calcultion of these derivatives of

().
Note that in the first two cases , respectively.

(Type according to) Independent variables of polynomial spline or B-spline .

(Type according to) One-dimensional arrays of length and , respectively. On entry,
and must contain the -th data point and the -th data point for spline

interpolation () or spline approximation (). The data points must be in ascending
order.

(Type according to) Two-dimensional array of dimension . On entry,
must contain the -th data point for spline interpolation () or spline approxima-
tion ().

() Declared first dimension of a two-dimensional array in the calling program ().

() Controls the mode of supplying the knots for spline interpolation or approximation.
The set of knots are computed by subprograms and . At the left and right
end-points of the interpolation (approximation) intervals arise multiple
knots. The remaining knots are either equidistant () or are computed by using
the data points of interpolation (approximation) ().
The knots must be supplied by the user.

(Type according to) On entry, , ; , must contain the left (right) end-points of the
intervals for the calculation of a set of spline knots in - (-)direction, respectively,
by .

E210 – 6 162

(Type according to) One-dimensional arrays of length and , repectively.
For and for , if On exit, and contain the -th
knot in - (-)direction. In the other cases, on entry, and must contain the -th knot
in - (-)direction. The knots must be in non-decreasing order with multiplicity and

, respectively.
(Type according to) Two-dimensional array of dimension .
For , : On entry, must contain the -th coefficient of the polynomial
spline in B-spline representation.
For , , : On exit, contains the -th coefficient of the poly-
nomial interpolation or approximation spline in B-spline representation.
() Declared first dimension of a two-dimensional array in the calling program
().
(Type according to) Two-dimensional array of dimension .
On exit, contains the coefficient of the partial derivative of order with respect
to and of a polynomial spline in B-spline representation.
(Type according to) One-dimensional array of length (),

(), and of length (), used as working space.
() Length of a one-dimensional array , used as working space
().
() One-dimensional array of length , used as working space.
() Error indicator. On exit:

No error or warning detected.
At least one of the parameters , , , , , , , , , is not in range or
at least one of the relations , is not true.
The routines , , in the Linear Algebra package (F001) were
unable to solve the linear system of equations for calculation coefficients of spline interpo-
lation to a given data set.

Examples:

Calculate

1. The coefficients of a polynomial interpolation spline of degree in B-spline repre-
sentation to a given data set ;

2. The corresponding coefficients of the first derivative ;

3. The values of and for .

163 E210 – 7

Error handling:

Error : not in range, Error : not in range,
Error : not in range, Error : inconsistent,
Error : not in range, Error : inconsistent.
Error : not in range,
In all cases, is set (see above). A message is written on , unless subroutine (N002)
has been called.

E210 – 8 164

References:

1. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and their Applications,Academic Press,
New York, 1967.

2. M.J. Marsden, An identity for spline functions with applications to variation diminishing spline ap-
proximation, J. Appr. Theory 3 (1970), 7-49.

3. C. de Boor, On calculating with B-splines, J. Appr. Theory 6 (1972), 50-62.

4. M.G. Cox, The numerical evaluation of B-splines, J. Inst. Maths Applics 10 (1972), 134-149.

5. J.G. Hayes, J. Halliday, The least-squares fitting of cubic spline surfaces to general data sets, J. Inst.
Maths Applics 14 (1974), 89-103.

6. M.G. Cox, An algorithm for spline interpolation, J. Inst. Maths Applics 15 (1975), 95-108.

7. C. de Boor, A Practical Guide to Splines, Springer-Verlag, Berlin (1978).

8. P. Lancester, K. Salkauskas, Curve and Surface Fitting - An Introduction, Academic Press, New York,
1986.

9. J.C. Mason, M.S. Cox (Eds.), Algorithms for Approximation, Clarendon Press, Oxford, 1987.

10. J.W. Schmidt, H. Späth (Eds.), Splines in Numerical Analysis, Akademie-Verlag, Berlin, 1989.

11. H. Späth, Eindimensionale Spline-Interpolations-Algorithmen; Zweidimensionale Spline-Interpola-
tions-Algorithmen, (2 Bd.) R. Oldenbourg, München 1990/1991.

165 E210 – 9

RCSPLN CERN Program Library E211

Author(s) : K.S. Kölbig, H. Lipps Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 01.05.1990
Language : Fortran Revised:

Cubic Splines and their Integrals

Subroutines and compute a (vector-valued) cubic spline function which interpolates
between a given set of points. Entries and compute the first and second integral over .
On computers other than CDC or Cray, only the double-precisionversions and are available.
On CDC and Cray computers, only the single-precision versions and are available.
Given an interval , a subdivision of this interval into subintervals

and function values on the abscissae (called ‘knots’) (),
and compute a function of class , defined on , which assumes the given value

at the knot (i.e.), and which, when restricted to the th sub-interval is identical
with a set of polynomials , each of degree at most . Any function which satisfies
the above two conditions is called a ‘cubic spline’ through the points . To define the spline
function uniquely the subroutines impose an additional boundary condition, specified by their
parameter:

(the so-called natural spline).
and .

Structure:

subprograms
User Entry Names: , , ,
Files referenced:

Usage:

For (type), (type),

Spline:
Integrals:

() Number of subintervals . Must contain a value of at least 2 on entry.
Unchanged on return.
(type according to) One-dimensional array of dimension of at least elements. On
entry, must contain the abscissa , . Unchanged on return.
() Number of components of the vector-valued spline function . Must contain
a value of at least 1 on entry. Unchanged on return.
(type according to) Two-dimensional array of dimension where is a value not
less than . On entry, must contain the value of the th component of the vector
, ; . Unchanged on return.

() Upper bound of the first dimension of arrays , , , and . Must contain a value
of at least on entry. Unchanged on return.
() Type of boundary condition (see description above). Must contain the value 0 or 1
on entry. Unchanged on return.

166 E211 – 1

(type according to) Two-dimensional arrays of dimension , where .
On return from , , , and will contain the four coefficients

and of the polynomial

that determines the th component of the spline in the th subinterval ,
, .

On return from ,

and ,

with .
Arrays and have been used as working space.

Restrictions:

, , , or .

Error handling:

Error : .
Error : .
Error : .
Error : and .
A message is written on , unless subroutine (N002) has been called.

E211 – 2 167

RCHEBN CERN Program Library E222

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Solution of Overdetermined Linear System in the Chebychev Norm

Subroutine subprograms and find the Chebyshev or minimax solution to a set of overdeter-
mined linear equations , i.e. the vector x which minimizes

On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
External References: (F002), (F002), (F002), (F002), (F002),

(F002), (F002), (F002), (F002), (F002)
Usage:

For (type), (type),

() Number of equations.
() Number of unknowns.
(type according to) Two-dimensional array of dimension , where . On
entry, must contain the coefficients of matrix A.
The contents of is destroyed during execution.
() Declared first dimension of array , where .
(type according to) One-dimensional array of length . On entry, the first elements
of must contain the vector b. On exit, these elements contain the residuals .
Tolerance parameter which should be set to a value somewhat greater than the machine preci-
sion.
(type according to) On entry, should be set to zero if the true minimax solution is
required. (For non-zero see Notes).
(type according to) One-dimensional array of length . On exit, the first elements
of contain the solution vector x.
(type according to) On exit, contains the value of the maximum residual.
() On exit, contains an estimate of the rank of the matrix . (This estimate may
depend on .
() On exit, contains the number of simplex iterations performed.
() On exit, contains one of the following:

Solution x is not unique,
Solution x is unique,
Calculation terminated prematurely because of rounding error.

168 E222 – 1

Method:

Modified simplex method of linear programming applied to the dual of the stated minimax problem.

Notes:

1. If on entry contains a non-zero positive value , on exit contains a value , and
the computed solution x in and the maximum residual in are such that ,
where is the maximum residual corresponding to the true minimax solution x. By setting
non-zero (e.g.), the number of simplex iterations is usually reduced.

2. If is within one or two orders of magnitude of , the computed residuals in on exit may
contain few significant digits, and may have been set to zero if .

Source:

The subprograms are based on a Fortran algorithm given in Ref. 1.

References:

1. I. Barrodale and C. Phillips, Algorithm 495: Solution of an overdetermined system of linear equations
in the Chebyshev norm, ACM Trans. Math. Software 1 (1975) 264–270.

E222 – 2 169

TL CERN Program Library E230

Author(s) : W. Hart, W. Matt Library: KERNLIB
Submitter : Submitted: 01.01.1975
Language : Fortran Revised: 04.02.1986

Constrained and Unconstrained Linear Least Squares Fitting

The package finds the least squares solution to a set of unweighted linear equations, possibly subject to
a set of equality constraints. The solution is found by Householder triangularisation (see Ref. 1 for details)
with parameter elimination if constraints are present. This write-up ends with a few words on generalised
least squares fitting (unequal weighting) which is a simple application of the package.
All matrices are assumed to be stored row-wise and without gaps, contrary to the Fortran convention, i.e.,
if the Fortran statement reserves memory for the matrix A the element is found
in word .

Structure:

subprograms
User Entry Names: , , ,
Internal Entry Names: , , , ,

Usage:

General Description

Consider the set of linear equations

with

to be solved such that the Euclidian norm is minimised. Instead of determining x from
the Normal Equation it is found by applying successive Householder transformations
(Q) which reduce A to upper triangular form without changing the norm of the columns of A or the vector
b. This is beneficial from the point of view of stability and flexibility of application. Writing

rows
rows

and rows
rows

we have that and the vector x is obtained by backward substitution in .
As a byproduct, the sum of squares of residuals is directly calculated as .
Now consider A and b to be composed of constraints to be satisfied exactly, followed by
equations to be minimised. Writing

rows
rows

, rows
rows

then has to be minimized subject to .

170 E230 – 1

This problem is solved by eliminating parameters and then evaluating the reduced set of parameters (see
Ref. 2 for details).
An attractive feature of the unitary Householder transformations is that when each parameter is eliminated
(”solved for”) column pivoting allows the selection of that parameter which gives the maximum reduction in
the current value of . Thus it is possible to terminate the calculation whenever or its current reduction
become acceptably small. This can be exploited when iterating. If there is more than one RHS vector, then
x and b become and matrices with the pivoting strategy applied to the first column of b.
The triangular form of allows the error matrix, E, of the fitted parameters to be derived directly from

itself without inverting. The equation is

Moreover, the vector of fitted residuals is most easily computed by applying the inverse Householder trans-
formation to , i.e.

Note that these residuals do not have to be calculated to find the fitted which is output from the fitting
routines.
In all routines described below, the dimensionality of the problem is transmitted via the common block

The parameter returns the number of parameters solved for, or else if either , or A
has rank less than .

Constrained Least Squares Fitting

() The combined constraint / derivative matrix of dimension , the upper rows being
the constraints.
() The combined constraint / measurement matrix of dimension , the upper rows
being the constraints.
() The matrix of dimension returning the least squares solutions.
() Working array of length . On output contain the min-
imised sum of squares.
() Working array of length which holds the exchange information (column pivoting is
employed if necessary).
() Parameter specifying a pivoting criterium. There is no exchange of columns and unless

. Typically .

Subroutines called: , , , .

When constraint equations are present, the full pivoting strategy cannot be adopted and so all parameters
are solved for, i.e., returns the value or . Under these circumstances is used to reduce the
amount of pivoting to those cases where it is felt to be absolutely necessary.

E230 – 2 171

Unconstrained Least Squares Fitting

() derivative matrix.
() matrix of measurements.
() parameter solution matrix.
() Working array as for .
() Working array as for .
() Input parameter used for prematurely terminating the calculation:

Termination when r.m.s. residual ,
Termination when the reduction in the residual ,
Unconditionally solve for all

Subroutines called: , , , , .

As previously indicated, full pivoting is possible without constraints, hence the allowance for premature
exit.

Fitted Error Matrix

The parameter and subroutine arguments defined previously in require the output values
from a call to or . is an matrix which, upon return, will contain the unnormalised
covariance matrix of the fitted parameters, . may be overwritten by and the routine may be
called independently from by setting to zero.

Subroutines called: , .

Fitted Residuals

All the arguments and common variables require the output values from a call to or . Upon return,
will give the matrix of residuals, i.e., for each set of least squares equations the column vector .

Subroutine called: .

Notes:

1. The pivoting and exit criteria of are calculated using the first vector of measurements; therefore
it is wise to have if .

2. and/or may be called in any order after or .

3. or may be used for solving simultaneous linear equations by setting or .

4. Useful examples in the application of these routines can be found in the Geometry / Kinematics
processors.

172 E230 – 3

Generalized Least Squares Fitting

The problem is to minimise where G, the weight matrix, is the inverse of the error
matrix of the measurement vector b. Once again Householder triangularisation offers an attractive alter-
native to the Normal Equation solution . The first step is to perform the Choleski
decomposition of G, which is positive semi-definite (see (F112)), such that , U being upper
triangular. The problem is then reduced to minimising , where and ,
which is just the unweighted case previously described. This has the feature that if A has already been
triangularised then the product UA remains triangular and only back substitution is necessary to find the
weighted least squares solution.

References:

1. G. Golub, Numerical methods for solving linear least squares problems, Numer. Math. 7 (1965)
206–216.

2. Å. Björck and G. Golub, Iterative refinement of linear least square solutions by Householder transfor-
mation, BIT 7 (1967) 322–337.

E230 – 4 173

LFIT CERN Program Library E250

Author(s) : M. Metcalf Library: MATHLIB
Submitter : Submitted: 01.05.1977
Language : Fortran Revised: 27.11.1984

Least-Squares Fit to Straight Line

Given a vector of values measured at the points , and find the best least-squares fit to the
linear relationship . performs an unweightedfit and takes account of a given vector
of weights. Both subroutines have an option for skipping missing points without shifting the points of the
vector .

Structure:

subprogram
User Entry Names: ,

Usage:

or

() Vector of abscissae.
() Vector of values corresponding to points .
() Vector of weights (for only).
() Length of vectors , and .
()

indicates that any points where are to be skipped,
indicates that all points are to be used.

() Fitted slope .
() Fitted constant term .
() Residual sum of squares divided by () indicating the badness of fit.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 116.

174 E250 – 1

PARLSQ CERN Program Library E255

Author(s) : H. Grote Library: MATHLIB
Submitter : M. Metcalf Submitted: 01.05.77
Language : Fortran Revised:

Least-Squares Fit to Parabola

OBSOLETE
Please note that this routine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (E201)

Given a vector of values measured at the points , finds the best least-squares fit to the parabola
.

Structure:

subprogram
User Entry Names:

Usage:

() Vector of abscissae.
() Vector of values corresponding to points .
(Length of vectors and .
() Array of dimension in the calling program. On exit, it contains the coefficients .
(Residual sum of squares divided by .

Notes:

If , and are set to zero.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 122

175 E255 – 1

RCHECF CERN Program Library E406

Author(s) : T. Håvie Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 24.01.1986
Language : Fortran Revised: 01.12.1994

Chebyshev Series Coefficients of a Function

Subroutine subprograms , and calculate coefficients for a finite sum of Chebyshev
polynomials approximating a function over an interval to accuracy . It returns an integer
and coefficients such that the sum

(1)

where and is the Chebyshev polynomial of degree , satisfies for
the relation

(2)

Subsequent evaluation of the approximation (1) can be done by calling (E407) with the appropriate
value of its argument .
On computers other than CDC and Cray, only the double- and quadruple-precision versions and

are available. On CDC and Cray computers, only the single- and double-precision versions
and are available.

Structure:

subprogram
User Entry Names: , ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035), user-supplied subprogram

Usage:

For (type), (type), (type),

(type according to) Name of a user-supplied subprogram, declared in the
calling program.
(type according to) End-points of the approximation interval.
(type according to) Requested accuracy.
(type according to) One-dimensional array with dimension , . On exit,

.
() On exit, is equal to the subscript of the last computed coefficient.
(type according to) On exit, is such that the relation is almost
certainly true for . (See Error Handling.)

Method:

176 E406 – 1

The interval is subdivided successively into sets of subintervals of length .
After each subdivisionthe orthogonalityproperties of the Chebyshev polynomialswith respect to summation
over equally-spaced points are used to compute two sets of approximate values of the coefficients : one
set computed using the end-points of the subintervals, and one set using the mid-points. The mean of these
two values is taken as the best estimate of the , which are then tested to see (a) whether certain rate-of-
convergence criteria are satisfied, (b) whether there is some for which the sum for of the available
is less than . If both conditions are satisfied the subroutine terminates.

Error handling:

Error : If the requested accuracy cannot be obtained with 65 coefficients (i.e.,) a message is
written on , unless subroutine (N002) has been called. In this case, values of computed
from (1) with should still be in error by less than .

Notes:

1. This subroutine is intended for use with functions which can be computed to full machine ac-
curacy, and which are sufficiently smooth to ensure fairly rapid decrease of the with increasing .
Functions defined by experimental data can usually be approximated better by least-squares methods,
using ordinary polynomials.

2. Note that some authors use a different definition for the constant term in (1), i.e. instead of .
Here, the definition of Ref. 1 is used.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

E406 – 2 177

RCHSUM CERN Program Library E407

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 24.01.1986
Language : Fortran Revised: 15.11.1995

Summation of Chebyshev Series

Function subprograms and compute, for real arguments in the specified intervals, one of
the following four sums:

where is the Chebyshev polynomial of degree and .
On CDC and Cray computers, the double-precision version is not available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:

Usage:

In any arithmetic expression,

or

has the value of the sum selected by . is of type , and is of type
. and have the same type as the function name. and are of type .

Type of sum to be evaluated .
One-dimensional array with dimension , , containing the coefficients

.
Limit of summation.
Argument .

Notes:

Note that some authors use a different definition for the constant term in (1), (2) and (4), i.e. instead of
. Here, the definition of Ref. 1 is used.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

2. C.W. Clenshaw, Chebyshev series for mathematical functions, Mathematical Tables, Vol.5 (National
Physical Laboratory, London, 1962).

178 E407 – 1

RCHPWS CERN Program Library E408

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1994
Language : Fortran Revised:

Conversion of Chebyshev to Power and Power to Chebyshev Series

Subroutine subprograms , and , perform the conversion of a finite Cheby-
shev series to a finite power series (i.e. a polynomial) and vice versa.
Thus, given the coefficients , of a finite Chebyshev series, and calculate
the coefficients , of the equivalent polynomial:

Conversely, given the coefficients , of a power series, and calculate the
coefficients , of the equivalent finite Chebyshev series:

In both cases, is the Chebyshev polynomial of degree .
Note that sometimes the constant term in the Chebyshev series is defined differently, i.e. instead of .
Here, the definition of Ref. 1 is used.
On computers other than CDC or Cray, only the double-precisionversions and are available.
On CDC and Cray computers, only the single-precision versions and are available.

Structure:

subprograms
User Entry Names: , , ,
Files referenced:

Usage:

For (type), (type),

() Degree of last Chebyshev polynomial in the expansion.
(type according to) One-dimensional array of dimension , where . On entry, must
contain the coefficients , of the Chebyshev expansion.

(type according to) One-dimensional array of dimension , where . On exit, contains
the coefficients , of the power series expansion.

() Degree of the polynomial.

(type according to) One-dimensional array of dimension , where . On entry, must
contain the coefficients , of the polynomial.
(type according to) One-dimensional array of dimension , where . On exit, contains
the coefficients , of the Chebyshev expansion.

179 E408 – 1

Error handling:

Error : or .
A message is written on , unless subroutine (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

E408 – 2 180

RTRGSM CERN Program Library E409

Author(s) : T. Håvie, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1994
Language : Fortran Revised:

Summation of Trigonometric Series

Function subprograms and compute the sum of the trigonometric series

for a given argument in the range and given coefficients .
On CDC and Cray computers, the double-precision version is not available.
Structure:

subprogram
User Entry Names: ,

Usage:
In any arithmetic expression, for (type), (type),

has the value .

(Type according to) Argument .
(Type according to) One-dimensional array of dimension where , containing the
constant coefficient in and the cosine coefficients in .
() The number of cosine coefficients.
(Type according to) One-dimensional array of length , containing the sine coefficients

in .
() The number of sine coefficients.
() An option number:

the general case,
all are zero, i.e. ,
all are zero, i.e. .

Method:
Standard recurrence relations are used for calculating the sum (see Ref. 1).
Notes:
For a function given in the range , use the transformation

References:

1. W. Clenshaw, A note on the summation of Chebyshev series, MTAC (later renamed Math. Comp.) 9
(1955) 118–120.

181 E409 – 1

LAPACK CERN Program Library F001

Author(s) : see below Library: MATHLIB
Submitter : B. Damgaard Submitted: 07.06.1992
Language : Fortran Revised:

Linear Algebra Package

Authors: E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen.

is a package of subroutines written in Fortran for solving the most common problems in numerical
linear algebra: systems of linear equations, linear least squares problems, eigenvalue problems, and singular
value problems. is intended to supersede and . It extends the functionality of
these packages by including equilibration, iterative refinement, error bounds, and driver routines for linear
systems, routines for computing and re-ordering the Schur factorization, and condition estimation routines
for eigenvalue problems. improves on the accuracy of the standard algorithms in by in-
cluding high accuracy algorithms for finding singular values and eigenvalues of bidiagonal and tridiagonal
matrices respectively that arise in SVD and symmetric eigenvalue problems. The algorithms and software
are structured to achieve high efficiency on vector processors, high-performance “superscalar” workstations,
and shared-memory multi-processors.

Structure:

subprograms

Usage:

It is highly recommended to obtain a copy of the Users’ Guide published by SIAM. This Users’
Guide gives a detailed description of the philosophy behind as well as an explanation of its usage.
European users must order from the distributors of SIAM books in Europe:

STM Distribution Ltd.
Sunbury International Business Centre
Middlesex TW16 7DX, England
Tel. +44 932 765119, FAX +44 932 765429

or from booksellers. Other users should contact SIAM directly in order to find out the address of the local
retailer:

SIAM
3600 University City Science Center
Philadelphia, PA 19104-2688
Tel. +1 215 382 9800, FAX +1 215 386 7999 .

Availability
CERN is distributing the package only in compiled form, suited for the CERN-supported platforms. Source
code is directly available via (use for details). Alternatively, NAG offers the distri-
bution via magnetic tapes for a nominal handling charge. NAG can be contacted at

NAG Response Centre
Tel. +44 865 311744, FAX +44 865 311755

182 F001 – 1

RVADD CERN Program Library F002

Author(s) : H. Lipps Library: KERNLIB
Submitter : Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised: 27.05.1987

Elementary Vector Processing

These subprograms perform elementary vector operations.

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
,

External References: (N100), (G900), (G900) (some Fortran versions only).

Usage:

For (type), (type), (type):

random (see Note 2)

interchanges with

(see Note 3)

where is the complex conjugate of .

183 F002 – 1

() The mathematical dimension of the vectors .
(Type according to) The scalar values , , and , respectively.
(Type according to) Array elements. They must contain the elements of the vector

.
(Type according to) Array elements. They must contain the elements of the vector

.
(Type according to) Array elements. On exit, they will contain the elements of the
result vector .
() On exit, is set to zero if all elements are non-zero. Otherwise is
set to the smallest index for which .

For all subroutines return control without action; functions , and assume the
value zero, and and assume the value .

Restrictions:

If vector overlaps with vector or , results will be correct provided each element coincides
with an element or , where .

Accuracy:

On computers with IBM 370 architecture, , , and accumulate the inner product
using double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

1. The vectors etc. need not be packed: any equidistant spacing of their elements is permitted. The
subprograms determine the location of the vector element from the actual arguments and .

2. sets to a random value of type that is uniformly distributed in the interval . For
, the real and imaginary parts of are distributed uniformly and independently in

and in .

3. If and are non-zero, computes only and sets .

4. The use of an in-line loop will be more efficient than calling the equivalent vector processing
subprogram when the vector length is sufficiently small, due to the overhead of the subprogram call.

F002 – 2 184

RMADD CERN Program Library F003

Author(s) : H. Lipps Library: KERNLIB
Submitter : Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised: 15.11.1995

Elementary Matrix Processing

These subprograms perform elementary matrix operations.

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , ,
, , , , , , , ,
, , , , , , , ,
, , ,
, , , , , , , ,
, , , , , , , ,
, , , , , ,

External References: (N100), (G900), (G900) (some Fortran versions only).

Usage:

For (type), (type), (type):

random (see Note 2)

(see Note 3)

185 F003 – 1

where are the complex conjugates of , respectively.

() The mathematical dimensions of the matrices and vectors ;
.

(Type according to) The scalar values , , and , respectively.
(Type according to) Array elements. They must contain the elements of
the matrix .
(Type according to) Array elements. They must contain the elements of
the matrix .
(Type according to) Array elements. They must contain the elements of the vector

.
(Type according to) Array elements. They must contain the elements of the vector

.
(Type according to) Array elements. They must contain the elements of the vector

.
(Type according to) Array elements. They must contain the elements of
the upper-triangular matrix .
(Type according to) Array elements. On exit, they will contain the elements
of the result matrix .
(Type according to) Array elements. On exit, they will contain the elements of
the result vector .

For or all subroutines return control without action and all functions assume the value zero.

Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type or
use double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

1. The vectors etc. need not be packed: any equidistant spacing of their elements is permitted. The
subprograms determine the location of the vector element from the actual arguments and .
Similarly, the matrices etc. need not be stored according to the Fortran convention; any equidis-
tant spacing of their rows and columns is permitted. In particular, matrices may be stored row-wise.
The subprograms determine the location of the matrix element from the actual arguments ,

, and .

2. sets to a random value of type that is uniformly distributed in the interval . For
, the real and imaginary parts of are distributed uniformly and independently in

and in .

3. copies the upper triangle of the square matrix of order to the lower triangle of this
matrix, thus creating a symmetric matrix.

4. The use of in-line loops will be more efficient than calling the equivalent matrix processing sub-
program when the matrix dimensions are sufficiently small, due to the overhead of the subprogram
call.

F003 – 2 186

RMMLT CERN Program Library F004

Author(s) : H. Lipps Library: KERNLIB
Submitter : Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised: 27.05.1987

Matrix Multiplication

These subprograms calculate the matrix product

or

where denotes the conjugate of the complex matrix Y, or one of the matrix expressions

Structure:

subprograms
User Entry Names: , , , , ,

, , , , ,
, , , , ,

External References: (N100) (some Fortran versions only).

Usage:

For (type), (type), (type):

() The mathematical dimensions of the matrices: X has rows and columns,
Y has rows and columns, Z has rows and columns.
(Type according to) Array elements. They must contain the elements of
the matrix X.
(Type according to) Array elements. They must contain the elements of
the matrix Y.
(Type according to) Array elements. On exit, they will contain the elements
of the matrix Z.
(Type according to) Working space array as specified below, required only if Z overlaps
X or Y. Otherwise a dummy variable.

For or or , all subroutines return control without action.
The matrices X, Y andZ need not to be stored according to the Fortran conventions: any equidistant spacing
of their rows and columns is permitted. In particular, matrices may be stored row-wise. Each subroutine can
work with the transpose of a matrix. To make this possible, each matrix is specified in the calling sequence
by three arguments. For example, the called subroutine will operate on the matrix if the actual
arguments which replace , , in the calling sequence are , and will operate on the
transpose of A if the actual arguments are .
The only cases in which the result matrix Z is permitted to overlap X or Y are the following:

187 F004 – 1

or , provided is an array of at least elements.
or , provided is an array of at least elements.
or , provided is an array of at least elements.
or , provided is an array of at least elements.

Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type or
use double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

The product of a matrix and its transpose (or Hermitian conjugate) is recognized by (or) and
the computation is shortened accordingly.

Examples:

Assume that the two-dimensional arrays , , , , , the one-dimensional array , and the dummy variable
are declared by

and that a matrix A, a matrix B, and a matrix C have been stored according to the Fortran
conventions in arrays of corresponding name.

1. To compute :

To pack the product matrix AB row-wise into array :

(Note that goes into , into , and into).
For the purpose of abbreviation we shall denote

by , by ,
and similarly for arrays , , , . The first example above then becomes

2. To compute :

3. To compute and :

4. To replace A by AB or by :

These two calls require a working vector containing 7 or 4 complex elements, respectively.

5. To compute and :

F004 – 2 188

RINV CERN Program Library F010

Author(s) : G.A. Erskine Library: KERNLIB
Submitter : Submitted: 18.12.1979
Language : Fortran Revised: 27.11.1984

Linear Equations, Matrix Inversion

Subroutine (where , or as described below) solves the matrix equation

(*)

which represents a system of simultaneous linear equations with right-hand sides:

Subroutine computes the inverse of a square matrix A. Subroutine solves the system (*) and
also computes the inverse of A, but is appreciably slower than .
If the determinant of A is also required, or if several systems of the form (*) are to be solved sequentially
with the same coefficient matrix A but differing right-hand sidesB, the subroutines in (F011) should
be used.

Structure:

subprograms
User Entry Names: , , , , , , , ,
Internal Entry Names:
Files Refeenced: Printer
External References: (F011), (F011), (F011),

(F011), (F011), (F011),
(F011), (F011), (F011),
(F011), (N001), (Z035)

Usage:

For (type), (type), (type):

() Order of the square matrix A.
(Type according to) Two-dimensional array whose first dimension has the value .
() First dimension of array (and of array if).
() Array of at least elements, required as working space.
() On exit, will be set to if A is found to be singular, and to otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)
() Number of columns of the matrices B and X.
(Type according to) In general, a two-dimensional array whose first dimension has the value

. may be one-dimensional if .

189 F010 – 1

These subroutines must be called with matrix A in array and matrix B in array . Then, provided the
matrix A is non-singular, will be set to and arrays and will be set as follows:

The solutionX replaces B. The matrix A is destroyed.
The inverse of A replaces A.
The solutionX replaces B, and the inverse of A replaces A.

If the matrix A is singular, will be set to . In this case the contents of is unpredictable and the
contents of is unchanged.

Method:

Triangular factorization with row interchanges, implemented by in-line code if and by calls to library
program (F011) if . If or or , a message is printed and program execution
is terminated by calling (Z035).

Examples:

Assume that the matrix A and the matrix B are stored according to the Fortran convention
in arrays and respectively of a program containing declarations

To replace B by the solutionmatrix X of the system of equations and to replace A by ,
with a jump to label if A is singular:

F010 – 2 190

RFACT CERN Program Library F011

Author(s) : G.A. Erskine, H. Lipps Library: KERNLIB
Submitter : Submitted: 18.12.1979
Language : Fortran or Assembler or COMPASS Revised: 27.11.1984

Repeated Solution of Linear Equations, Matrix Inversion, Determinant

These subroutines provide a two-step procedure for solving sets of linear equations

(*)

which is faster than the library programs (F010) when (*) must be solved repeatedly for the same
matrix A with different sets of right-hand sides. The inverse matrix and the determinant det(A) may
also be calculated.

Structure:

subprograms
User Entry Names: , , , , , , , ,
Internal Entry Names:
Files Referenced: Printer
External References: (N001), (Z035)

Usage:

For (type), (type), (type):

() Order of the square matrix A.
(Type according to) Two-dimensional array whose first dimension has the value .
() First dimension of array (and of array if).
() Array of at least elements, required as working space.
() On exit, will be set to if A is found to be singular, and to otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)
(Type according to) On exit, will be set to the value det(A) unless returns a non-zero
value.
() On exit, will be set to zero if det(A) can be safely evaluated. Otherwise
is set as follows:

if det(A) is probably too small,
if det(A) is probably too large.

() Number of columns of the matrices B and X.
(Type according to) In general, a two-dimensional array whose first dimension has the value

. may be one-dimensional if .

191 F011 – 1

Subroutine must be called with matrix A in array prior to any calls to and . On return
the situation is as follows:

1. Provided A is non-singular, will be set to , and and will be set in preparation for calls to
and .

If A is singular, will be set to , in which case any subsequent call to or will
give unpredictable results.

2. Provided det(A) can be safely evaluated within the range of the computer, will be set to and
and will be set to det(A). In particular, if A is singular, both and will be set to zero.
If the evaluation of det(A) would probably cause underflow, will be set to and will be
set to zero.
If the evaluation of det(A) would probably cause overflow, will be set to and will be
incorrect.
Execution continues, and subsequent calls to and will give correct results.

Subroutine may be called only after has been called, with the contents of and unchanged,
and with matrix B in array . On return, will contain the solutionX, with and unchanged. Therefore a
single call to may be followed by several calls to with differing B.
Subroutine may be called only after has been called, with the contents of and unchanged.
On return, will contain the inverse of A. Therefore, once has been called, it is no longer
meaningful to call with as parameter.

Method:

Triangular factorization with row interchanges. The inverse matrix is the product, in reverse order, of
the in-place inverses of the triangular factors. The array holds information specifying the row interchanges.

Accuracy:

On computers with IBM 370 architecture, inner products are accumulated using double-precision arithmetic
internally for arrays of type and .

Error handling:

If or or , a message is printed and program execution is terminated by calling
(Z035).

Examples:

Assume that the matrix A, the matrix B, and the 10-element vector z are stored according to
the Fortran convention in arrays , and respectively of a program containing the declarations

Then, unless A is singular (which is to cause a jump to statement), the following statements will set
, replace B by , replace z by , and replace A by :

F011 – 2 192

RSINV CERN Program Library F012

Author(s) : H. Lipps Library: KERNLIB
Submitter : Submitted: 01.09.1983
Language : Fortran or Assembler or COMPASS Revised:

Symmetric Positive-Definite Linear Systems

Subroutine (where or as described below) computes the inverse of a symmetric positive-
definite matrix A.
Subroutine solves a set of linear equations

(*)

whose coefficient matrix A is symmetric and positive-definite. The determinant det(A) of A may be calcu-
lated by subroutine described below.
If several systems of the form (*) are to be solved with the same A but differing B, a procedure which is
appreciably faster than calling subroutine repeatedly is to execute a single call to subroutine
(or subroutine if the determinant is required), and then to call subroutine as many times as
required. When the last system (*) has been solved, the inverse matrix , if required, may be computed
by calling .
Subroutine and both replace the matrix A by a lower triangular matrix L and an upper
triangular matrix U such that . This LU decomposition is referred to below as lu(A).
Given lu(A) and some matrix B, subroutine replaces B by the solution X of equation (*) without
changing lu(A). Subroutine may therefore be called repeatedly with differing B.
Given lu(A), subroutine replaces lu(A) by the inverse of A.

Structure:

subprograms
User Entry Names: , , , ,

, , , ,
Files Referenced: Printer
External References: (F011), (N001), (Z035)

Usage:

For (type), (type):

() Order of the matrix A.
(Type according to) Two-dimensional array whose first dimension has the value .

() First dimension of array (and of array if).

() On exit, will be set to if A is positive-definite, and to otherwise.
(Type according to) On exit, will be set to the value det(A) unless returns a
non-zero value.

193 F012 – 1

() On exit, will be set to zero if det(A) can be safely evaluated. Otherwise
is set as follows:
if A is not positive-definite,
if det(A) is probably too small,
if det(A) is probably too large.

() Number of columns of the matrices B and X.
(Type according to) In general, a two-dimensional array whose first dimension has the value

. may be one-dimensional if . accepts a dummy argument if .

The contents of arrays and on entry and exit are as follows:

On entry, A must be stored in . On exit, contains if , or else is undefined.
On entry, A must be stored in and B in . On exit, contains lu(A) and contains X if

, or else is undefined and is unchanged.
On entry, A must be stored in . On exit, contains lu(A) if , or else is undefined.

contains det(A) if , contains zero if , and is undefined otherwise.
On entry, lu(A) must be stored in , and B in . On exit, is unchanged and contains X.
On entry, lu(A) must be stored in . On exit, contains .

Method:

Modified Cholesky factorization (without square roots). See Ref. 1.

Accuracy:

On computers with IBM 370 architecture, inner products are accumulated using double precision arithmetic
internally for arrays of type .

Notes:

Only those elements of the original matrix A for which are required on entry to , and
.

Error handling:

If or or or , a message is printed and program execution
is terminated by calling (Z035).

Examples:

Assume that the matrix A and the matrix B are stored according to the Fortran convention
in arrays and respectively of a program containing the declarations

To replace B by the solution matrix X of the system of equations , with a jump to label
if A is not positive definite:

References:

1. J.H. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971), Chapter 2.

F012 – 2 194

POLROT CERN Program Library F105

Author(s) : M. Regler Library: MATHLIB
Submitter : Submitted: 01.03.1968
Language : Fortran Revised: 27.11.1984

Rotate a Three-Dimensional Polar Coordinate System

calculates the values of and of the coordinate system , obtained by rotation of the
3-dimensional polar coordinate system about any axis .

Structure:

subprogram
User Entry Names:

Usage:

() Angle in the old system .
() Angle in the old system .
() Angle in the new system .
() Angle in the new system .
() Angles defining the axis of rotation in the old system .
() Angle in the old system through which the system is rotated.

The subroutine calculates from and the new values and in a coordinate system
obtained by rotating the old system through an angle about an axis defined by and in the
old system.

Method:

and are converted to a unit vector in Cartesian coordinates; , and are converted
to a tensor, which is used to obtain a vector in the new system of axes giving and .

Notes:

If is very small, is badly defined.

195 F105 – 1

MXPACK CERN Program Library F110

Author(s) : TC Library: KERNLIB
Submitter : C. Letertre Submitted: 01.08.1969
Language : Fortran Revised: 07.03.1989

TC Matrix Manipulation Package

OBSOLETE
Please note that this routine has been obsoleted in CNL 194. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (F002), (F003), (F004)

The routines of compute the product of two matrices or the product of their transposed matrices
and may add or subtract to the resultant matrix a third one, add or subtract one matrix from another, or
transfer a matrix, its negative, or a multiple of it, transpose a given matrix, build up a unit matrix, multiply
a matrix by a diagonal (from left or from right) and may add the result to another matrix, add to square
matrix the multiple of a diagonal matrix, compute the products (denotes the transpose of
) and . It is assumed that matrices are stored row-wise without gaps, contrary to the Fortran

convention.

Structure:

subprograms
User Entry Names: , , , , , , , ,

, , , , , , ,

Usage:

Matrix Multiplication

(is)
(is)

If , will be filled with zeros.

Matrix Multiplication and Addition

If , will not be changed.

196 F110 – 1

Matrix Multiplication and Subtraction

If , will be replaced by .

Matrix Transposition

Unity Matrix

Matrix Multiplication

Notes:

In the formulae above, etc denotes the ensemble of elements of the matrix etc with the row index
and the column index . The Fortran variables , and specify the dimensions associated with
the indices and . If reserves space for the matrix , then the element is
contained in .

F110 – 2 197

TR CERN Program Library F112

Author(s) : W. Hart Library: KERNLIB
Submitter : Submitted: 01.01.1975
Language : Fortran Revised: 12.12.1986

Manipulation of Triangular and Symmetric Matrices

At CERN, matrices are often stored row-wise (TC-convention); furthermore, symmetric matrices are stored
packed as the lower left triangular part only, i.e., the th diagonal element is found in position .
The -package performs many of the frequently required operations associated with such matrices without
resorting to expanding into the unpacked square form. In all the following routines an symmetric
matrix is taken to be stored in the packed form with elements.
Some of these operations produce and require the manipulation of lower triangular matrices which have
all elements zero above the leading diagonal. These are also stored in the packed form with all the zeros
dropped; therefore, care has to be taken in the interpretation of a packed matrix as to whether it represents a
symmetric or lower triangular array. To facilitate this distinction in theWrite-up, the following nomenclature
has been adopted:

unpacked rectangular matrices (row-wise storage)
packed symmetric matrices
packed lower triangular matrices

On 32-bit machines the calculations are performed internally in double-precision mode.

Structure:

subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , , ,

Usage:

Choleski Decomposition

is an positive semi-definite symmetric matrix (e.g., error or weight matrix) and the routines calculate
the complementary lower triangular Choleski factors. It is allowed to overwrite by or .
Symmetric Multiplication of Lower Triangular Matrices

S
R

is an lower triangular matrix and , the two symmetric products of the multiplication of by its
transpose. It is allowed to overwrite by either or .

198 F112 – 1

Lower Triangular Matrix Inversion

V
is an lower triangular matrix which is inverted into (the inverse of a lower triangular matrix is

lower triangular). may have rows and columns of zeros as produced by the Choleski decomposition of a
weight matrix with unmeasured variables. It is allowed to overwrite by .
Symmetric Matrix Inversion

R
is an positive semi-definite symmetric matrix which is inverted into (also stored packed). It is

permissible to overwrite by .
Triangular – Rectangular Multiplication

B
B

AV B
B

and are rectangular matrices, is an lower triangular matrix, and is an lower
triangular matrix. In each call it is allowed to overwrite by .
Symmetric - Rectangular Multiplication

SA C
AR C

C
C

and are rectangular matrices, is an matrix, is an symmetrix matrix, and is an
symmetric matrix. It is not allowed to overwrite or by the product matrix .

Symmetric Multiplication of Rectangular Matrices

S
R

is an matrix, is an matrix, is an symmetric matrix, and is an symmetric
matrix. No overwriting is allowed.
Transformation of Symmetric Matrix

R
R

QTQ R
is an matrix, is an matrix, is an symmetric matrix, and , , are symmetric

matrices. No overwriting is allowed.
Packing and Unpacking a Symmetric Matrix

A S
S A

is an unpacked symmetric matrix (all elements) and is the same matrix stored packed. Over-
writing is allowed for both and .

F112 – 2 199

DOTI CERN Program Library F116

Author(s) : CERN TC Division Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran Revised: 27.11.1984

Scalar Product of Two Space-Time Vectors

Function subprogram computes the scalar product of two space-time vectors
, , where , i.e.

Structure:

subprogram
User Entry Names:

Usage:

In any arithmetic expression,

has the value .

() One-dimensional arrays of length 4, containing , respectively.

200 F116 – 1

CROSS CERN Program Library F117

Author(s) : CERN TC Division Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Vector Product of Two 3-Vectors

Subroutine subprogram computes the vector (or cross) product

of two 3-vectors .

Structure:

subprogram
User Entry Names:

Block Names and Lengths:

Usage:

() One-dimensional arrays of length , containing the components ,
, respectively.

() On exit, contains the components of , i.e.

.

may overlap either or .

201 F117 – 1

ROT CERN Program Library F118

Author(s) : CERN TC Division Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran Revised:

Rotating a 3-Vector

Subroutine subprogram rotates a 3-vector by a given angle around the axis.

Structure:

subprogram
User Entry Names:

Block Names and Lengths:

Usage:

() One-dimensional array of length , containing .
() Angle given in radians.
() One-dimensional array of length . On exit, contains the components of the
rotated vector, i.e.

.

may overlap .

202 F118 – 1

VECMAN CERN Program Library F121

Author(s) : M. Aderholz, P.M. Nicholson Library: KERNLIB
Submitter : M. Aderholz Submitted: 01.06.1973
Language : Fortran or Assembler Revised: 16.09.1991

Vector Algebra

Performs various vector manipulations, such as addition of two vectors, multiplication of a vector by a
scalar, scalar product, pre- and post-multiplication of a vector by a matrix.

Structure:

, and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , ,

Notes:

is the original and obsolete name for the linear combination routine ; it was changed because
it clashed with an entry point in some system library.

Usage:

The arguments in the calling sequences below are defined as follows:

() One-dimensional arrays of length .
() One-dimensional array of length .
() One-dimensional arrays of length .
() One-dimensional arrays of length .
() One-dimensional array of length .
() Two-dimensional array of dimension .
() Variable.
() Variables.
() Variable.
() Variables.

Matrix is assumed to be stored row-wise, contrary to the Fortran convention, i.e. element is found in
word of the memory allocated with .
Any summation is taken over the index from to or over the index from to .

203 F121 – 1

Subroutines

REAL functions

F121 – 2 204

INTEGER functions

Location of
Location of
Location of
Location of

Location of
Location of
Location of
Location of
Location of
Location of

where

205 F121 – 3

SCATTER CERN Program Library F122

Author(s) : F. Antonelli Library: MATHLIB
Submitter : F. Carminati Submitted: 29.05.1989
Language : Fortran (IBM: Assembler) Revised:

Search Operations on Sparse Vectors

Performs logical search and data movement operations on sparse vectors. On Cray systems these routines
are part of the default libraries (scilib). An optimized Assembler version is provided for IBM 3090 with
Vector Facilities. Fortran code is used on the other systems.

Structure:

and subprograms
User Entry Names: , , , , , , ,

, , , , , ,

Usage:

The arguments in the calling sequences below are defined as follows:

() One-dimensional arrays.
() One-dimensional arrays.
() One-dimensional array.
() Variables or expressions.
() Variable or expression.
() Variables.

In any arithmetic expression,

represents the number of leading zero elements in
;

represents the number of elements in
.

set and , respectively.

searches for elements which satisfy the re-
lation where . On exit, will contain the
indices of the elements which satisfy the relation specified.

206 F122 – 1

performes the same task as but for draw and target.

performs the same task as or , but for , and draw and target
, or draw and target , respectively.

F122 – 2 207

BVSL CERN Program Library F123

Author(s) : F. Antonelli Library: MATHLIB
Submitter : F. Carminati Submitted: 27.11.1989
Language : Fortran, IBM Assembler Revised: 16.08.1994

Bit Vector Manipulation Package

This package contains high performance procedures to operate with sparse arrays using Bit Vectors instead
of ordinary Index Vectors to address the elements of an arrays. The routines are, at present, available only
on IBM 3090 VF machines.

Structure:
and subprograms

User Entry Names:
, , , ,
, , , , , , , , , ,
, , , , , , , , , ,
, , ,

Usage:
The arguments in the calling sequences below are defined as follows:

() Number of elements to process. The index below runs from to .
() Arrays of length at least.
() Arrays of length at least.
() Variables or expressions.
() Variables or expressions.
Arrays of length at least, used to contain the bit vectors.
() Number of elements which satisfy the condition, or set-bit count, for .

The expression indicates all these elements of the vector for which the corresponding bit is set
in the bit array . indicates the -th bit of the array , counted across words boundaries. The
expression means that the -th bit of the array is set.

Vector to scalar comparison:

Two subprograms are provided for and comparison. The subprogram
is for vectors with elements and the subprogram for vectors with elements.

if
if
if
if
if
if
if
if
if
if
if
if

208 F123 – 1

Vector to vector comparison:

Two subprograms are provided for and comparison. The subprogram
is for vectors with elements and the subprogram for vectors with elements.

if
if
if
if
if
if
if
if
if
if
if
if

Scatter/gather operations:

Elements are gathered or scattered from vector into vector according to the bit mask contained in .
Only words for which the corresponding bit is set are moved.

Logical operations:

if
if

if

if

if

if

Miscellaneous operations:

is equivalent to

F123 – 2 209

Number of set bits
Number of clear bits
if
if

Array of random numbers uniformly distributed between zero and the maximum of the rejection
function.
Array of points where the rejection function is computed.
Array of values of the rejection function.
Array of accepted values of .
Bit vectors of length at least.
Initial number of values to extract.
Current number of values left to extract.
Switch to be set to for the first call.

Linear algebra operations:

Let be an matrix. The subrogram is of type .

210 F123 – 3

MXDIPR CERN Program Library F150

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.09.1978
Language : Fortran Revised:

Direct or Tensor Matrix Product

Subroutine subprogram computes the direct (sometimes called tensor, or Kronecker) product
of twomatricesA andB. Let ;

; then with . C has rows and columns. If, in particular,
A and B are square matrices, C is also square.

Structure:

subprogram
User Entry Names:

Usage:

() Matrices and .
() On exit, contains the direct product .
() First dimension of .
() First dimension of .
() First dimension of .
() Number of rows, columns of A.
() Number of rows, columns of B.

Restrictions:

, , must not overlap.

Error handling:

If or or or are equal to zero, the subprogram acts as do-nothing.

Examples:

assuming

would set

211 F150 – 1

References:

1. E.P. Wigner, Group Theory, (Academic Press, New York 1959) 17

2. W.I. Smirnow, Lehrgang der höheren Mathematik, Vol. III.1, (Deutscher Verlag der Wissenschaften,
Berlin 1954) 221

F150 – 2 212

RBEQN CERN Program Library F406

Author(s) : G.A. Erskine Library: KERNLIB
Submitter : Submitted: 01.09.1983
Language : Fortran Revised: 27.11.1984

Banded Linear Equations

Subroutine subprograms and solve a system of simultaneous linear equations with right-
hand sides, the coefficient matrix being a band matrix with bandwidth :

for

Only those coefficients for which need be supplied on entry (see Usage).

Structure:

subprograms
User Entry Names: ,
Files Referenced: Printer
External References: (N001), (Z035)

Usage:

For (type), (type),

() Number of equations.
() Band parameter .
(type according to) Two-dimensional array whose first dimension has the value .
() First dimension of array (and of array if).
() On exit, will be set to if the coefficient matrix is singular, and to otherwise.
() Number of right-hand sides in array .
(type according to) In general, a two-dimensional array whose first dimension has the value

. may be one-dimensional if .

On entry, must contain the packed form of the coefficient matrix as described below, and array must
contain the matrix of right-hand sides . Then, provided the coefficient matrix is non-singular, will
be set to 0 and the solution will replace in . The contents of are destroyed. If the coefficient
matrix is singular, will be set to . In this case the contents of and are unpredictable.
The storage convention for is that it must contain, on entry, those coefficients for which ,
stored ”left-justified” as an array of rows and at most columns. For example, if and ,
the coefficient matrix

is stored as

where denotes elements whose value need not to be set.

213 F406 – 1

If is a function subprogram or statement function which computes , the following Fortran
statements will set correctly:

Method:

Gaussian elimination with row interchanges. The storage organization is as described in the reference.

Error handling:

If the integer arguments do not satisfy the conditions , a message is printed
and program execution is terminated by calling (Z035).

References:

1. J.H. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971) 54.

F406 – 2 214

RLHOIN CERN Program Library F500

Author(s) : K.S. Kölbig, F. Schwarz Library: MATHLIB
Submitter : Submitted: 01.07.1979
Language : Fortran Revised: 01.12.1994

Linear Homogeneous Inequalities

Subroutine subprograms and find the basis , of the convex polyhedral
cone defining the solution of a system of homogeneous linear inequalities . is a given

matrix, , and rank . is a column vector. Any solution x of
can be expressed as

where all . The number of vectors depends on the matrix A in an unknown way, except when
, where .

On CDC and Cray computers, the double-precision version is not available.

Structure:

subprogram
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (F002), (F002), (F002),

(F002), (F002), (F002),
(F003), (F003), (F003), (F003),
(F010), (F010), (N002), (Z035)

Usage:

For (type), (type),

(type according to) Two-dimensional array, dimensioned , whose rows contain the
coefficients of the inequalities, arranged in such a way that the upper left corner has a non-
vanishing determinant. Usually it is advisable to normalise the rows of to unity before calling
this subprogram.
() First dimension parameter of .
() Number of inequalities.
() Number of variables.
() Maximum number of basis vectors which may occur at any intermediate step, to be
chosen sufficiently large and in any case .
(type according to) Two-dimensional array, dimensioned , whose columns con-
tain, on return, the basis vectors of the solution cone.
() First dimension parameter of .
() Number of basis vectors of the final cone.
(type according to) A small parameter which discriminates small quantities against zero, chosen
to take into account the accuracy of the machine used.

215 F500 – 1

()
Gives no intermediate printout,
Gives, for each iteration, the basis vectors of the respective cone, the matrix of scalar

products and the index of the inequality taken into account in the next step.
(type according to) Two-dimensional array, dimensioned , used as working
space.
(Two-dimensional array, dimensioned whose columns serve as book-keepers
for certain properties of the system during the iteration procedure.

Method:

The Motzkin-Burger procedure is used to obtain the solution iteratively. Ref. 1 should be consulted before
using this subprogram.

Restrictions:

The routine may fail if the matrix A is ”ill-conditioned” in a certain sense.

Notes:

A given system of linear homogenous inequalities may have no solution.

Error handling:

Error : too small.
Error : Upper left corner of is singular.
Error : Inequality is inconsistent.
In all cases, a message is written on , unless subroutine (N002) has been called.

References:

1. K.S. Kölbig and F. Schwarz, A program for solving systems of homogeneous linear inequalities.
Computer Phys. Comm. 17 (1979) 375–382.

F500 – 2 216

PROB CERN Program Library G100

Author(s) : G. Folger, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 21.08.1971
Language : Fortran Revised: 15.01.1994

Upper Tail Probability of Chi-Squared Distribution

Function subprogram computes the probability that a random variable having a -distribution with
degrees of freedom assumes a value which is larger than a given value , i.e.

Structure:

subprogram
User Entry Names:
External References: (C300), (C300), (N002), (Z035)

Usage:

In any arithmetic expression,

has the value .

and are of type and is of type .

Method:

See Ref. 1, formulae Nr. 26.4.4, 26.4.5 and, for , No. 26.4.14.

Accuracy:

For , has an accuracy of about six digits. For , the accuracy decreases for with
increasing .

Error handling:

Error : .
Error : .
In both cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

References:

1. M. Abramowitz and I.A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs,
and mathematcal tables, 9th printing with corrections, (Dover, New York 1972).

217 G100 – 1

CHISIN CERN Program Library G101

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1976
Language : Fortran Revised: 15.03.1993

Inverse of Chi-Square Distribution

Function subprogram calculates for a given probability and a given degree of
freedom , where

and and .

Structure:

subprogram
User Entry Name:
Files Referenced:
External References: (G105), (N002), (Z035)

Usage:

In any arithmetic expression,

has the value ,

where and are of type , and is of type .

Method:

The method is described in Ref. 1. Note that there the complementary integral is taken.

Accuracy:

Approximately three to six digits are correct. The case is the least accurate.

Error handling:

Error : or .
Error : .
In both cases, the function value is set equal to zero, and a message is written on , unless subroutine

(N002) has been called.

Source:

This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. R.B. Goldstein, Algorithm 451, Chi-Square Quantiles, Collected Algorithms from CACM (1972)

218 G101 – 1

PROBKL CERN Program Library G102

Author(s) : F. James, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1976
Language : Fortran Revised: 15.03.1993

Kolmogorov Distribution

Function subprogram calculates the Kolmogorov distribution function

for real arguments .

Structure:

subprogram
User Entry Name:

Usage:

In any arithmetic expression,

has the value ,

where and are of type .

Method:

Direct evaluation or using functional relations.

Accuracy:

Approximately seven digits are correct. Results smaller than (corresponding to) are set
to zero. Note that the above formula has a statistical meaning only for ”large” .

Notes:

1. For an experimental distribution with events and a maximum deviation from a hypothetical
distribution, with gives the confidence level for the null hypothesis.

2. To compare two experimental distributions with and events, respectively, one may use
.

219 G102 – 1

TKOLMO CERN Program Library G103

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.02.1991
Language : Fortran Revised:

Kolmogorov Test

Subroutine subprogram tests whether two one-dimensional sets of points are compatible with com-
ing from the same parent distribution, using the Kolmogorov test. That is, it is used to compare two experi-
mental distributions of unbinned data.

Structure:

subprogram
User Entry Name:
External routine referenced: (G102)

Usage:

() One-dimensional arrays of length , , respectively. The elements of and must be
given in ascending order. (This can be accomplished, for example, by using (M103)).
() The number of points in and , respectively.
() A calculated confidence level which gives a statistical test for compatibility of and .

Values of close to zero are taken as indicating a small probability of compatibility. For two point
sets drawn randomly from the same parent distribution, the value of should be uniformly distributed
between zero and one.

Method:

The Kolmogorov test is used. The test statistic is the maximum deviation between the two integrated distri-
bution functions, multiplied by the normalizing factor , where and are the numbers
of points in the two samples.

Accuracy:

Approximately seven digits are correct.

Notes:

Probabilities smaller than are set to zero. However, the method has a statistical meaning only for
”large” and .

References:

1. W.T. Eadie, D. Drijard, F.E. James, M. Roos and B. Sadoulet, Statistical Methods in Experimental
Physics, (North-Holland, Amsterdam 1971) 269-271.

220 G103 – 1

STUDIS CERN Program Library G104

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1994
Language : Fortran Revised:

Student’s t-Distribution and Its Inverse

Function subprogram calculates the value of the Student -distribution function

for a given degrees of freedom .
Function subprogram calculates the inverse .

Structure:

subprogram
User Entry Names: ,
Files Referenced: Printer
External References: (G105), (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value or ,

respectively. , , and are of type , is of type .

Error handling:

Error : .
Error : or .
In both cases, a message is written on , unless subroutine (N002) has been called.

Accuracy:

About six decimal places are usually correct. Accuracy is lost for when and .

Notes:

The subprograms are based on algorithms given in the references.

References:

1. B.E. Cooper, Algorithm AS3 - Applied Statistics 17 (1968) 189.

2. G.W. Hill, Algorithm 396, Student’s -quantiles, Collected algorithms from CACM (1970).

221 G104 – 1

GAUSIN CERN Program Library G105

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.12.1988
Language : Fortran Revised: 15.03.1993

Inverse of Normal Frequency Function

Function subprograms and calculate the inverse of the normal frequency function
(Gaussian distribution)

for real arguments , where .

Structure:

subprogram
User Entry Name: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

has the value ,

where and are of type .

Method:

The method is described in Ref. 1.

Accuracy:

Accuracy:

(except on CDC and Cray computers) has an accuracy of about six digits. For most values of the
argument , (and on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error : or .
The function value is set equal to zero, and a message is written on , unless subroutine
(N002) has been called.

Source:

This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. G.W. Hill and A.W. Davis, Algorithm 442, Normal Deviate, Collected Algorithms from CACM
(1973)

222 G105 – 1

GAMDIS CERN Program Library G106

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 01.05.1990
Language : Fortran Revised: 15.03.1993

Gamma Distribution
Function subprogram calculates the gamma distribution function (incomplete gamma function)

for real arguments and .
Structure:

subprogram
User Entry Name:
Files Referenced:
External References: (C302), (C304), (N002), (Z035)

Usage:
In any arithmetic expression,

has the value ,
where , and are of type .
Method:
The method is described in Ref. 1.
Accuracy:
Approximately six digits are correct.
Error handling:
Error : or .
Error : Difficulties of convergence (unlikely).
The function value is set equal to zero, and a message is written on , unless subroutine
(N002) has been called.
Notes:

1. For greater accuracy, or for the case , use (C334). Note, however, that in this case the
arguments and must be interchanged.

2. Note that, for integer , , where (G100) is the upper
tail probability of the chi-squared distribution function. (G100) is faster than (G106) in
this case.

Source:
This subprogram is based on a Fortran program for the incomplete gamma functions published in Ref. 2.
References:

1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466–481.

2. W. Gautschi,Algorithm542, Incomplete gamma functions, Collected Algorithms from CACM (1979).

223 G106 – 1

LANDAU CERN Program Library G110

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 30.08.1985
Language : Fortran Revised: 15.03.1993

Landau Distribution

The function subprogram package contains six independent subprograms for the calculation of the
following functions related to the Landau distribution:

The density

the distribution

the derivative

the first moment

the second moment

the inverse of

The function can be used to generate Landau random numbers (see Usage).

Structure:

subprograms
User Entry Names: , , , , ,
Obsolete User Entry Names:

Usage:

In any arithmetic expression,

has the value ,
has the value ,
has the value ,
has the value ,
has the value ,
has the value ,

where , , , , , and are of type .
To generate a set of Landau random numbers, should be referenced repeatedly, using as argument a
random number from a uniform distribution over the interval (0,1).

Method:

Approximation by rational functions. For reason of speed, proceeds mainly by table look-up and
quadratic interpolation.

Accuracy:

At least six significant digits (five for) are correct.

224 G110 – 1

Restrictions:

1. Underflow may occur for , and if is negative and (moderately) large.

2. No test is made whether for lies outside the interval (0,1), and hence no error message is
printed.

Notes:

This program package is a version of the CPC Program Library package (Ref. 1).

References:

1. K.S. Kölbig and B. Schorr, A program package for the Landau distribution, Computer Phys. Comm.
31 (1984) 97–111.

G110 – 2 225

VAVLOV CERN Program Library G115

Author(s) : A. Rotondi, P. Montagna, K.S. Kölbig Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 10.12.1993
Language : Fortran Revised:

Approximate Vavilov Distribution and its Inverse

The package contains subprograms for fast approximate calculation of functions related to the
Vavilov distribution.
For and , the Vavilov density function is mathematically defined by

where is an arbitrary real constant and

is the exponential integral, , and
is Euler’s constant.
The Vavilov distribution function is defined by

and its inverse by .
The function can be used to generate Vavilov random numbers (see Usage).

Structure:

and subprograms
User Entry Names: , , , ,
External References: (E106), (G110), (G110)

Block Names and Lenghts:

Usage:

sets auxiliary quantities used in , and ; this call has to precede a reference to any of
these entries.

The variable (the straggling parameter); ().
The variable (the square of velocity in unit); ().

in the particular case that only is referenced after the call to .

In any arithmetic expression,

has an approximate value of ,
has an approximate value of ,
has an approximate value of ,

226 G115 – 1

and are defined by the last call to prior to a reference to , , or .
To generate a set of Vavilov random numbers with identical and , should be called once and
then be referenced repeatedly, using as argument a random number from a uniform distribution
over the interval (0,1).
In any arithmetic expression,

has an approximate value of .

To generate one Vavilov random number for given values of and , should be used, using as
argument a random number from a uniform distribution over the interval (0,1).

, , , and , , are of type , and is of type .

Method:

The method is discribed in Ref. 1.

Accuracy:

The accuracy depends on the parameters. Although often rather poor from a mathematical point of view, it
is usually sufficient for the intended application in physics (see Notes).

Restrictions:

No test is made whether the parameters and are in the specified ranges.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. In view of the requirements in physics, speed is much more important than accuracy. This is
taken into account for the present routines.

2. For a more accurate, but much slower, calculation of the Vavilov density and distribution functions,
use (G116).

3. For , the Vavilov distribution can be replaced by the Landau distribution ((G110)),
taking into account that .

4. For , the Vavilov distribution can be replaced by the Gaussian distributionwith mean
and variance .

References:

1. A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, Nucl. Instr. and Meth. B47
(1990) 215–224.

G115 – 2 227

VVILOV CERN Program Library G116

Author(s) : B. Schorr, K.S. Kölbig Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 10.12.1993
Language : Fortran Revised:

Vavilov Density and Distribution Functions

The package contains subprograms for the calculation of the Vavilov density and distribution func-
tions. Though generally more accurate, these routines are considerably slower than those in (G115).
For and , the Vavilov density function is mathematically defined by

where is an arbitrary real constant and

is the exponential integral, , and
is Euler’s constant.
The Vavilov distribution function is defined by

Structure:

and subprograms
User Entry Names: , ,
Internal Entry Names: ,
External References: (C205), (C336), (C336), (C337)

Block Names and Lenghts:

Usage:

sets auxiliary quantities used in and ; this call has to precede a reference to either of these
entries.

The variable (the straggling parameter); ().
The variable (the square of velocity in unit); ().

if is referenced after the call to ;
if is referenced after the call to .

On exit, and contain a lower and upper limit as defined below.

In any arithmetic expression,

has the value ,
has the value ,

228 G116 – 1

By definition

if ; if ;
if ; if .

, , and are defined by the last call to (with) prior to a reference to
, or (with) prior to a reference to .
, and , , , , are of type , and is of type .

Method:

The method, based on Fourier expansions, is described in Ref. 1.

Accuracy:

About five significant digits are usually accurate.

Error handling:

Error : or .
Error : .
These errors can occur when calling . In both cases, a message is written on , unless subrou-
tine (N002) has been called.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. These routines, though rather accurate, are slow. If speed is of higher importance than accuracy,
and for calculating Vavilov random numbers, use (G115).

2. For , the Vavilov distribution can be replaced by the Landau distribution ((G110)),
taking into account that .

3. For , the Vavilov distribution can be replaced by the Gaussian distributionwith mean
and variance .

References:

1. B. Schorr, Programs for the Landau and the Vavilov distributions and the corresponding random
numbers, Computer Phys. Comm. 7 (1974) 215–224.

G116 – 2 229

RANF CERN Program Library G900

Author(s) : CDC Library: KERNLIB or Fortran intrinsic
Submitter : H. Lipps (not CDC or Cray) Submitted: 02.06.1980
Language : Fortran or Assembler Revised: 24.06.1985

Random Number Generator

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
(V113) or (V114) or (V115)

Function subprograms and return pseudo-random values uniformly distributed in the interval
(0,1), the end points excluded. The multiplicative congruential method is used.
Subroutine subprogram makes the current seed value of and available to the user, and
subroutine restores a seed value for further use by and .
On CDC computers, the subprograms other than are part of Control Data’s Fortran execution-time
library.
The non-CDC versions of and use the same multiplier (), the same initial
seed value (), and the same modulus (). They thus generate, within the limitations
of machine accuracy, the same random sequence as the CDC versions.

is identical to except that it returns a function value of type .

Structure:

and subprograms
User Entry Names: , , ,

Usage:

In any arithmetic expression,

or

is set to a value greater than zero and less than one. is of type , is of type
.

(for CDC, otherwise). On exit from , will be set to a
value that determines the current position in the sequence of random numbers. This value may
be used later as an actual argument in a call to in order to restart the random sequence at
this point.

References:

1. Fortran Version 5 Reference Manual (Control Data Corporation, 1981).

230 G900 – 1

RSMPLX CERN Program Library H101

Author(s) : M. Gyr Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 15.02.1994
Language : Fortran Revised:

Linear Optimization Using the Simplex Algorithm

Subroutine subprograms and calculate the quantities for which the linear
form, or objective function,

assumes a maximum value subject to the inequality constraints

and the equality constraints

A number of the variables can be restricted to non-negative values ().
The remaining variables are then unrestricted (). In the
case , all variables are unrestricted. These subprograms can also be used for the so-called
degenerate case.
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single precision version is available.

Structure:

subprograms
User Entry Names: ,
Internal Entry Names: ,
Files Referenced:
External References: (N002), (Z035)

Usage:

For (type), (type),

(type according to) Two-dimensional array of dimension . Contains, on entry, the
coefficients . Destroyed during execution.
(type according to) One-dimensional array of dimension . Contains, on entry, the coefficients

. Destroyed during execution.
(type according to) One-dimensional array of dimension . Contains, on entry, the coefficients

. Destroyed during execution.
(type according to) Contains, on entry, the initial value of the objective function.
() Declared first dimension of in the calling program ().
() The total number of variables ().

231 H101 – 1

() The number of restricted variables (.
() The total number of constraints ().
() The number of inequality constraints (.
() Two-dimensional array of dimension . Used as working space.
() Declared first dimension of in the calling program ().
(type according to) One-dimensional array of dimension . Used as working space.
(type according to) One-dimensional array of dimension . If or ,
its first elements contain, on exit, the or a solution , respectively.
The next elements contain the values of the so-called slack variables

. If or , the elements are undefined.
(type according to) If or , contains, on exit, the result of the objective
function. Undefined for and .
() Defines, on exit, the type of the result:

There is exactly one finite solution.
There is more than one solution.
There is no finite solution.
There is no feasable initial solution.

Method:

The method is described in Ref. 1 and Ref. 2.

Error handling:

Error : or .
Error : or or or .
In both cases, a message is written on , unless subroutine (N002) has been called.

References:

1. H.P. Künzi, H.G. Tzschach and C.A. Zehnder, Numerical methods of mathematical optimization,
(Academic Press, New York 1968)

2. E. Stiefel, Einführung in die Numerische Mathematik, (B.G. Teubner, Stuttgart 1965)

H101 – 2 232

ASSNDX CERN Program Library H301

Author(s) : F. Bourgeois Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 15.02.1994
Language : Fortran Revised:

Assignment Problem

Subroutine subprogram solves the so-called Assignment problem: Given an matrix of real
numbers , find either

1. a set , where indicates
zeros, and where for non-zero elements for , which minimizes

assuming that , or

2. a set , where indicates
zeros, and where for non-zero elements for , which minimizes

assuming that .

Structure:

subprogram
User Entry Names:
Files Referenced:

Usage:

() Must be set either (for case (1)), or (for case (2)).
() Two-dimensional array of dimension (). Must contain, on entry, the matrix .
Destroyed during execution.
() Number of rows of .
() Number of columns of .
() Declared first dimension of in the calling program (.
() One-dimensional array of length . Contains, on exit, the assigned set of
integers or , respectively.
() The calculated minimum value of .
() Two-dimensional array of dimension (). Used as working space.
() Declared first dimension of in the calling program ().

Method:

The subprogram is based on the Algol procedure given in Ref. 3.

233 H301 – 1

Error handling:

Error : or .
A message is written on , unless subroutine (N002) has been called.

Examples:

The following example illustrates a possible use of the subprogram. A workshop has to carry out jobs,
each of which can be performed on any of available machines. The cost of performing job on
machine is . It is required to assign jobs to machines in such a way as to minimize the total cost.
The solution is obtained by calling the subprogram with and then assigning job to machine

.

References:

1. J. Munkres, Algorithms for the assignment and transportation problems, J. SIAM 5 (1957) 32–38.

2. R. Silver, An algorithm for the assignment problem, Comm. ACM 3 (1960) 605–606.

3. R. Silver, Algorithm 27 ASSIGNMENT, Collected Algorithms from CACM (1960).

H301 – 2 234

EPIO CERN Program Library I101

Author(s) : H. Grote, I. McLaren Library: PACKLIB
Submitter : Submitted: 01.12.1981
Language : Fortran, Assembler Revised: 01.02.1982

EP Standard Format Input/Output Package

The EP format off-line package is intended to be used for all data (at least on tape) in an experiment, in such
a way that from the raw data tape to the DST, the tape (or file) format is identical. This makes the transport
of data between computers easier, and simplifies the task of passing the files or tapes at different stages of
the production chain through any other part of the production chain. is designed to make almost all
features of the very flexible EP format available to the user.

Structure:

package
User Entry Names: , , , , , , , ,

, , , , , , , ,
,

Files Referenced: User defined
External References: (V300), (V301), (Z300) (IBM only)

Block Names and Lengths:

Usage:

See Long Write-up.

235 I101 – 1

KUIP CERN Program Library I202

Author(s) : R. Brun, P. Zanarini Library: PACKLIB
Submitter : Submitted: 10.02.1988
Language : Fortran Revised: 17.12.1991

KUIP - Kit for a User Interface Package

The package is part of (Q121) (Physics Analysis Workstation), but can be used independently.
is an interface program for any application based on interactive input of commands. From the appli-

cation it is seen as a slave which supplies the next command with its associated parameters. It takes care of
program input in various (e.g., graphics or menu) forms and performs preliminary checking on command
syntax and parameters.

Structure:

subprograms

Usage:

See Long Write-up.

236 I202 – 1

FFREAD CERN Program Library I302

Author(s) : See below Library: PACKLIB
Submitter : J.C. Lassalle Submitted: 30.01.1980
Language : Fortran Revised: 17.12.1991

Format-Free Input Processing

Authors: R. Brun, R. Hagelberg, M. Hansroul, I. Ivanchenko, J.C. Lassalle, G. Misuri, J. Vorbrueggen

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (I202)

provides the user with a facility for free-format data input, providing a suitable tool to transmit
and/or modify variables at run-time without recompilation.

Structure:

subprograms
User Entry Names: , , , , ,
Internal Entry Names: , , , ,
Files Referenced: Input, Output (both default or user defined)
External References: (V301), (M409), (M409), (()optionally user-supplied)

Usage:

See Long Write-up.

237 I302 – 1

VIZPRI CERN Program Library J200

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 19.09.1991
Language : Fortran Revised:

Print Large Characters

prints one line of large characters to make banner pages. A large line occupies 12 text lines; each
large character is 12 columns wide with 2 blank columns to separate.

Structure:

subprogram
User Entry Names:
Files Referenced: Parameter

Usage:

with:

Fortran logical unit number for printing, if zero: use ’standard output’.
() text to be printed.

Examples:

gives:

238 J200 – 1

XBANNER CERN Program Library J403

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 19.09.1991
Language : Fortran Revised:

Print Banner Text

can be used to create either a banner page or to print simple banner text. For a banner page printing
may be repeated to make a recto-verso page; for simple text printing is done only once without page eject.
The current date and time is always printed.

Structure:

Complete program, executable module normally on
User Entry Names:
External References: (J200), (Z007)
Files Referenced: User controlled

Usage:

The command line

prints the text strings ’ ’ as large characters, normally on one line each, onto the file selected by ’where’.

’where’ specifies the output file, pre–fixed by zero, one, or two control characters. If no file name is given,
standard output is assumed, in which case exactly one control character, 1 or 0, must be given.
The pre-fix control characters select the following actions:

create a recto-verso banner page;
create a single banner page; page-eject is Fortran style with ’1’ in column 1.
print banner text only, default.
append to existing file.
overwrite file if existing.

If a file-name is given without ’ ’ or ’ ’ a new file (cycle) is created on the VAX, and on Unix machines ’ ’
is assumed.

The parameters ’ ’ specify the text to be printed, each ’ ’ giving rise to one or more lines: Normally
a parameter gives just one line. But if its first character is not alphabetic and equal to its last character each
such character, except the first, indicates a line break.

Typing without parameters causes a display of the help information.

239 J403 – 1

Examples:

all create a single banner page of 6 large lines; the first example prints to standard output, the other two
onto file , either overwriting or appending. In these examples causes one blank line and gives
2 blank lines. Note that a blankwithin a parameter has to be protected so as not to break it into 2 parameters.

The next example adds one large line to :

giving:

J403 – 2 240

BINSIZ CERN Program Library J530

Author(s) : F. James Library: KERNLIB
Submitter : Submitted: 01.10.1974
Language : Fortran Revised:

Reasonable Intervals for Histogram Binning

determines reasonable lower and upper limits and bin width for a histogram, given the lower and
upper limits of the data and the desired maximum number of bins. The output bin width is always an integral
power of or 5, and the output lower and upper limits are the nearest multiples of the bin width
containing the specified range. Another option allows the bin width to be imposed and determines only the
new limits.

Structure:

subprogram
User Entry Names:

Usage:

() Lower limit of data to be histogrammed.
() Upper limit of data to be histogrammed.
() Maximum number of bins desired.
() Lower limit determined by .
() Upper limit determined by .
() Number of bins determined by .
() Bin width .

If or , always makes exactly one bin.
If , takes as input and determines only , , and . This is especially useful when
it is desired to have the same bin width for several histograms (or for the two axes of a scatter-plot).
If , takes to be the upper limit and to be the lower limit, so that in fact and
may appear in any order. They are not changed by . If , takes the lower limit as ,
and the upper limit is set to .

241 J530 – 1

COMIS CERN Program Library L210

Author(s) : V. Berezhnoi, R. Brun, S. Nikitin, Y. Petrovykh, V. Sikolenko Library: PACKLIB
Submitter : R. Brun Submitted: 10.02.1988
Language : Fortran Revised:

COMIS - Compilation and Interpretation System

The package is part of (Q121) (Physics Analysis Workstation), but can be used independently.
It is a Fortran interpreter with which the user can interactively define, edit and execute any Fortran routines
without recompiling and relinking. A small user interface system is part of and an interface with the
local editor is also provided.

Structure:

subprograms

Usage:

See Long Write-up.

242 L210 – 1

PATCHY CERN Program Library L400

Author(s) : J. Zoll Library: none
Submitter : Submitted: 31.01.1972
Language : Fortran Revised: 15.01.1977

Source Code Maintenance

and the associated auxiliary programs serve in development, maintenance, and inter-computer trans-
port of source programs. Suitably structured source files containing several versions of a given program
permit code selection and code modification (down to single-statement-level) by simple control cards to

. Compacting and structuring of card files for efficiency , maintenance of compacted
files at the deck level , creation of machine-independent, transportable files and listing
of compacted files and others are simple auxiliary operations in this environment.

Structure:

Complete programs; executable modules exist on all machines at CERN where the CERN Program Library
is installed, normally in the directory .
User Entry Names: , , , , , , , ,

,

Usage:

See Long Write-up (Reference Manual).

243 L400 – 1

SORTZV CERN Program Library M101

Author(s) : H. von Eicken Library: KERNLIB
Submitter : Submitted: 14.08.1985
Language : CDC: Compass, IBM: Fortran Revised:

Sort One-Dimensional Array

will sort a one-dimensional array containing Hollerith or numerical integer or real information. The
user may specify his own collating sequence for characters; otherwise that of the display code will be used.
The array to be sorted is not changed. The output of is an integer array containing the ordered
indices indicating the order of the original array (see Examples).

Structure:

subprogram
User Entry Names:

Usage:

CDC:

Others:

One-dimensional array of elements to be sorted.
One-dimensional array of indices. After execution it contains the indices denoting the desired
order of . On input it may contain (depending on) indices denoting which elements of
are to be sorted (see Examples).

Number of words to be sorted.
Type of sort required:

Integer,
Hollerith,
Real.

Order of sort:
Ascending order,
Descending order.

Elements to be sorted:
Sort the first elements of ,
Sort words of as indicated by array .

Character set to be used: (CDC only)
Use display code (only applicable to Hollerith sort),
Use collating sequence specified in .

Defines the collating sequence for a Hollerith sort. This array must be at least 64 elements in
length. On entering the characters for which the user wishes to specify the order,
must be in the first words of (one character/word, left-adjusted and blank-filled).
Any characters found during the sort which have not been defined in will be added to

.

Restrictions:

The input order of equal elements is not necessarily retained. The parameters and are only used
in the CDC version.

244 M101 – 1

Examples:

1. Assume the array contains . Then the statement

(and omitted) sets the array to .

2. With the same array and the array containing ,

sets the array to .

For more details, see Long Write-up.

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

M101 – 2 245

FLPSOR CERN Program Library M103

Author(s) : H. von Eicken Library: KERNLIB
Submitter : Submitted: 15.09.1978
Language : Fortran Revised:

Sort One-Dimensional Array into Itself

The package contains two entry points for sorting a one-dimensional array, containingeither floating
point number or integers, into itself. The sort is done in ascending order.

Structure:

subprogram
User Entry Names: ,

Usage:

sorts the first elements of the array in ascending order into itself.

sorts the first elements of the array in ascending order into itself.
For more details, see Long Write-up for (M101).

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

246 M103 – 1

SORCHA CERN Program Library M104

Author(s) : H. Renshall Library: KERNLIB
Submitter : Submitted: 27.11.1984
Language : Fortran Revised:

Sort One-Dimensional Character Array into Itself

does a slow linear sort of a type array into itself in either ascending or descending order.
The sort is done on any user specified substring of the elements in a array.

Structure:

subprogram
User Entry Names:

Usage:

() One-dimensional array of dimension to be sorted into itself. The maxi-
mum length of the elements in is 256 characters.
() Variable or constant giving the first character position in each element of of the
substring upon which the array shall be sorted. should be 1 if the whole length of the
elements of is to be used.
() Variable or constant giving the last character position analogously to above.

should be equal to the length of the elements of if the sort should be on the entire length
of the elements of .
() Variable or constant. The first elements of will be sorted.
() Variable or constant controlling the type of the sort. It is possible to sort in ascend-
ing or descending order; in addition it is possible to use either the Fortran collation sequence
ordering via the and functions, or the machine internal relational sequence ordering
via the and relations (see Notes).

Ascending sort, i.e. will be lower than , using collation sequence.
Descending sort, i.e. will be lower than , using collation sequence.
Ascending sort, i.e. will be lower than , using relational sequence.
Descending sort, i.e. will be lower than , using relational sequence.

Notes:

On the machines and compilers tested (CDC with , VAX VMS with Fortran, ND500 with ,
IBM with VS-Fortran and Siemens compilers) the collating sequence orders are the same and give blank
less than numbers and numbers less than letters (this matches the internal representations).
On IBM with both compilers the relational sorts give blank less than letters and letters less than numbers
(the sequence).
On CDC, VAX and ND500 collation and relational orders are the same.
On all machines the relational sort is faster than the collation sequence sort.

247 M104 – 1

SORTR CERN Program Library M107

Author(s) : F. Carminati Library: KERNLIB
Submitter : Submitted: 09.02.1989
Language : Fortran Revised:

Sort Rows of a Matrix

re-arranges the row order of a matrix in such a way that the elements of a selected column are either
in increasing or decreasing order as described. When these elements are equal, the rows are kept in their
original order.

Structure:

subprogram
User Entry Names: , ,
External References: (F121), (V301) (not on all machines)

Usage:

For (type), (type), (type),

performs an ordering operation on the matrix of type , dimensioned , using the -th element
of each row as ordering criterion.
The matrix is stored by rows, the first element of a row following immediately after the last element of
the preceding row.
Obviously, is a condition. If this is not met or if , will do nothing.
If , the subroutine re-orders the rows of in such a way that the -th element of each row is
greater than or equal to the -th element of the preceding row. If , the rows of are re-ordered
in such a way that the -th element of each row is smaller than or equal to the -th element of the
preceding row.

248 M107 – 1

SORTRQ CERN Program Library M109

Author(s) : T. Lindelöf Library: MATHLIB
Submitter : F. Carminati Submitted: 15.09.1978
Language : Fortran Revised: 09.02.1989

Sort Rows of a Matrix

rearranges the row order of a matrix in such a way that the elements of a selected column are either
in increasing or decreasing order, as desired. Row orders are not necessarily preserved in case these elements
are equal. Otherwise, does the same job as (M107), but is sometimes faster.

Structure:

subprogram
User Entry Names: , ,
External References: (V301) (not on all machines)

Usage:

For (type), (type), (type),

performs an ordering operation on the matrix of type , dimensioned , using the -th elements
of each row as ordering criterion.
The matrix is stored by rows, the first element of a row following immediatly after the last element of
the preceding row.
Obviously, is a condition. If this is not met, or if , will do nothing.
If , reorders the rows of in such a way that the -th element of each row is the

-th element of the preceding row. If , the rows of are reordered in the strict reverse order to
that for .

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

249 M109 – 1

PSCALE CERN Program Library M215

Author(s) : J. Zoll Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran Revised: 15.09.1978

Find Power-of-Ten Scale for Printing

gives the power of ten by which it is necessary to multiply a number for the purpose of
obtaining a new number having a fixed number of digits on the left of the decimal point.

Structure:

subprogram
User Entry Names:

Usage:

returns the largest and its power , such that has at most digits to the left
of the decimal point. is limited to , however.

Examples:

Suppose we have an array , which we want to print with a . Using (F121)
we find the smallest number , such that for all . Then

allows us to print the vector with the above . The following sample values of give
values for as indicated below:

All but the two last ones, will be printed as .

250 M215 – 1

IE3CONV CERN Program Library M220

Author(s) : J. Zoll, M. Jonker, M. Roethlisberger Library: KERNLIB
Submitter : Submitted: 30.11.1986
Language : Fortran or Assembler Revised: 01.04.1994

Conversion To and From IEEE Number Format

These routines convert vectors of single- or double- precision numbers between the internal and the standard
representations.

Structure:

subprograms
User Entry Names: , , ,

Usage:

for/to internal, single precision:

Vector of words with floating point numbers in internal representation.
Vector of words with the same floating point number in representation.
Size of the vectors.
Error code returned, normally zero,otherwise is the last number which had
conversion problems, such as overflow and not-a-number.

for/to internal, double precision:

Vector of words with double-precision floating point numbers in internal representa-
tion.
Vector of words with the same floating point numbers in representation.
Size of the vectors.
Error code returned, normally zero, otherwise is the last number which had
conversion problems, assuming the declaration .

Notes:

The format provides for representing exceptions, both for single and for double precision:

a) Not-a-number: single ,
double .

b) Positive infinity: single ,
double .

c) Negative infinity: single ,
double .

251 M220 – 1

Depending on the machine, mapping is done either naturally or artificially:

CDC Indefinite maps to not-a-number, overflow to infinity.
CRAY Overflow maps to infinity, not-a-number gives overflow.
IBM Positive infinity maps to internal ,

not-a-number maps to internal .
NORD Positive infinity maps to internal ,

not-a-number maps to internal .
VAX Positive infinity maps to internal ,

not-a-number maps to internal .
Underflow gives exact zero in all cases.
On the VAX: if a file has been imported from a big-endian machine, byte-inversion (see (M434)) has
to be done before calling ; similarly byte-inversion has to be done after calling and before
exporting the file.
On machines where the internal representation is (Apollo, Sun, Silicon Graphics, etc) these routines
are simple copy operations.

M220 – 2 252

CHTOI CERN Program Library M400

Author(s) : H. Renshall Library: KERNLIB
Submitter : M. Metcalf Submitted: 27.11.1984
Language : Fortran Revised: 12.03.1985

Portable Conversion Between Type CHARACTER and Type INTEGER

converts between a value in a 95–character set and values in the range 32–
126 via a look-up table.

Structure:

subprogram
User Entry Names: ,

Usage:

Variable or constant (may be a substring of a longer string) containing on
input the character for which the integer equivalent is required.

Variable which will contain on output the integer equivalent from a look-up table
of the input character argument. A zero will be returned if the character was not found in the
table.

Label of an executable statement within the calling program to which control will
be transferred should the input character not be found in the table.

variable which will contain on output the character equivalent from a look-up
table of the input integer argument. A question mark will be returned if the integer is outside
the range inclusive.

variable or constant containing on input an integer in the range for which
the character equivalent is required.

Label of an executable statement in the calling program to which control will be
transferred should the input integer be outside the range .

Method:

A look-up table containing 95 entries is mapped consecutively into integers . The table is as
follows:

253 M400 – 1

Restrictions:

This routine is typed in Fortran on a system which includes all the above characters. Systems with fewer
characters available usually make some local translation when they read the source for example on CDC
NOS/BE the lower case letters are translated to upper case. Exact reproducibility of other than the subset of
characters is not guaranteed.

Notes:

These integer values are the same as for the 8-bit set.

M400 – 2 254

UBUNCH CERN Program Library M409

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 09.09.1991

Concentrate and Disperse Character Strings

PARTIALLY OBSOLETE
Please note that this routine has been partially obsoleted in CNL 219. Users
are advised not to use the entries refering to Hollerith any longer and to replace
them in older programs. No maintenance for this part will take place and it will
eventually disappear.

Suggested replacement: (M432)

The concept string of n Hollerith characters is machine independent, but its usual representation in
format (with = character capacity of a machine word: , , ,) is not.
Supposing any computer to have a character capacity of at least , string representations in , , or
are transportable. Representations and are particularly interesting.

Fortran 77 defines a new data type thoughmost compilers also supportHollerith strings (without
a clear definition of the differences). A set of routines has been added to this package in its Fortran 77
implementation to convert between strings and Hollerith strings.
The routines , and work on Hollerith only and so should be considered obsolete,
while , and and copy between and Hollerith. Unpredictable
results will be obtained if wrong data types are passed to these routines. On most machines text strings
passed in quotes are implicitly of type while a string preceeded by is not.
The routines of this package perform transformations between different representations.

Structure:

subprograms
User Entry Names: , , , , , ,

Block Names and Lengths:

Usage:

disperses the string of Hollerith characters from into .

Input vector, continuous string of Hollerith characters in form (i.e. , or depend-
ing on the machine).
Output vector, words in form, i.e. a single Hollerith character per word with blank-fill.
Number of Hollerith characters to be copied.

concentrates the string of Hollerith characters from into .

Input vector, words in form (one Hollerith character per word).
Output vector, continuous string of Hollerith characters in form (i.e. , or
depending on the machine), with blank-fill of trailing characters in the last word, if any.
Number of Hollerith characters to be copied.

255 M409 – 1

copies the string of Hollerith characters from into .

Input vector of Hollerith characters with characters per machine word in Ai form. The
variable in is set to the number of machine words used from .
Output vector of Hollerith characters with characters per machine word in Aj form, with
blank-fill. The variable in is set to the number of machine words built in .
Number of Hollerith characters to be copied.
Number of Hollerith characters per word in and . If either or is greater than the
maximum possible number of characters storable in a machine word then this maximum is used
instead.

copies the -type string in into Hollerith characters in in form.

Input vector of characters, either of type or of type holding Hollerith
in form.
Output vector of Hollerith characters with characters per machine word in Aj form, with
blank-fill.
Number of Hollerith characters to put in each word of . If is larger than the maximum
possible number of Hollerith characters per word this maximum will be used instead.
Number of characters to copy.

disperses the –type string in into Hollerith characters in in form.

Input vector of characters, either of type or of type holding Hollerith
in form.
Output vector, words in form, i.e. a single Hollerith character per word with blank-fill.
Total number of characters to copy.

copies the Hollerith characters in into the variable .

Input vector of Hollerith characters with characters stored per word in Ai form.
Number of Hollerith characters to take from each word of . If is larger than the maximum
possible number of Hollerith characters per word this maximum will be used instead.
Output variable of type to receive characters.
Number of characters to copy. If the variable is of length greater than trailing
characters will not be changed.

concentrates a Hollerith string in form into the variable .

Input vector of words containing one Hollerith character each in A1 form.

M409 – 2 256

Output variable of type to receive characters.
Total number of characters to copy. If the variable is of length greater than trailing
characters will not be changed.

Error handling:
acts as do-nothing.

Examples:
(= blank).

fills : , with blank padding of each word.

gives the inverse transformation, thus on the CDC 7600 :

copies the continuous string to representation in :

with blank padding if .

gives the inverse of example

gives the same result as example , but is much slower.

copies the string in into such that

copies the Hollerith strings in into such that .

copies the –string in into such that

copies the Hollerith characters in into the string such that .

257 M409 – 3

BITBYT CERN Program Library M421

Author(s) : C. Letertre, J. Zoll Library: KERNLIB
Submitter : Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 12.06.1987

Package for Handling Bits and Bytes

This package manipulates individual bits and bytes in a word.
A bit in a word is specified by giving its position in the word, bit being the
least significant bit.
A byte in a word is a group of consecutive bits. The byte is specified by giving and the bit
position of the least significant bit of the byte.

Structure:

and subprograms
User Entry Names: , , , , , , ,

, , , , , , ,
, , ,

Usage:

returns or , the value of bit in .
sets into bit of .
sets into bit of .
copies bit of into bit of .
returns in with bit set to .
returns in with bit set to .
returns in with bit set to the value of bit in .
returns in right-justified the byte at in .
copies the byte at of into the byte at of .
returns in with the byte at replaced by the byte at
of .

copies the byte at of into the byte at of .
returns in with the byte at replaced by the byte at
of .

returns in the logical of and the byte at of
right-justified.
returns in the logical of and the byte at of
right-justified.
replaces the byte at in by the logical of this byte
and the byte at of .
returns in with the byte at replaced by the logical
of this byte and the byte at of .

returns in with the byte at replaced by the logical
of this byte and the byte at of .

read and reset byte; equivalent to

.

258 M421 – 1

Notes:

The subroutines

are duplicated by the functions

to allow implementation by statement functions. Such implementations can be picked up from the ZEBRA
CDE Pam-file for different machines as sequence definitions

M421 – 2 259

PACBYT CERN Program Library M422

Author(s) : J. Zoll, C. Letertre Library: KERNLIB
Submitter : Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 16.09.1991

Handling Packed Vectors of Bytes

allows handling of packed vectors of bytes. Any such vector consists of a string of bytes, all of
bits, of them packed into one computer word, stored from right to left.

Structure:

and subprograms
User Entry Names: , , ,
External References: (M421), (M421) (Fortran version)

Usage:

The 2–word vector specifies the packing parameters:

is accepted as specifying both and equal to the number of bits per word
on the given computer.

packs the –word vector of small integers into the bytes of the byte-vector .

unpacks the bytes of the packed byte-vector into the vector of small inte-
gers.

fetches the -th byte from the packed byte-vector .

sets the first byte from into the ’th byte of the packed byte vector .

Notes:

1. These routines, and the manner of packing byte-vectors, is compatible with the routines and
(M421), except that there the location of a byte in the word is specified, whereas here the

ordinal number of a byte in the vector has to be given. The conversion is as follows:
The byte with ordinal number is found in word ,
on byte starting at bit .

2. Bits and bytes are numbered from right to left within one and the same computer word; across a word
boundary there is a jump from the most significant part of the current word to the least significant part
of the next word.

260 M422 – 1

INCBYT CERN Program Library M423

Author(s) : J. Zoll, P. Rastl Library: KERNLIB
Submitter : Submitted: 28.01.1971
Language : Fortran or Assembler Revised: 16.09.1991

Increment a Byte of a Packed Vector

allows incrementing a specified byte of a packed byte vector (cf. (M422)).

Structure:

subprogram
User Entry Names:

Usage:

The 3-word vector specifies the packing parameters (much like for (M422), but
is not allowed):

, number of bits per byte.
, number of bytes per word.
, the maximum capacity of any byte, .

adds the increment into the ’th byte of the packed byte-vector and returns any byte
overflow, i.e. the part of which cannot be added into the byte, because it now contains .

261 M423 – 1

BLOW CERN Program Library M426

Author(s) : CDC: J. Blake, G. Beltz, IBM: A. Berglund Library: KERNLIB
Submitter : Submitted: 12.06.1972
Language : Fortran or Assembler Revised: 01.02.1982

Unpack Full Words into Bytes

converts a source array containing a record consisting of a continuous string of bytes of
bits per byte into a target array of full words, right-adjusted with zero-fill. is the inverse of

(M436).

Structure:

subprogram
User Entry Names:
External References: (M427)

Usage:

Source array containing the string of bytes.
Target array, which must be at least full words long.
Number of bytes in the source record ().
Number of bits per byte (, where on CDC and on IBM).

Restrictions:

The two arrays and must not overlap in any way.

Error handling:

ignores calls with erroneous parameter values.

Examples:

CDC:

The array contains a record of 200 18-bit bytes, stored contiguously in 60 60-bit words, i.e., a string
of 3600 bits. After the completion of the call to , the array will contain 200 60-bit words, each
containing one 18-bit byte, right-justified with zero-fill.

262 M426 – 1

PKCHAR CERN Program Library M427

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 01.06.1973
Language : Fortran or Assembler Revised: 16.09.1991

Pack/Unpack Continuous Byte-strings

allows packing of integers into continuous byte-strings on zoned memory across word boundaries.
The term continuous byte-string is used here to designate -bit bytes, stored from left to right, as opposed
to the objects handled by (M422), which are stored right to left within each word. The inverse
unpacking is performed by . Leading and trailing bits of each zone can be ignored.

Structure:

subprograms
User Entry Names: ,
External References: (M421), (M421), (M421)

Block Names and Lengths:

Usage:

packs the –word vector of integers into the continuous byte-string supported by the vector
according to the packing specifications given in .
is the exact inverse of .

The packing parameters are given in the 5-element vector :

Number of bits per byte, must be .
Number of bytes to be used in each zone (starting with the left-most);
if , the maximum possible number is used.
Number of bits per zone. If , a zone equals 1 word.
Number of leading bits of each zone to be ignored.
Each new word handled by is preloaded with .

is seen as a continuous string of bits, starting with the most significant bit of , ignoring word
boundaries. This string is divided into a number of consecutive and contiguous zones, each of
bits; the first zone starts with the most significant bit of . Each zone contains leading bits,
a number of bytes (each of bits), and trailing bits, if any.
On return from either routine, in block indicates the number of words in actually
used. sets to each word of before filling it, but it does not clear any trailing unused
words which logically belong to the last zone.

263 M427 – 1

Examples:

1. To convert, on the CDC 7600, 6-bit Hollerith text to 7-bit –code, to be held in 36-bit words on
the PDP10, with 5 characters per word.

unpacks the Hollerith string into , where is a small integer giving the display-code
value of the -th character. After conversion to , one may pack:

giving the vector ready to be written out. If for some reason one required the first and the last
(5th) character in each 36-bit PDP10 word to be zero, one could use:

2. To unpack 8-character bytes read with the CDC 7600 from 9-track tapes:

3. To unpack on the CRAY 32-bit integers, read one each into one 64-bit machine word, into 16-bit
integers, one each in one machine word, right-justified with zero-fill:

The same operation on the Apollo, which has 32-bit words, could be done with

4. The Fortran implementaion of (M426) executes:

M427 – 2 264

LOCBYT CERN Program Library M428

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 01.06.1973
Language : Fortran or Assembler Revised: 15.09.1978

Search for Byte-Content

searches through a vector in steps of 1 or more words looking for the first word which has a certain
bit configuration in a certain part of the word.

Structure:

subprogram
User Entry Names:

Usage:

searches through the element vector , but only looking every words for the first word which
contains in the byte , and returns its address in which may be , , , ,
etc.
must contain the desired byte value right-justifiedwith zero-fill.
is returned if such a word is not found, or if .

The byte is a byte of bits, occupying the bits . The bits are
numbered as with the routines of (M421) / (M422): ; bit 1 is the least
significant bit of the word.

265 M428 – 1

NUMBIT CERN Program Library M429

Author(s) : M. Metcalf Library: KERNLIB
Submitter : Submitted: 01.06.1973
Language : Assembler Revised: 15.09.1978

Number of One-Bits in a Word

counts the one-bits in a word.

Structure:

subprogram
User Entry Names:

Usage:

In an arithmetic expression,

has the value giving the number of one-bits in .

Examples:

sets to as the binary representation of 5 has 2 one-bits.

266 M429 – 1

IFROMC CERN Program Library M431

Author(s) : M. Metcalf Library: KERNLIB
Submitter : Submitted: 15.01.1986
Language : Fortran Revised: 16.05.1986

Convert Between Character String and Packed ASCII Form

and provide a simple, portable facility for storing character strings of 1–4 characters packed
into integers.

Structure:

subprograms
User Entry Names: ,
External References: (M400), (M400)

Usage:

stores in a packed representation of the 4 leftmost characters of . If there are fewer than
4 characters, blanks are stored in the empty positions.

stores in the four characters stored packed in in their representation.

References:

1. CERN Computer Newsletter 179 (April–May 1985) 11–14.

267 M431 – 1

CHPACK CERN Program Library M432

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 02.06.1989
Language : Fortran Revised: 01.04.1994

Utility Routines for Character String Parsing and Construction

The routines of this package analyse and manipulate Fortran strings.

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , , , , ,
, , , , ,

Block Names and Lengths:

Summary: Read integer or real number from character
Copy string, left shift allowed if overlap
Copy string, right shift allowed if overlap
Copy string, with characters front-to-back
Copy string, replacing a token by text
Copy string, replacing environment variables
Fill
Left justify
Right justify
Squeeze multiple blanks
Squeeze multiple character
Convert low to up
Convert up to low
Set decimal integer to character
Set hexadecimal integer to character
Set octal integer to character
Set a vector of integers to character
Set a series of generated integers to character
Character translation
Read decimal integer from character
Read hexadecimal integer from character
Read octal integer from character
Compare two strings for equality
Find first occurrence, single
Find last occurrence, single
Find first occurrence, multiple
Find first non-blank

268 M432 – 1

continue: Locate case sensitive
Locate case insensitive, up to low
Locate case insensitive, low to up
Locate unseen characters
Delimit next word
Identify choice case sensitive
Identify choice case insensitive, up to low
Identify choice case insensitive, low to up
Inquire presence in a list, case sensitive
Inquire presence in a list, case insensitive, up to low
Inquire presence in a list, case insensitive, low to up
Verify numeric
Verify alpha-numeric
Verify alpha-numeric or underscore
Identify type
Find last non-blank character
Read decimal integer from character
Read hexadecimal integer from character
Read octal integer from character

Usage:

General Remarks:

For what follows, let the variable contain a string of characters assuming the following
declaration:

thus is the -th character . A sub-string of is specified by and , where
is the first or left-most, and is the last or right-most character.

returns certain search parameters, which are set by some of the routines.
The types of all variables and functions follow from the Fortran default typing convention, except that

, and variables starting with the letters are of type .

Convention

Typing rules for data to be interpreted by :

String of zeros or ones prefixed by or .
String of octal digits prefixed by or or .
String of hexadecimal digits prefixed by or .
String of decimal digits optionally prefixed by or .

are strings of decimal digits, either the decimal dot or the letter (or)
must be present.

the letter (or) must be present.

M432 – 2 269

Read integer or real number from character:

reads the number whose character representation starts with the first non-blank character at or after
and ends at or at the first blank after the number (normal termination), or at the first character after
the number which cannot be part of it (special termination).

detects the type of the number (bit-pattern, integer, real single, real double) from its representation.
The typing rules for data to be interpreted by are given in the note on the previous page.
The number read is returned in in or or , for which one will need:

The flag in the last parameter is normally given as zero; demands that single-precision real num-
bers be handled and returned as double precision numbers; demands that double-precision num-
bers be returned in single precision.
Apart from , the following parameters are returned in :

Number of numeric digits seen.
Terminating character in the field; if terminated by end-of-field.
Type of the number read:

error code for bad data;
the whole field is blank;
bit pattern (binary, octal, or hexadecimal);
integer
single precision real;
double precision real.
for normal termination; special termination otherwise.

Copy string, left shift allowed if overlap:

copies characters from to ; the characters are copied in order, thus the
end of the target may overlap the beginning of the source.

Copy string, right shift allowed if overlap:

copies characters from to ; the characters are copied in reverse order,
thus the beginning of the target may overlap the end of the source. These two routines are useful to copy
strings from or into a very large array of type .

Copy string, with characters front-to-back:

copies characters from to inverting the order of the characters such that
the last becomes the first, etc.

270 M432 – 3

Copy string, replacing a token by text:

copies to starting at and not going beyond , substituting each
occurrence of by .
The following parameters are returned in :

Number of characters stored;
is the first character after the last stored;
Non-zero if too small to receive the complete copy;
Zero if no substitutionwas done, i.e. did not occur.

Copy string, replacing environment variables:

copies to starting at and not going beyond , substituting each
occurrence of by the value of the environment variable obtained by calling
(Z 265); on machines running UNIX the form is also recognized. The handling of undefined
environment variables is defined by : if zero the string is skipped from the copy; if non-zero
the string is copied through as is.
The following parameters are returned in :

Number of characters stored;
is the first character after the last stored;
Bit 1 is set if undefined env/v have been encountered;
Bit 2 is set if syntax error (missing closing bracket);
Bit 3 is set if is too small to receive the copy;
Zero if no substitutionwas done.

Fill:

fills with as many copies of as possible; if is not a multiple of
as many characters of as necessary to fill up to will be taken for the last copy.

Left justify:

left-justifies squeezing blanks to the right.

Number of non-blank characters in the field.
First blank character after left-justifying (or if there are no blanks).

Right justify:

right-justifies squeezing blanks to the left.

Number of non-blank characters in the field.
Last blank character after right-justifying (or if there are no blanks).

M432 – 4 271

Squeeze multiple blanks:

left-justifies replacing any string of several consecutive blanks by a single blank.

Number of characters retained (vacated trailing characters, if any, are blanked).
First blank character after (or if there are no multiple blanks).

Squeeze multiple characters:

left-justifies reducing any multiple occurrence of the character to this character just
once. is of type .

Number of characters retained (vacated trailing characters, if any, are blanked).
First character after the squeezed string (or if there are no multiple occurrences).

Convert low to up:

converts lower case letters in to upper case.

Convert up to low:

converts upper case letters in to lower case.

Set decimal integer to character:

writes the integer into right-justified. If is too large, the most significant characters
are lost. Unused positions are not cleared to blank, so that they may be pre-loaded with default characters,
such as leading zeros. (One normally clears the whole of initially with , one could clear
the substring with or preset it before calling).

Number of digits which have been set.
Most significant digit set.
Most significant character set. if is positive, if is negative
and no overflow.

normally, non-zero if field too small.

Set hexadecimal integer to character:

acts like , except that the hexadecimal rather than the decimal representation of is stored.

Set octal integer to character:

acts like , except that the octal rather than the decimal representation of is stored.

272 M432 – 5

Set a vector of integers to character:

sets the integers into in decimal representation, every columns,
each right-justified within its field of columns; squeeze multiple blanks to single blanks in the
resulting if non-zero. Like the other routines, this routine does not clear
unused positions to blank.

Last character of the last integer stored.
normally, if there is not enough room to store .

Set a series of generated integers to character:

acts like , but the integers are , .

Character translation:

replaces each occurrence in of the character by the character . and are of
type .

Read decimal integer from character:

reads the decimal integer whose character representation starts at and stops on the first non-
numeric character or at , returning its value in . Leading blanks are ignored, a leading minus
or plus sign is recognized. Note that a blank after the number, or after or , is taken as terminator.

Number of digits read (or do not count).
Terminating character in the field; if pure numeric or if the whole field is blank
(in which case).

if the number is terminated by ’blank’ or by end-of-field, non-zero otherwise.

Read hexadecimal integer from character:

acts like , but reads a hexadecimal rather than a decimal representation.

Read octal integer from character:

acts like , but reads an octal rather than a decimal representation.

Compare two strings for equality:

checks that and are identical and returns zero if so, otherwise the ordinal number of
the first non-matching character is returned.
Note: this and many other routines of this package are handy when manipulating text stored in an area
declared with , which will explain some of the maybe unexpected calling se-
quences.

M432 – 6 273

Find first occurrence, single:

returns in the position in of the first occurrence of the single character in .

if is not contained in , or if .
if not found, otherwise.

Find last occurrence, single:

returns in the position in of the last occurrence of the single character in .

if is not contained in , or if .
if not found, otherwise.

Find first occurrence, multiple:

returns in the position in of the first occurrence in of any one of the characters
, where .

if none of is found in , or if .
, i.e. is if found.
if not found, otherwise.

Find first non-blank:

returns in the position in of the first non-blank character in .

if is all blank, or if .
if all blank, otherwise.

Locate, case sensitive:

locates the first occurrence of the complete string within , it returns in the
position in of the first character of the string found. if is not contained in .

Locate, case insensitive, up to low:

acts like , but upper case characters from are converted to lower case for the comparison.

Locate, case insensitive, low to up:

acts like , but lower case characters from are converted to upper case for the comparison.

Locate unseen characters:

returns in the position in of the first ’unseen’ character in , i.e. any character which
will not show on the terminal, except ’blank’. if does not contain unseen characters.

274 M432 – 7

Delimit next word:

returns in the position in of the first non-blank character in and in the position of
the first blank character after , if any.

Position of the first character of the ’word’.
Position of the first ’blank’ after the ’word’ or .
Number of characters in the ’word’.

, if is all blank.

Identify choice, case sensitive:

compares the character string against the strings stored in the character array , and
returns in the ordinal number of the first match found, or if no match. Neither the strings of

nor of may contain embedded blanks: the first blank, if any, is the string terminator.
To allow matching a shortened key-word given in one may insert (à la VAX) a in the text of

to mark the separation between the obligatory and further possible characters; a second
may be given to signal that may have any other characters beyond this point, this is implied if the
string in is not blank terminated.
For example:

Calling the above with the following strings will give these results:

Identify choice, case insensitive, up to low:

acts like converting upper case characters from to lower case for the comparison, hence the
array must be given in lower case.

Identify choice, case insensitive, low to up:

acts like converting lower case characters from to upper case for the comparison, hence the
array must be given in upper case.

M432 – 8 275

Inquire presence in a list, case sensitive:

like this compares the character string against the strings stored in the character array
, and returns in the ordinal number of the first match found, or if no match.

Again, neither the strings of nor of may contain embedded blanks: the first blank, if any, is
the string terminator.
As opposed to , a may be given in , but not in , to allowwild-card checking on
the presence of a string in the list of . The divides the string into the characters which must
be present in the looked-for object of , and additional restricting characters which can be absent,
but if present they must be right. Again a second can be given in , but this is not useful, since
any characters beyond the string terminator both in and in are assumed to be allowed
anyway, unlike as with .
For example:

Calling the above with the following strings will give these results:

In spite of the similarity, the operations of and serve really very different functions:
With we have a key word which we try to identify; is most likely a fixed table
built into the program which gives the possible key words and allowed abbreviations à la VAX. The return
value from tells us which key word we have.
With we inspect a table , which most likely has been built up at execution time, to see
whether it contains an object according to the specifications given in . The interesting thing about
the return value from is mainly whether it is zero or not, the position of the found object in the table
is of secondary importance.

Inquire presence in a list, case insensitive, up to low:

acts like converting upper case characters from to lower case for the comparison, hence
must be held in lower case.

276 M432 – 9

Inquire presence in a list, case insensitive, low to up:

acts like converting lower case characters from to upper case for the comparison, hence
must be held in upper case.

Verify numeric:

returns in the position in of the first non-numeric character in ; blanks are ignored.
Note that or are not considered numeric.

if is all numeric.
Number of digits seen in .

if all numeric, otherwise.

Verify alpha-numeric:

returns in the position in of the first non-alphanumeric character in ; blanks are
ignored. Note that or are not considered alpha-numeric.

if is all alpha-numeric.
Number of alpha-numeric characters seen in .
Position of the first numeric character, if none.
Position of the first alphabetic character, if none.

if all alpha-numeric, otherwise.

Verify alpha-numeric or underscore:

acts like , but the character ”underscore” is considered alphabetic.

Identify type:

returns in the type of the single character :

Unseen, i.e. a character not showing on an ASCII terminal.
Anything else.
Numeric character.
Lower case character.
Upper case character.

Find last non-blank character:

returns the non-blank length of the string in , i.e. the characters to are
all blank. (Note that this is an intrinsic function of several compilers.) If there are many trailing blanks the
routine of is faster; depending on the machine the break-even point with is around 25
trailing blanks.

M432 – 10 277

Read decimal integer from character:

acts like , with and .

Read hexadecimal integer from character:

acts like , with and .

Read octal integer from character:

acts like , with and .

278 M432 – 11

INDEXX CERN Program Library M433

Author(s) : M. Goossens, A. Petrilli, M. Marquina Library: KERNLIB
Submitter : Submitted: 11.02.1986
Language : Fortran Revised: 28.09.94

Utility Package for Character Manipulation

is a comprehensive package for the manipulation of type strings.

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,

Usage:

In what follows, the parameters , , , the functions , and the variables ,
and are of type . The function is of type .

sets equal to the position of the first alphabetic character (upper or lower case) in . if no such
character is present.

sets equal to the position of the first occurrence of string in string scanning backwards. if
no such string is present.

sets equal to the leftmost position where string does not match a substring in . if there is
no such mismatch.

sets equal to the position of the first numeric character in . if no such character is present.

sets to the position of the first special (i.e. non-alphanumeric) character in . if no such character
is present.

sets equal to the position of the first non-alphabetic character (upper or lower case) in . if no
such character is present.

279 M433 – 1

sets equal to the position of the first mismatch of string with respect to string scanning back-
wards. if there is no such mismatch.

sets equal to the position of the first non-numeric character in . if no such character is present.

sets to the leftmost position where any of the characters in matches a character in . if there
is no such match.

sets equal to concatenated copies of the string .

sets equal to a character string equivalent to with leading blanks removed and each occurence of one
or more blanks inside replaced by blanks.

sets to a character string equivalent to with leading and trailing occurances of the character
removed. If is equal to , only leading characters will be removed. If is equal to , only
trailing characters will be removed.

sets equal to the character string starting with word of and containing words.

sets to the leftmost position of any character in which is not part of .

sets equal to the word of .

sets to the number of words in .

sets the word separator for , and to the first character of the string .

Examples:
Assume the following declarations:

and a string defined as:

The following results are obtained:

Statement/ Expression Yields the value

M433 – 2 280

281 M433 – 3

VXINV CERN Program Library M434

Author(s) : F. Carminati, M. Jonker, J. Zoll Library: KERNLIB, VAX and DECSTATION only
Submitter : Submitted: 05.10.1987
Language : Fortran or Assembler Revised:

Fast VAX Byte Inversion

These routines do VAX byte inversions to in each word of an array, either in-place or
copied.

Structure:

subprogram
User Entry Names: ,

Usage:

inverts four bytes in each of the at array , in-place.

copies the words at array to array , with the bytes inverted in each word.
On DEC machines bytes read from a disk file are loaded in memory in reverse order. One of the above
routines, applied to the result of a binary read from a disk file, causes the bytes to be stored in each 32 bits
word in the same order than in the disk file. This is useful when reading a binary file transferred through a
network from a foreign system, in order to preserve the order of the bytes in each 32 bits word. Please note
that several network utilities include the possibility to perform a bytes inversion in the network protocol.
Note also that when reading or writing from a magnetic tape, the bytes may be swapped in pairs and not in
groups of 4.

282 M434 – 1

BUNCH CERN Program Library M436

Author(s) : CDC: J. Blake, IBM: A.Berglund Library: KERNLIB
Submitter : Submitted: 20.10.1975
Language : Fortran or Assembler Revised: 01.02.1982

Pack Bytes into Full Words

converts a source array containing bytes of bits per byte (where each byte is stored
right-adjusted in a full word), into a target array in which the bytes follow each other contiguously without
intermediate padding. The last word of the target array, if incomplete, is however padded with binary zero.

is the inverse of (M426).

Structure:

subprogram
User Entry Names:
External References: (M427)

Usage:

Source array containing bytes, each right-adjusted in a full word.
Target array, which must be at least (rounded up to an integral value)
words long, where on CDC and on IBM.
Number of bytes in the source array .
Number of bits per byte .

Restrictions:

The arrays and must not overlap in any way.

Error handling:

ignores calls with erroneous parameter values.

Examples:

IBM:

The array contains 200 words, each containing an 16-bit byte, right-adjusted. After returning from
, the array will contain 100 32-bit words, in which the 200 16-bit bytes are stored contigu-

ously.

283 M436 – 1

GETBIT CERN Program Library M437

Author(s) : R. Matthews Library: KERNLIB
Submitter : H. Grote Submitted: 01.07.1979
Language : Assembler Revised:

Set or Retrieve a Bit in a String

find or set the value of a single bit in a bit-stringwhichmay extend across word boundaries.

Structure:

subprogram
User Entry Names: ,

Usage:

Position of the selected bit, starting on the left with 1.
A word or an array, considered as a continuous string of bits.
Integer whose right-most bit will contain the value found by or the value to be set by
in the -th position of the bit-string starting at the left-most bit of the first word of .

284 M437 – 1

BTMOVE CERN Program Library M438

Author(s) : H. Grote Library: KERNLIB
Submitter : Submitted: 01.12.1980
Language : CDC: Fortran and Compass, IBM: Assembler Revised:

Move Bit String

moves a contiguous string of bits from any position in memory to any other position. Bits are
numbered from left to right (most significant to least significant within words) and may be across word
boundaries.

Structure:

subprogram
User Entry Names:
External References: (V301) (CDC only)

Usage:

moves the string of contiguous bits starting at position in word or array to position in
word or array . The other bits in are not changed, nor is .

Notes:

Source and target strings must not overlap in storage, else the results may be unpredictable.

Examples:

IBM:
Move the highest bit (sign-bit) in word to the lowest position of so that it can be treated as an integer:

CDC:
Pack the five integers of array I5(5) into one word , using 12 bits per packed integer:

Move a string of 20 characters from positions 41-60 in array to positions 7-26 in array :

285 M438 – 1

GETBYT CERN Program Library M439

Author(s) : T. Lindelöf, R. Matthews, A. Shevel Library: KERNLIB
Submitter : T. Lindelöf Submitted: 01.07.1979
Language : Assembler Revised:

Set or Retrieve a Bit String

extracts and right-adjusts a group of bits of any length up to a full word from a bit string which may
extend across word boundaries. is the inverse of .

Structure:

subprogram
User Entry Names: ,
Internal Entry Names:
Files Referenced: Printer

Usage:

Name of an array containing the desired group of bits.
The bit positionwithin of the left-most bit of the group (bits are numbered starting at 1 with
the left-most or most significant bit in).
Length of the group in bits (at most one word).
Will contain the desired group, right-justified and zero-filled.

causes the right-most bits of to replace the group of bits of length starting at the -th
bit in the array (bits are numbered starting at 1 with the left-most or most significant bit in).
Replacement goes across word boundaries, i.e. the most significant (left-most) bit of is adjacent
to the least significant (right-most) bit of .

Error handling:

Calling either or with or the number of bits in one word (errors) will
result in a diagnostic message. After more than 20 such errors the job will come to a .

Examples:

IBM:
If and contain the 32-bit configurations and respec-
tively, then

will set to or decimal .
If contains the integer value 3 (binary) and , then

will set to and to .

286 M439 – 1

BITPAK CERN Program Library M441

Author(s) : M. Metcalf Library: KERNLIB or Fortran library
Submitter : Submitted: 10.12.1984
Language : Fortran with ISA extensions Revised: 18.10.1985

Handling Bits and Bytes, Bit Zero the Least Significant

handles bits and bytes in a single word, with bit zero being the least significant bit.

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, ,

Usage:

A numeric storage unit is considered to consist of a string of bits numbered from right to left, starting
at zero. The standard MIL-STD-l753 defines ll bit manipulation functions on such units, 8 of which are
the ANSI/ISA functions found as intrinsic functions in many compilers. This package complements the
functions available in compilers, ensuring that the full range is available on all machines. This description
includes all the functions for the sake of completeness.

Logical operations:

provides the inclusive of the two integer arguments.
provides the logical of the two integer arguments.
provides the logical complement of the integer argument.
provides the exclusive of the two integer arguments.

Shift operations:

A shift count specifies
a left shift for
no shift for
a right shift for

provides the value of the integer argument with the bits shifted. Bits shifted out
to the left or right are lost, and zeros are shifted in from the opposite end.
provides the value of the integer argument with the rightmost bits shifted,
and the remaining bits untouched. The shift is circular; no bits are lost.

Bit subfields:
provides, right justified, the value of the bits of the integer argu-
ment , starting from position .
moves bits of integer argument , starting at position , to the
integer argument , starting at position . All other bits of are left
untouched. The arguments and may refer to the same numeric
storage unit.

287 M441 – 1

Bit testing:

has the value if bit of the integer argument is set, and otherwise.
Note that many compilers require to be declared type .
has the value of the integer argument with bit set to .
has the value of the integer argument with bit set to .

Notes:

If bits are specified outside the range of one numeric storage unit, or if fields are specified which are longer
than one numeric storage unit or zero, or if shifts are specified which are longer than the fields being shifted,
then the results are undefined.

M441 – 2 288

NAMEFD CERN Program Library M442

Author(s) : J. Shiers Library: KERNLIB
Submitter : Submitted: 25.07.91
Language : Fortran Revised:

Fortran Emulation of VM/CMS NAMEFIND Command

is a Fortran callable routine providing an emulation of the command.

Structure:

subprogram
User Entry Names:

Usage:

scans the specified file for entries that match the specified input tags and values. It returns the values
of the specified output tags. Thus, given the example file shown below, one might call with input
tag , value and output tags and . If no match is found for the specified
input, a code is returned.

Return codes: - no match for input tags and values,
- not all requested output tags found,

other - from of specified names file.

Format of a Names File

A names file is a collection of entries, with each entry identied by a nickname. A nickname tag plus a series
of other tags with associated values make up an entry.
The format of data lines in a names file is as follows:

The only tag that is required is a tag, e.g.

This is the primary tag, one for each entry. It identifies the beginning of an entry and must be the first word
on a line. Any tags that follow relate to the preceding tag.

289 M442 – 1

Examples:

An example of a file.

M442 – 2 290

IUSAME CERN Program Library M501

Author(s) : C. Letertre Library: KERNLIB
Submitter : Submitted: 21.08.1971
Language : Fortran or Assembler Revised: 15.09.1978

Locating a String of Same Words

locates the first of a continuous sequence of identical words occuring at least a given number of
times. It returns the number of contiguous identical words in the sequence.

Structure:

subprogram
User Entry Names:

Usage:

Start of the portion of the vector to be analysed.
End of the portion of the vector to be analysed.
Minimum length of a string to be considered a string.

The function returns the length of the string as function value, and also the position of the first element of
the string: .
If no string of at least elements has been found starting at or after , the function returns

and .

291 M501 – 1

UOPTC CERN Program Library M502

Author(s) : J. Zoll, P. Rastl Library: KERNLIB
Submitter : Submitted: 21.09.1971
Language : Fortran or Assembler Revised: 16.09.1991

Decoding Options Characters

and compare a string of actual option-characters against a similar string of possible option-
characters filling an vector with ’s and ’s, indicating for each possible option whether or not it
was taken.

Structure:

subprogram
User Entry Names: ,

Usage:

() String of actual option-characters.
() String of possible option-characters.
() Vector of at least words, the -th word of which is set to or , de-
pending on whether the -th possible character does or does not occur in .

Hollerith string of actual option-characters. It is terminated by the first character not occuring in
the string of possibilities.
Hollerith string of possible option-characters ().
A vector of at least words, the -th word of which is set to or , depending on whether the
-th possible character does or does not occur in the string.

Examples:

will set the first 6 elements of to .

Notes:

was written for Fortran 4 and should no longer be used for new programs.

292 M502 – 1

UBITS CERN Program Library M503

Author(s) : M. Metcalf, R. Matthews Library: KERNLIB
Submitter : Submitted: 01.02.1982
Language : Fortran or Assembler Revised: 20.06.1985

Locate the One-Bits of a Word or an Array

locates and counts the -bits in the right-most bits in a word or full-word array, returning their
positions. Bit numbering is right to left, bit number 1 being the least significant bit in the first full word, bit
number being the least significant bit in the second full word, where is the number of bits per
machine word.

Structure:

subprogram
User Entry Names:
External References: (M422) (Fortran version only)

Usage:

Word or full-word array to be analysed.
Bits 1 to of array are inspected.
Bit positions of the -bits in are placed into through in increasing
order. must be dimensioned to at least.
Number of -bits found.

Examples:

sets

293 M503 – 1

LENOCC CERN Program Library M507

Author(s) : F. Rademakers, J. Zoll Library: KERNLIB
Submitter : Submitted: 27.11.1984
Language : Fortran or C Revised: 05.05.1992

Occupied Length of a Character String

returns the occupied length of a string of type .

Structure:

subprogram
User Entry Names:

Usage:

In any arithmetic expression,

has the value of the occupied length of the character string , i.e. the length up to and including the last
non-blank character. if contains blanks only. is of type and is
of type .
For few trailing blanks is slower than of , but it may be substantially faster for very
many trailing blanks; the break-even point depends on the machine and is usually around 25 trailing blanks.

Method:

On some machines is first scanned backwards for machine words containing all blanks, and then the
remaining string is scanned for the last non-blank character.

294 M507 – 1

BITPOS CERN Program Library M508

Author(s) : M. Metcalf, R. Matthews Library: KERNLIB
Submitter : Submitted: 01.02.1982
Language : Fortran and CDC: COMPASS, IBM: Assembler Revised: 20.06.1985

Find One-Bits in a String

locates and counts the -bits in the right-most bits in a word or in a full-word array, returning
their positions. Bit numbering is right-to-left, bit number 0 being the least significant bit in the first full word,
bit number being the least significant bit in the second full word etc., where is the number of bits
per machine word; this numbering is compatible with (M441).

Structure:

subprogram
User Entry Names:
External Entry Names: (M422) (Fortran only)

Block Names and Lengths: (Fortran only)

Usage:

Word or full-word array to be analysed.
The first of array are inspected.
Bit positions of the -bits in are placed into through in increasing
order. must be dimensioned to at least. The positions are numbered from 0.
Number of -bits found.

Notes:

The Fortran version contains a symbolic constant whose value must be set equal to the number of bits in a
word (default).

Examples:

sets

295 M508 – 1

KERSET CERN Program Library N001

Author(s) : H. Lipps Library: KERNLIB
Submitter : Submitted: 22.10.1984
Language : Fortran Revised: 15.03.1993

Error Processing for Sections A-H of KERNLIB

PARTIALLY OBSOLETE
Please note that, as a consequence of transferring subprograms from KERN-
LIB to MATHLIB, this routine has been partially obsoleted in CNL 211. It
can, for a transitional period, still be used for sections D (only), and for
sections E and F of KERNLIB. Users are advised not to use it any longer for
other cases and to replace it in older programs. With the foreseen transfer of
the subroutines in sections D,E,F in KERNLIB to MATHLIB, it will eventu-
ally disappear.

Suggested replacement: (N002)

Subroutine allows the user to redefine the action to be taken by subprograms in the Fortran version
of sections A-H of KERNLIB when certain specified error conditions are detected. (This subroutine does
not exist in the Fortran 66 version.) Error recovery may be performed either on each occurrence of the error,
or only a specified number of times. Messages may be written either on each occurrence of the error, or
only a specified number of times. Error messages may be written (by default) onto the system output unit,
or may be re-routed to some other output file.

Structure:

subprogram
User Entry Names:
Internal Entry Names:
Files Referenced: Printer or user-defined
External References: (Z035)

Usage:

() A character string that identifies the range of error conditions for which action
is to be redefined.
() The logical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.
() The number of occurrences of each error condition in the range for which an
error message is to be written. is treated as zero, as infinity.
() The number of times that error recovery is to be performed for each error condition
in the range . is treated as zero. is treated as infinity. If any error condition
in the range occurs times a message is printed and the run is terminated by calling

(Z035).

296 N001 – 1

Notes:

1. applies to those KERNLIB error conditions which are specified by a six-character code (e.g.,
) in the Error handling section of the Short Write-ups.

2. If the string consists of six characters specifying a single error condition
(e.g.,), and apply only to this one error condition.
If the six-character string ends with one or more blanks, and apply to all error conditions
whose leftmost characters match the non-blank characters of .
Thus (four blanks) applies to all error conditions in packages C200 to C299, and

(six blanks) applies to all error conditions under the control of .

3. The value of applies to all error messages written under the control of .

N001 – 2 297

MTLSET CERN Program Library N002

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised: 15.03.1993

Error Processing for MATHLIB

Subroutine allows the user to redefine the action to be taken by certain subprograms in MATHLIB
when certain specified error conditions are detected. Error recovery may be performed either on each occur-
rence of the error, or only a specified number of times. Messages may be written either on each occurrence
of the error, or only a specified number of times. Error messages may be written (by default) onto the system
output unit, or may be re-routed to some other output file.

Structure:

subprogram
User Entry Names:
Internal Entry Names:
Files Referenced: Printer or user-defined
External References: (Z035)

Usage:

() A character string that identifies the range of error conditions for which action
is to be redefined.
() The logical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.
() The number of occurrences of each error condition in the range for which an
error message is to be written. is ignored, is treated as infinity.
() The number of times that error recovery is to be performed for each error condition
in the range . is ignored, is treated as infinity. If any error condition in the
range occurs times a message is printed and the run is terminated by calling
(Z035).

Notes:

1. applies to those MATHLIB error conditions which are specified by a six-character code (e.g.
) in the Error handling section of the Short Write-ups.

2. If the string consists of six characters specifying a single error condition
(e.g.,), and apply only to this one error condition.
If the six-character string ends with one or more blanks, and apply to all error conditions
whose leftmost characters match the non-blank characters of .
Thus (four blanks) applies to all error conditions in packages C200 to C299, and

(six blanks) applies to all error conditions under the control of .

3. The value of applies to all error messages written under the control of .

298 N002 – 1

LOCF CERN Program Library N100

Author(s) : CDC Library: KERNLIB
Submitter : J.Zoll Submitted: 01.03.1968
Language : Fortran or Assembler or C Revised: 16.09.1991

Address of a Variable

The function returns the absolute address of the variable given as its argument.
returns the absolute address measured in terms of Fortran machine words.

Structure:

subprogram
User Entry Names: ,

Usage:

where is the name of a variable of any type, or a name declared in the calling program.

where is the name of a variable of type or .

Notes:

On CDC, is included in the FTN library, and documented in the Fortran manual.
On all machines is intended to measure the displacement between variables, thus for example for:

will be set to contain 16 on all machines, whilst will give some multiple
of 16.

299 N100 – 1

IUWEED CERN Program Library N103

Author(s) : C. Letertre Library: KERNLIB
Submitter : J. Zoll Submitted: 01.09.1969
Language : Fortran or Assembler Revised: 15.09.1991

Detect Indefinite and Infinite in an Array

scans a vector and returns the address of the first quantity which is either ’indefinite’ or ’infinite’.

Structure:

subprogram
User Entry Names:

Usage:

sets to the relative address, in the element vector , of the first element containing either an ’indef-
inite’ or ’infinite’. if there are no such elements. is not changed.

300 N103 – 1

TRACEQ CERN Program Library N105

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 01.12. 1973
Language : Fortran Revised: 15.09.1978

Print Trace-Back

prints the Fortran trace-back leading to . The maximum number of trace-back levels is
specified as an argument. Fewer levels may be printed either because the main program has been reached or
because the trace-back linkage is invalid.

Structure:

subprogram
User Entry Names:
Internal Entry Names: ,
Files Referenced: User defined

Block Names and Lengths:

Usage:

Logical unit number of the print file, is accepted to mean the standard print file.
Maximum number of trace-back levels to be printed.

Notes:

The implementation of depends on the machine; on some machines this cannot be done at all and
the routine is a dummy. On some other machines the unit for printing or the number of levels printed is not
under program control.

301 N105 – 1

TCDUMP CERN Program Library N203

Author(s) : C. Letertre, J. Zoll Library: KERNLIB
Submitter : C. Letertre Submitted: 31.01.1972
Language : Fortran Revised: 15.09.1978

Memory Dump

may be used for dumping sections of memory in octal (CDC) or hexadecimal (IBM), optionally
combined with any or all of the other modes (, , or Hollerith).
The dump shows 5 words per line. The address of the first word of each line is given 3 times. The absolute
address in memory (using), the relative address within the vector in decimal, and in octal (CDC) or
hexadecimal (IBM).
Continous strings of identical content or strings of preset indefinites produce a single line.

Structure:

subprogram
User Entry Names:
Files Referenced: Printer
External References: (M409), (V304), (M501), (N100)

Usage:

1 word of text printed as heading.
Variable address for start of dump.
Number of words for dumping.

dump in octal,
dump in and octal,
dump in floating and octal,
dump in Hollerith and octal,
dump in , Hollerith and octal,

etc...

Examples:

dumps the common block in octal and floating.

302 N203 – 1

ZEBRA CERN Program Library Q100

Author(s) : R. Brun, M. Goossens, B. Holl, O. Schaile, J. Shiers, J. Zoll Library: PACKLIB
Submitter : Submitted: 18.04.1986
Language : Fortran Revised:

Dynamic Data Structure andMemory Manager

is a dynamic data structure and memory manager. It allows the management of large amounts of data
in a computer store by providing the functions required to construct a logical graph of the data and their
interrelations.
The data are stored in Fortran blocks, called ”stores”. Each store can be subdivided into up to 20
”divisions”. Relations between the basic units of data, or ”banks”, are expressed by attaching a structural
significance to part of a bank. A bank is accessed by specifying its address in a given store. Such addresses
(called ”links”) are kept inside the banks or in ”link areas” inside a common block.

The memory management part of is performed by the package. Utilities are available for
reorganizing, sorting and deleting banks and data structures.

Individual banks, data structures or complete divisions can be output with the package.

Direct access files for data structures and the management of the data by keywords are provided by
the package.

Dumps and verification of structures and documentation tools are available in the package.

Structure:

subprograms
User Entry Names:
External References: (Q100) routines

Usage:

See Long Write-up.

303 Q100 – 1

HIGZ CERN Program Library Q120

Author(s) : O. Couet Library: GRAFLIB
Submitter : Submitted: 10.02.1988
Language : Fortran and C Revised: 01.11.1994

High Level Interface to Graphics and Zebra

The package is part of (Q121) (Physics Analysis Workstation), but can be used independently.
contains entries which look and act like many of the entries of (Graphics Kernel System) and, in

addition, has entries providing a higher level of functionality such as plotting whole histograms. also
contains an option to create a device independent metafile stored in (Q100) format which can hence
be ported, and re-interpreted, on other machines and operating systems.
The complete facilities are available in the (Q121) system.

Structure:

subprograms

Usage:

See Long Write-up.

304 Q120 – 1

PAW CERN Program Library Q121

Author(s) : R. Brun, O. Couet, N. Cremel, A. Nathaniel, A. Rademakers, C. Vandoni Library: GRAFLIB
Submitter : R. Brun Submitted: 10.02.1988
Language : Interactive Revised: 01.11.1994

PAW - Physics Analysis Workstation Package

is a program package to assist physicists in the analysis and presentation of their data. It provides
interactive graphical presentation and statistical or mathematical analysis, working on objects familiar to
physicists like histograms, event files (-tuples) and vectors.
The program provides a Motif interface to .

Structure:

Interactive data analysis program.

Usage:

See Long write-up.

Notes:

The packages involved in the implementation of and the platform availability are described in the
Reference Manual.

305 Q121 – 1

SIGMA CERN Program Library Q122

Author(s) : C. Vandoni Library: PAWLIB
Submitter : Submitted: 14.11.1988
Language : Fortran Revised:

SIGMA - System for Interactive Graphical Mathematical Applications

can be considered a system for interactive on-line numerical analysis problem-solving which has
been designed essentially for mathematicians and theoretical physicists. The major characteristics of
are:

The basic data units are scalars, one-dimensional arrays, and multi-dimensional rectangular arrays;
provides automatic handling of these arrays.

The calculational operators of closely resembles the operations of numerical mathematics;
procedural operators are often analogous to those of Fortran.

The system is designed to be used in interactive mode; it provides convenient facilities for graphical
display of arrays in form of (sets of) curves.

The user can construct his own programs within the system and has also access to a program library;
he can store and retrieve his data and programs; he obtains on request hard copy of alphanumeric and
graphical type.

was operational for many years on the CYBER computers at CERN. Most of its functionality has
been converted to run on other machines as part of the (Q121) package.

Usage:

See Chapter 6 of the Manual.

306 Q122 – 1

FATMEN CERN Program Library Q123

Author(s) : J. Shiers Library: PACKLIB
Submitter : Submitted: 01.10.1991
Language : Fortran, C Revised:

Distributed File and Tape Management System

The package is a set of Fortran callable routines and utilities for the management of disk and tape
files. In particular, the package provides location, operating system and medium transparency. A command
line interface also exists.

Structure:

subprograms and command line shell.

Usage:

See Long Write-up.

307 Q123 – 1

CSPACK CERN Program Library Q124

Author(s) : Various Library: PACKLIB
Submitter : J. Shiers Submitted: 01.10.1991
Language : Fortran, C, Pascal, Assembler Revised:

Client Server Routines and Utilities

The package is a set of Fortran callable routines and utilities. In particular, it provides remote
file access and transfer with automatic conversion between data representations for commonly used HEP
formats, such as files, Zebra and files. A command line interface also exists ().
This package also includes , an enhanced utility with graphics capabilties and the
facility, used at CERN for interaction with the Tape Management System.

Structure:

subprograms and command line shell.

Usage:

See Long Write-up.

308 Q124 – 1

HEPDB CERN Program Library Q180

Author(s) : L3, OPAL, CN Library: PACKLIB
Submitter : J. Shiers Submitted: 01.06.1992
Language : Fortran, C Revised:

Distributed Database Management System

The package is a set of Fortran callable routines and utilities for the management of database objects
such as calibration data and detector geometry. One may store and retrieve objects such as Zebra structures,
vectors, text files and help information. The package is heavily based upon the DBL3 and OPCAL systems,
developed by the L3 and OPAL collaborations respectively. A command line interface also exists.

Structure:

subprograms and command line shell.

Usage:

See Long Write-up.

309 Q180 – 1

ZBOOK CERN Program Library Q210

Author(s) : R. Brun, F. Carena, M. Hansroul, H. Grote, J.C. Lassalle, W. Wojcik Library: PACKLIB
Submitter : Submitted: 15.09.1978
Language : Fortran Revised: 17.12.1991

Dynamic Memory Management

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (Q100)

provides facilities to create (at execution time) memory blocks of variable lengths, manage them and
perform the following operations on them:

create a block

increase or decrease size of block

set block to zero

drop or delete block

write block to file

read from file

print contents of block

Using , the total size of all blocks together cannot exceed the dimension of the array specified in the
user’s Fortran program. Using a subpackage in connection with (Y250), however, dynamic
allocation of the total space is possible.

Structure:

package
User Entry Names:

Usage:

See Long Write-up.

310 Q210 – 1

INDENT CERN Program Library Q901

Author(s) : M. Metcalf Library: PGMLIB
Submitter : Submitted: 01.04.1983
Language : Fortran Revised:

Indent Fortran Source

The program reads Fortran source from a specified input file and writes the indented source code to a
specified output file.

Structure:

Complete
User Entry Names:
Files Referenced: Input and output units, either default or user defined.

Usage:

reads from the default input unit four integer values in a single record. The default values are taken
if this record is absent.
Indenting shift (Default =)
Maximal indenting level (Default =)
File number of source input (Default =)
File number of transformed source output (Default =)

Note that the first column of the output file will be taken as carriage control information if the output unit is
a line printer.

Method:

The program detects the beginning and end of each – and –block, and indents each following source
line by a shift corresponding to the nesting level. Continuation lines are constructed when necessary, but
variable names are never split across two lines.

control records are treated as comment lines, and so complete s can be handled.

Restrictions:

Lines containing statements, or character strings with multiple embedded blanks are not indented.
Sequences of more than 200 comment lines may have their order with respect to the following statement
modified.
Assembler code gets destroyed.

Error handling:

Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcalf, FORTRAN Optimization, Academic Press London (1982), Appendix B.

311 Q901 – 1

FLOP CERN Program Library Q902

Author(s) : H. Grote Library: PGMLIB
Submitter : Submitted: 29.11.1988
Language : Fortran Revised:

FLOP - Fortran Language Oriented Parser

is best described as an ”intelligent” editor that recognizes Fortran () code, with a full coverage
of and some of its extensions). To achieve this, has to perform part of the functions of a
compiler, mainly the declaration and syntax analysis. The knowledge resulting from this then allows
to edit the Fortran input file in various ways, and to provide useful information about its contents.

Structure:

Complete
Files Referenced: (input), (commands), (output)
External References: (Z007), (Z007)

Usage:

See Long Write-up.
Refer also to the interactive help files or to the in the various Patches of the Pam file
for examples of usage.
The source code can be found in the Pam file on the various machines.

312 Q902 – 1

CONVERT CERN Program Library Q904

Author(s) : M. Metcalf Library: PGMLIB
Submitter : Submitted: 01.02.1992
Language : Fortran Revised:

Fortran 77 to Fortran 90 source form conversion tool

Users of Fortran 90 can choose between two different styles of source form, the old (Fortran 77) and a new.
This program reads code written according to the Fortran 77 fixed source form from a specified input file
and writes it according to the Fortran 90 free source form to a specified output file. It also formats the code
by indenting the bodies of -loops and -blocks, and performs a small number of syntax conversions.

Structure:

Complete
User Entry Names:
Files Referenced: Input and output units, either default or user defined.

Usage:

has the following calling sequence on all systems:

where the meaning of the arguments is as follows:

Indenting depth (default =).
Maximal indenting level (default =).
Handle significant blanks (default).
Generate interface blocks only.

If no options are specified, significant blanks will be handled () and all code will be processed (). In
order to do nothing but change the source form, type e.g.:

Method:

The program converts between the old fixed Fortran 77 source form to the new Fortran 90 free source form.
Note that blanks are significant in the new source form. In addition it is able to perform a few other useful
operations on the fly.
Statement keywords are followed if necessary by a blank, and blanks within tokens are suppressed; this
handling of blanks is optional, but the default ().
If a statement terminates a single loop, it is replaced by .
Procedure statements have the procedure name added, if blanks are handled ().
Statements like are converted to , if blanks are handled (). Depending on the
target processor, a further global edit might be required (e.g. where 2 bytes correspond to . Typed
functions and assumed-length character specifications are treated similarly. The length specification is
removed for all data types except , as is for . This treatment of non-standard type
declarations includes any non-standard statements.

313 Q904 – 1

Optionally, interface blocks only may be produced (); this requires blank processing to be requested
(). The interface blocks are written in a form compatible with both the old and the new source forms.
The program is able to handle Patchy Card files, as a in column 1 is treated as a comment line

Restrictions:

The program does not indent statements or any statement containing a character string with an
embedded multiple blank. The order of comment lines and Fortran statements is slightly modified if there
are sequences of more than 200 comment lines. If there are syntax errors, continued lines do not have a
trailing .
When producing interface blocks, a check is required that any dummy argument that is a procedure has a
corresponding statement. Also, since no blocks or statements are copied,
part of an assumed-size array declaration may be missing. Similarly, parts of an assumed-length character
symbolic constant might be copied and have to be deleted. statements are copied and must be
deleted. These problems would normally be detected by a compiler and are trivially corrected.
Within a given keyword, the case must be all upper or all lower, and lower case programs require blank
handling for correct indenting.

Error handling:

Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcalf and J.Reid, Fortran 90 explained, Oxford Science Publications (1990), Chapter 2

Q904 – 2 314

WYLBUR CERN Program Library Q905

Author(s) : J. Zoll Library: None
Submitter : Submitted: 15.09.1994
Language : Fortran + C Revised:

Wylbur Phoenix – a Line Editor for ASCII Text Files

OBSOLETE
Please note that this routine has been obsoleted. Users are advised not to use
it any longer. No maintenance for it will take place and it will eventually
disappear.

is a portable command driven editor, capable of embedding a full-screen editor of the
user’s choice as a sub-system. It can operate with the simplest Telnet connection to some remote machine.
It is designed to give maximum power for the development and maintenance of the source files of the large
programs used in particle physics, where it is neccessary to easily find in a large volume what one is looking
for. It has been written because no editor is available which combines all the features considered essential:
a) Ease of use for the casual user;
b) ’undo’ a series of mistaken edit operations;
c) global changes displayed, and maybe confirmed individually;
d) column sensitive editing;
e) handling of program variable names, not only text strings, but without language syntax analysis;
f) direct handling of program units, ie. Fortran or C routines or Patchy decks.
g) ’master range’ automatically limiting edit operations to an arbitrary fraction of the whole file;
h) usage of windows as monitors and for full-screen editing;
i) immediate, context-free, display of critical lines.
j) permanent line numbers, not hindering normal access to the files by programs other than the editor;
k) portability.
Although does have some aspects of ’full screen’ and interactive operations, these are
distinct features which can selectively be switched off in ’batch mode’ or in ’nowindow mode’. Thus

can be used in shell scripts and across non-specialized computer links; indeed for some applications
in batch mode is very convenient.

Structure:

Complete program

Usage:

Shell command ”use fn” calls the normal version of Wylbur into operation to act on file ”fn”. This version
is typically capable of handling 60000 lines. For bigger files one may use ”useb” on some machines, which
allows for 120000 lines.
On the Unix machines ”use” and ”useb” are links in pointing to the executable modules.
On the Vax ”use” should be a symbol like

has not been made to work on IBM with VM/CMS.
To print the file used for delivering on-line help proceed as follows:
type ”use” to call into operation,
type ”help -p temp 84” to create file ”temp” for printing,
type ”help h” for instructions on how to print file ”temp”.

315 Q905 – 1

POISCR CERN Program Library T604

Author(s) : C. Iselin Library: PGMLIB
Submitter : Submitted: 01.02.1982
Language : Fortran Revised: 27.11.1984

Solution of Poisson’s or Laplace’s Equation in Two-Dimensional Regions

The program package consists of a set of programs designed for the solution of Poisson’s or
Laplace’s equation in two-dimensional regions. The programs have originally been written to solve magne-
tostatic problems, but they can equally well be used for other potential problems. Material properties may
be linear or non-linear. Polarized material (like permanent magnet material) is allowed.

Structure:

Complete package
User Entry Names: , , ,
Files Referenced: As defined in the exec file. ,

Usage:

See Long Write-up.

Source:

A program was originally written by R.F. Holsinger then working at LBL. It was based on an
earlier program by A. Winslow and on theoretical work by K. Halbach (LBL). The CERN Program
Library version is a revision of these programs by C. Iselin (CERN).

316 T604 – 1

LOREN4 CERN Program Library U101

Author(s) : TC Library: KERNLIB
Submitter : J. Zoll Submitted: 01.03.1968
Language : Fortran Revised: 27.11.1984

Lorentz Transformation

This routine transforms momentum and energy of a particle from one Lorentz-frame to another.
Seen from the reference system , the other system has the velocity , with .
If a rest mass is tied to system , with energy and momentum , we have:

The momentum and energy of a particle with mass is
in system : and ,
in system : and .

Structure:

subprogram
User Entry Names:

Usage:

with the 4–vectors and calculates the transformed 4–vector .
contains one square-root to derive from and .

Method:

If we split into components parallel and normal to , where

we can write the transformations as

and get

(because of

317 U101 – 1

LORENF CERN Program Library U102

Author(s) : V. Framery, L. Pape Library: KERNLIB
Submitter : Submitted: 01.03.1968
Language : Fortran Revised: 16.09.1991

Lorentz Transformations

transforms the momentum 4-vector of a particle from the Lorentz-frame to the frame like
(U101); it is faster than because the rest-mass M of is passed as an argument to save the

square root.
executes the inverse transformation.

Structure:

subprograms
User Entry Names: ,

Usage:

forward transformation
backward transformation

with

Rest-mass of system with .
Momentum 4-vector of in .
Momentum 4-vector in .
Momentum 4-vector in .

Method:

For (cf. (U101)):

because and .
For

318 U102 – 1

RWIG3J CERN Program Library U111

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Wigner 3-j, 6-j, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients

Function subprograms , ; , ; , ; , ; ,
and , calculate the Wigner 3- , 6- and 9- symbols, the Clebsch-Gordan coeffi-

cients, the Racah -coefficients and the Jahn -coefficients, respectively.
On CDC and Cray computers, the double-precision versions etc. are not available.

Structure:

subprograms
User Entry Names: , , , , ,

, , , , ,

Usage:

In any arithmetic expression, for (type), or (type),

has the value of ;

has the value of ;

has the value of ;

has the value of ;

has the value of ;

has the value of .
All the arguments must have integral or half-integral values (see Notes). They have the same type as the
function name. For definitions and notations see References.
The following relations hold (see Refs. 1 and 3):
Clebsch-Gordan coefficient (in terms of the Wigner 3- symbol):

Racah -coefficient (in terms of the Wigner 6- symbol):

Jahn -coefficient (in terms of the Wigner 6- symbol and the Racah -coefficient):

319 U111 – 1

Method:

TheWigner 3- symbol and the Clebsch-Gordan coefficient are calculated from formulas (5.1) and (5.10) of
Ref. 1, respectively. The Wigner 6- symbol, the Racah - and the Jahn -coefficient are calculated from
formulas (5.23) and (5.24) of Ref. 1. In both cases, the factorials are replaced by their logarithms during
the calculation. The Wigner 9- symbol is calculated from formula (5.37) of Ref. 1 in terms of Wigner 6-
symbols.

Notes:

AWigner-3 symbol is considered to be zero unless simultaneously

(i) and have both either integral or half-integral values (each),
(ii) (each),
(iii) ,
(iv) is an integer,
(v) is an integer and .
The conditions (v) are often denoted by and are called the triangle relations.
For a Clebsch-Gordan coefficient , condition (iii) reads and
condition (iv) disappears.

A Wigner-6 symbol is considered to be zero unless simultaneously

(i) all and have non-negative integral or half-integral values,
(ii) the four triangle relations hold.

A Wigner-9 symbol is considered to be zero unless simultaneously

(i) all have non-negative integral or half-integral values,
(ii) the arguments in each row and in each column satisfy the triangle relations.

Restrictions:

The sum of arguments in any triangle relationmust not exceed 100. No test is made.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981).

2. A.F. Nikiforov, V.B. Uvarov and Yu.L. Levitan, Tables of Racah coefficients (Pergamon Press, Oxford
1965).

3. M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, Jr., The 3- and 6- symbols (Crosby
Lockwood, London 1959).

4. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum
(World Scientific, Singapore 1988).

U111 – 2 320

RTCLGN CERN Program Library U112

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Clebsch-Gordan Coefficients in Rational Form

Function subprogram calculates the (signed) square of the Clebsch-Gordan coefficient in rational
form and in powers of prime numbers. In terms of the Wigner-3 symbol, this coefficient is defined by

All and must have integral or half-integral values (see Notes). For definitions and notations see Ref.
1.
On computers other than CDC and Cray, only the double-precision version is available. On CDC
and Cray computers, only the single-precision version is available.

Structure:

subprogram
User Entry Names:
Files Referenced:

Usage:

For (type), (type),

() The -parameters multiplied by two, i.e. etc.
() The -parameters multiplied by two, i.e. etc.
(type according to) Contains, on exit, the signed numerator of .
(type according to) Contains, on exit, the denominator of .
() Array of length 40 at least. Contains, on exit, the exponents in the expression

where are the first 40 prime numbers.

Notes:

A Clebsch-Gordan coefficient is considered to be zero unless simultaneously
(i) and have both either integral or half-integral values (each),
(ii) (each),
(iii) ,
(iv) is an integer and .
In this case, , or , , respectively, and .

321 U112 – 1

Source:

This subroutine is based on an earlier version by H. Yoshiki.

Error handling:

Error The calculation requires a prime number with .
In this case, , , . A message is written on unless
subroutine (N002) has been called.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981) 142–144

U112 – 2 322

RDJMNB CERN Program Library U501

Author(s) : K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.02.1989
Language : Fortran Revised: 01.12.1994

Beta-Term in Wigner’s D-Function

Function subprograms and calculate the -term in the matrix element of the finite
rotation operator (Wigner’s -function)

by using the formula (Ref. 1, No. 4.3.1(3))

for arbitrary (either all integer or all half-integer) values of such that and .
The summation over runs from to .
On computers other than CDC or Cray, only the double-precision version is available. On CDC and
Cray computers, only the single-precision version is available.

Structure:

subprograms
User Entry Names: ,
Obsolete User Entry Names:
Files Referenced:
External References: (N002), (Z035)

Usage:

In any arithmetic expression,

or has the value ,

where , , and . is of type , is of type
, and , , , have the same type as the function name. has to be given in

degrees.

Restrictions:

, , , .

Accuracy:

Approximately full single- or double-precision machine accuracy, at least for small values of the indices.

Error handling:

Error : If any of the restrictions is not satisfied, the function value is set equal to zero, and a message
is written on , unless subroutine (N002) has been called.

References:

1. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum,
(World Scientific, Singapore 1988) 76

323 U501 – 1

RNDM CERN Program Library V104

Author(s) : CDC: H. von Eicken, IBM: T. Lindelöf Library: KERNLIB
Submitter : Submitted: 07.12.1970
Language : Assembler Revised: 15.09.1978

Uniform Random Numbers

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
(V113) or (V114) or (V115)

generates uniformly distributed pseudo-random numbers in the interval (0,1) in type and in the
interval (CDC) or (IBM) in type . The CDC version has a period of more
than . The IBM period, however, is only about which may not be good enough for some
calculations. In that case (V107) should be used instead.

Structure:

subprogram
User Entry Names: , , ,

Usage:

where is a dummy argument (see Notes), sets to a pseudo-random number in the interval (0,1). and
are of type .

where is a dummy argument (see Notes), sets to an integer pseudo-random number in the interval
on CDC, on IBM. is of type and is of type .

replaces by the current value of the integer pseudo-random number. This may then be used to
restart the sequence at this point, by a call to . is of type .

replaces the current value of the integer pseudo-random number by the value of the variable . is of
type . The value of should not be chosen by the user but should be obtained by a previous call to

. If this is not complied with, the numbers generated may have serious defects in their randomness.

Method:

CDC:
Consider the sequence:

mod for
with
and

324 V104 – 1

where and are the unnormalised floating-point representation of the starting number and respec-
tively. The -th floating-point number is obtained by packing with an exponent and normalising
it. This ensures that falls in the interval (0,1).
The product is generated in a 96 bit accumulator. The integer number returned is the low order 47
bits of the contents of this accumulator, except that the right-most 11 bits are replaced by those occupying
bit positions 48-58. This replacement is done in order to increase the time period of the low order bits.

IBM: See write-up for (V107).

Notes:

While the argument is dummy, in the sense that the generator makes no use of it, it must be noted that if a
reference to occurs

more than once within a Fortran statement, the argument to it should be different in each case;
in a -loop, the argument must depend either directly or indirectly on the index of this loop.

These rules must be observed since the compilers, in their attempt to optimise the object code, assume that
functions called with identical arguments return the same function value.

V104 – 2 325

NRAN CERN Program Library V105

Author(s) : T. Lindelöf, F. James Library: MATHLIB
Submitter : Submitted: 15.06.1976
Language : CDC: Compass, IBM: Fortran Revised:

Arrays of Uniform Random Numbers

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
(V113) or (V114) or (V115)

on CDC is about 4 times faster than when ’many’ uniformly distributed random numbers are to
be generated at once.

on IBM is not recommended. It is merely a Fortran interface to . Thus this description applies
only to the CDC version.

Structure:

subprogram
User Entry Names: , ,

Usage:

fills the array (of length at least) with independent pseudo random numbers uniformly distributed in
the interval (0,1), the end-points excluded. The other two entries may be used to retrieve and set the ’seed’
as follows:

returns in the current value of a quantitity which is changed after each call to and upon which
the future random number sequence depends. Its initial default value is

.

presets the above-mentioned quantity to . may be any number of the form
where must be or and the ’s any octal digits.

Method:

Multiplicative congruential method with the multiplier . The sequence generated
is independent of that of (V104) so that both may be used together.

References:

1. Computing 6, (1970) 121.

326 V105 – 1

RANMAR CERN Program Library V113

Author(s) : G. Marsaglia, A. Zaman Library: MATHLIB
Submitter : F. Carminati, F. James Submitted: 08.06.1989
Language : Fortran Revised:

Fast Uniform Random Number Generator

generates a sequence of 32-bit floating-point random numbers uniformly distributed in the interval
(0,1), the end points excluded. These numbers are returned in a vector. The period is about and the
quality is good but it fails some tests. For better quality use (V115), which is slower.
Several independent sequences can be initialized and used in the same run.

Structure:

subprograms
User Entry Names: , , , ,

Block Names and Length: ,

Usage:

For a single sequence:

() Array of length at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.
() Number of random numbers to be generated. Unchanged on exit.

The initialization is made by

() Seed from which to start the sequence. Every integer number from to
originates an independent sequence of random numbers with operand of (about).

() Number (mod) of random number generated.
() Billions () of random numbers generated.

The arguments and are used to restart the generation from a given point by skipping over
already performed extractions. They are returned by and should not be touched by the user.

() Seed from which the sequence was started.
() Number (mod) of random number generated so far.
() Billions () of random numbers generated so far.

327 V113 – 1

For multiple sequences:

() Array of length at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.
() Number of random numbers to be generated. Unchanged on exit.
() Number of the independent sequence from which the numbers should be ex-
tracted. If , the last valid sequence explicitely defined is used. Unchanged on exit.

Several independent sequences can be defined and used. Each sequence must be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a buffer of space to handle only one
sequence. If more sequences are needed, then a bigger buffer should be allocated in the main program
defining the block to the appropriate size. The space needed is 1 word + 103 words for
every random sequence initialized.
The sequences are initialized by

() Array of length or according to the option specified in . The first location
contains the integer seed from which to start the sequence. Every integer number from to

originates an independent sequence of random numbers, with a period of (about
). The second and the third location contain numbers used internally to re-initialize the

generator by skipping and should not be touched by the user. The other numbers are a snapshot
of the complete status of the generator. If saved, they can be used to restart the generator without
skipping over numbers already generated.
() This variable contains, on entry, the number of the independent random number se-
quence which should be addressed by the present call. If , then the last valid sequence used
will be addressed either for a save or a store. If option is specified, on exit the variable will
contain the sequence actually used.
() Specifies the action which should take. Possible options are:

(Blank) The sequence number will be initializedwith a default seed. All arguments are
ignored.
Get the present status of the generator. If option is also present, then the complete
status of the generator will be dumped in the array . This optionswill use 103words
in but has the advantage that the generator can be restarted immediately without
skipping numbers. If option is not present, then only 3 words will be used but the
generator will have to be restarted by skipping the number of events generated so far.
Set the status of the generator to a previously saved state. If option is also present,
then an array of 103 words is expected, which comes from a previous call to the
routine with option . This kind of initialization is very fast. If the option is not
specified then the generator will be restarted regenerating the same number of random
extractions it generated at the time the status was saved. In this case only the first 3
locations of will be used.
Vector option. 103 words will be saved/restored. This allows to restart the generator
without skipping over numbers already generated.

V113 – 2 328

For one seed is needed to initialize the random number, but it is a one-way initialization. The seed
cannot be output and used to restart the sequence. In order to restart the generation, the number of random
numbers generated is recorded by the generator. The sequence is restarted either generating this many
random numbers or saving and restoring a vector of 103 words. The number of generations is stored in the
two array elements as the period is bigger than the maximum number which can be
represented by a 32-bit integer.

Timing:

Time in sec for extractions and skips:

Extractions
per call 1 4 16 128 skips
APOLLO 10000 7.4 6.0 5.6 5.5 15/4.6
APOLLO 4000 69 55 51 50 120/73
IBM390E 4.3 2.5 2.0 1.9 7.4/1.2
CRAY X-MP/48 4.1 2.1 1.7 1.5 6.9/1.6
VAX8650 14 7.3 5.9 5.8 4.7/4.6

References:

1. G. Marsaglia and A. Zaman, Toward a Universal Random Number Generator, Florida State University
FSU-SCRI-87-50 (1987).

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329–
344.

329 V113 – 3

RANECU CERN Program Library V114

Author(s) : P. l’Ecuyer Library: MATHLIB
Submitter : F. Carminati Submitted: 27.02.1989
Language : Fortran Revised:

Uniform Random Number Generator

generates a sequence of uniformly distributed random numbers in the interval (0,1). The numbers
are returned in a vector. Several independent sequences can be initialized and used in the same run.

Structure:

Subprograms
User Entry Names: ,

Block Names and Lengths:

Usage:

() Array of length at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.
() Number of random numbers wanted. Unchanged on exit.
() Number of the independent sequence from which the numbers should be ex-
tracted. If then the extraction will be made from the sequence used last. Unchanged on
exit.

Several independent sequences can be defined and used. Each sequence MUST be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a space buffer to handle only one
sequence. If more sequences are needed, then a bigger buffer should be allocated in the calling program
defining the block appropriately. Two words have to be allocated plus four words for
every sequence initialized.
Two integer seeds are used to initialize a sequence. Not all pairs of integers define a good random sequence or
one which is independent from others. Sections of the same random sequence can be defined as independent
sequences. The period of the generator is . A generation has been performed in order to provide
the seeds to start any of the generated sections. There are 100 possible seed pairs and they are all
numbers apart. Thus a sequence started from one of the seed pairs, after numbers will start generating
the next one. Each of these sequences is of the same order of magnitude as the basic sequence offered by

(V104). Longer sequences will be generated and the corresponding seeds made available to users.
Note that, while the numbers generated by the default sequence will always be the same, the introduction of
more sequencesmay modify some of them. In order to handle the initializationof the package, the following
routine is provided:

330 V114 – 1

() On entry, it contains the first integer seed from which to start the sequence. Un-
changed on exit.

On entry, it contains the second seed from which to start the sequence. Unchanged
on exit.
() On entry, it contains the number of the independent sequence of random numbers
to be addressed by this call. If , then the last valid sequence used will be addressed
either for a save or a store. In case the option is specified, on output the variable will
contain the sequence actually used.
() A character specifying the action which should take. Possible options
are:

If , the sequence number will be initialized with the default
seeds of the pre-computed independent sequence number . and
are ignored.
If or , then sequence number will be initializedwith the default
seeds. and are ignored.
Get the present status of the generator. The two integer seeds and will
be returned for sequence .
Set the status of the generator to a previously saved state. The two integer seeds
and will be used to restart the generator for sequence .
Get the pre-generated seeds for . There are 100 pre-generated
sequences each one will generate numbers before reproducing the following one.

Timing:

Time in sec for extractions:

Extractions
per call 1 4 16 128
Apollo 10000 6.2 4.4 3.9 3.8
Apollo 4000 52 37 34 33
IBM 3090E 4.9 2.9 2.5 2.4
IBM 3090EVF 3.4 2.3 2.0 1.8
Cray X-MP/48 4.2 2.2 1.7 1.5
VAX 8650 19 13 12 11.6

References:

1. P. l’Ecuyer, Efficient and Portable Random Number Generators, Comm. ACM 31 (1988) 742.

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329–
344.

V114 – 2 331

RANLUX CERN Program Library V115

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.03.1994
Language : Fortran Revised:

Uniform Random Numbers of Guaranteed Quality

generates pseudorandom numbers uniformly distributed in the interval (0,1), the end points ex-
cluded. Each call produces an array of single-precision real numbers of which 24 bits of mantissa are
random. The user can choose a luxury level which guarantees the quality required for his application. The
lowest luxury level (zero) gives a fast generator which will fail some sophisticated tests of randomness; The
highest level (four) is about five times slower but guarantees complete randomness. In all cases the period is
greater than . Independent subsequences can be generated. Entries are provided for initialization and
checkpointing.

Structure:

Subprograms
User Entry Names: , , , ,

Usage:

returns a vector of 32-bit random floating point numbers in the interval (0,1), the end points
excluded. is an array of type and of length at least.
Luxury levels:
For simplicity, five standard luxury levels may be chosen (is the time factor relative to level zero; for the
definition of , see References). Ref. 1. explains the method, Ref. 2. describes the Fortran implementation
in more detail.

Level
0 24 1 Equivalent to the original of Marsaglia and Zaman, very

long period, but fails many tests.
1 48 1.5 Considerable improvement in quality over level 0, now passes the

gap test, but still fails spectral test.
2 97 2 Passes all known tests, but theoretically still defective.
3 223 3 . Any theoretically possible correlations have

very small chance of being observed.
4 389 5 Highest possible luxury, all 24 bits chaotic.

As a rough indication of timing, (V104) is about =0.5, (V113) =1, and (V114) =2.
Concerning the quality scale, is maybe good enough for moving fish around on a screen saver (if you
are not afraid of getting some diagonal lines on your screen), and both have quality which
probably corresponds to a luxury level between 1 and 2, but this is based only on empirical testing and true
quality may be lower.
No initialization is necessary if the user wants default values. Otherwise the following are available:

332 V115 – 1

When , this call initializes the generator from one 32-bit integer and sets the
Luxury Level. If is an integer between and , it sets the luxury level as defined above. If ,
it is taken as the value of , which then can take on other values than those given in the table. If ,
default initialization is used and only the luxury level is set by . Otherwise, every possible value of
gives rise to a valid, independent sequence which will not overlap any sequence initialized with any other
value of . The integers and are used for restarting the generator from a break point saved by

.

dumps the four integers which can be used to restart the generator at this point by calling .
will then skip over numbers to reach the break point. A more efficient but less convenient
method for restarting is offered by and .

restarts the generator from vector of 25 32-bit integers (see). is an array of type
and of length at least.

outputs the current values of the 25 32-bit integer seeds, to be used for restarting.

References:

1. M. Lüscher, A portable high-quality random number generator for lattice field theory simulations,
Computer Phys. Commun. 79 (1994), 100–110.

2. F. James, RANLUX: A Fortran implementation of the high-quality pseudorandom number generator
of Lüscher, Computer Phys. Commun. 79 (1994) 111–114.

V115 – 2 333

RM48 CERN Program Library V116

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.03.1994
Language : Fortran Revised:

Double Precision Uniform Random Numbers

generates pseudorandom numbers using a double-precision (64-bit) adaptation of (V113). The
floating-point numbers in the interval (0,1), the end points excluded, have 48 significant bits of mantissa
(additional bits of mantissa, if supported by the hardware, are zero). Both the code and the results are
portable, provided the floating-point mode is adapted to the computer being used (for example, single-
precision mode on 64-bit machines, double-precision mode on 32-bit machines).

Structure:

Subprograms
User Entry Names: , ,

Usage:

returns a vector of 64-bit random floating-point numbers in (0,1), the end points excluded.
is an array of length at least. It is of type on 32-bit machines, and of type
otherwise.

initializes the generator from one 32-bit integer , and number counts , (for initializing, set ,
but to restart a previously generated sequence, use values output by).

outputs the value of the original seed and the two number counts, to be used for restarting by initializing to
and skipping numbers.

Method:

The method is that of (V113).

334 V116 – 1

RNORML CERN Program Library V120

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.03.1994
Language : Fortran Revised:

Gaussian-distributed Random Numbers

and generate (vectors of) single-precision random numbers in a Gaussian distribution of
mean zero and variance one. uses the uniform generator underneath, and allows
the user to choose the uniform generator to be used underneath. The code is portable Fortran, but the results
are not guaranteed to be identical on all platforms because there is branch on a floating-point compare which
may (very rarely) cause the sequence produced on a given platform to be out of step with that of a different
platform.

Structure:

Subprograms
User Entry Names: ,

Usage:

generates a vector of Gaussian-distributed random numbers. is an array of type and
of length at least.
The uniform generator used is , so it may be initialized by calling (V113), but beware that
this also initializes (V113)!
An alternative subroutine is supplied which allows the user to select the underlying uniform generator, for
example (V115).

where is a uniform random number generator of standard calling sequence: .
For example,

would generate vectors of 10 Gaussian-distributed pseudorandom numbers of the highest quality. Note that
initialization is now performed by the initializing entry for , which is .

Method:

The method used to transform uniform deviates to Gaussian deviates is that known as the ratio of random
deviates, discovered by Kinderman and Monahan, and improved by Leva (see References). The generation
of one Gaussian random number requires at least two, and on average 2.74 uniform random numbers, as
well as one floating-point division and on average 0.232 logarithm evaluations.

335 V120 – 1

References:

1. J.L. Leva, A fast normal random number generator, ACM Trans. Math. Softw. 18 (1992) 449–453.

2. J.L. Leva, Algorithm 712. A normal random number generator, ACM Trans. Math. Softw. 18 (1992)
454–455.

V120 – 2 336

CORSET CERN Program Library V122

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.03.1994
Language : Fortran Revised:

Correlated Gaussian-distributed Random Numbers

generates vectors of single-precision random numbers in a Gaussian distribution of mean zero and
covariance matrix . The generator must first be set up by a call to which transforms the covariance
matrix to an appropriate square root matrix which is then used by . uses the Gaussian
generator (V120) underneath, which in turn uses the uniform generator (V113) underneath,
so initialization is performed as in V113, but beware that this also initializes both and ! The
code is portable Fortran, but the results are not guaranteed to be identical on all platforms as explained in

(V120).

Structure:

Subprograms
User Entry Names: ,

Usage:

The call to transforms covariance matrix to . The call to uses to generate vector of
correlated Gaussian variables with covariance matrix .
The limitation is imposed by the dimension of an intermediate storage vector in .
Note that takes longer than (for medium to large matrices). If it is desired to generate
numbers according to a few different matrices, then each pair , must be separately dimensioned and
saved as long as it is needed.

Method:

The square root method seems to be an old one whose origins are not known to the author (Ref. 1, p. 1182).

References:

1. F. James, Monte Carlo theory and practice, Rep. Prog. Phys. 43 (1980) 1145–1189.

337 V122 – 1

RAN3D CERN Program Library V130

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.09.1978
Language : Fortran Revised:

Random Three-Dimensional Vectors

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (V131)

generates random vectors, uniformly distributed over the surface of a sphere of a given radius.

Structure:

subprogram
User Entry Names:
External References: (V105)

Usage:

() A random 3-dimensional vector of length .
() Length of the vector (to be specified on entry).

Method:

A random vector in the unit cube is generated using (V105) and is rejected if it lies outside the unit
sphere. This rejection technique uses on average about 6 random numbers per vector, where only two are
needed in principle. However, it is faster than the classical two-number technique which requires a square
root, a sine, and a cosine.

338 V130 – 1

RN3DIM CERN Program Library V131

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 22.04.1996
Language : Fortran Revised:

Random Two- and Three-Dimensional Vectors

generates random vectors, uniformly distributed over the surface of a sphere of given radius.
generates random vectors, uniformly distributed over the circumference of a circle of given radius.

Structure:

subprogram
User Entry Names: ,
External References: (V115)

Usage:

() A random 3-dimensional vector of length .
() Length of the vector (to be specified on entry).

() A random 2-dimensional vector of length .
() Length of the vector (to be specified on entry).

Method:

A random vector in the unit cube is generated using (V115) and is rejected if it lies outside the unit
sphere. In the case of , this rejection technique uses on average about 6 random numbers per vector,
where only two are needed in principle. However, it is faster than the classical two-number technique which
requires a square root, a sine, and a cosine.

339 V131 – 1

RNGAMA CERN Program Library V135

Author(s) : F. James, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Gamma or Chi-Square Random Numbers

Function subprogram generates a positive random number according to the gamma distribution
with parameter , i.e., according to the density

A special case is the -distributionwith degrees of freedom

Structure:

subprogram
User Entry Names:
External References: (V115), (V120)

Usage:

In any arithmetic expression,

has the value of a gamma-distributed random number, where is of type . The value of may
vary from call to call without influencing the efficiency.

Method:

For integral values of , the logarithm of the product of uniform random numbers is used. For any
value of , the Wilson-Hilferty approximation (a transformed normal distribution) is used. For all
other , Johnk’s algorithm is used.

Notes:

The routine is fast for small integer values of , and for , (one Gaussian random number and one
square root, plus a few multiplications). Non-integral values of are rather slow.

Examples:

sets to a random number distributed as with degrees of freedom.

340 V135 – 1

RNPSSN CERN Program Library V136

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised: 10.05.1995

Poisson Random Numbers

Subroutine subprogram generates a random integer according to the Poisson distribution

where (the mean) is a constant specified by the user.

Structure:

subprogram
User Entry Names: ,
External References: (V115), (V120)

Usage:

() Mean .
() The generated random number , Poisson-distributed, with mean .
() Error flag.

Normal case.
.

For , a (faster) normal approximation is made. The default value for is . It
can be reset (to smaller values only) by

Timing:

Time increases with roughly as .

341 V136 – 1

RNBNML CERN Program Library V137

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Binomial Random Numbers

Subroutine subprogram generates a random integer according to the binomial distribution

where the ’sample size’ and the probability () are specified by the user.

Structure:

subprogram
User Entry Names:
External References: (V115)

Usage:

() Sample size .
() Probability .
() The generated random number , binomially distributed in the interval
with mean .
() Error flag.

Normal case,
or .

Notes:

should not be used when is ’large’ (say). The normal approximation is then recommended
instead (with mean and standard deviation).

342 V137 – 1

RNMNML CERN Program Library V138

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 15.10.1994
Language : Fortran Revised:

Multinomial Random Numbers

Subroutine subprogram generates a vector of random integers with
probabilities according to the multinomial distribution

Structure:

subprogram
User Entry Names:
External References: (V115)

Usage:

() Number of random integers requested.
() , specified by the user.
() One-dimensional array of length . Must contains, on entry, the (normalized) cumula-
tive channel probabilities in . In particular, .
() One-dimensional array of length . On exit, contains
the generated random integers.
Error flag.

Normal case,
for one al least,

.

Notes:

For , use (V137).

343 V138 – 1

RNHRAN CERN Program Library V149

Author(s) : F. James, K.S. Kölbig Library: MATHLIB
Submitter : Submitted: 20.03.1996
Language : Fortran Revised:

Random Numbers According to Any Histogram

generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,

(V152) should be used instead.

Structure:

subprograms
User Entry Names: ,
Files Referenced: Printer
External References: (E106), (V115)

Usage:

(once for each histogram)
(for each random number)

Array of length at least containing the desired distribution as histogram bin contents on
input to .
Number of bins.
Lower edge of first bin.
Bin width.
A random number returned by .

Method:

A uniform random number is generated using (V115). The uniform number is then transformed to
the user’s distribution using the cumulative probability distribution constructed from his histogram. The cu-
mulative distribution is inverted using a binary search for the nearest bin boundary and a linear interpolation
within the bin. therefore generates a constant density within each bin.

Notes:

changes the values to form the cumulative distribution which is needed by . If already
contains the cumulative distribution rather than the probability density, then should not be called,
but in that case must be exactly equal to one. Numbers may be drawn from several different
distributions in the same run by calling with different arrays , , etc. and (if desired) different
values of , , (but always the same values for a given array). The routine should be
used to initialize each array .
The performance of the above method is nearly independent of the shape of the function or number of bins.

Error handling:

If the the input data to are not valid (some values negative or all values zero), an error message is
printed, the input values are printed, and zero is returned instead of a random number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.
If is not called, and the input data are not already in cumulative form, performs the initial-
ization itself and prints a warning message. recognizes that the data are not in cumulative form if

.

344 V149 – 1

HISRAN CERN Program Library V150

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 15.09.1978
Language : Fortran Revised:

Random Numbers According to Any Histogram

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (V149)

generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,

(V151) should be used instead.

Structure:

subprograms
User Entry Names: ,
Files Referenced: Printer
External References: (E106), (V104)

Usage:

(once for each histogram)
(for each random number)

Array of length at least containing the desired distribution as histogram bin contents on
input to .
Number of bins.
Lower edge of first bin.
Bin width.
A random number returned by .

Method:

A uniform random number is generated using (V104). (The user may therefore use and
(V104) to restart a run.) The uniform number is then transformed to the user’s distribution using the

cumulative probability distribution constructed from his histogram. The cumulative distribution is inverted
using a binary search for the nearest bin boundary and a linear interpolationwithin the bin. therefore
generates a constant density within each bin.

Notes:

changes the values to form the cumulative distribution which is needed by . If already
contains the cumulative distribution rather than the probability density, then should not be called,
but in that case must be exactly equal to one. Numbers may be drawn from several different
distributions in the same run by calling with different arrays , , etc. and (if desired) different
values of , , (but always the same values for a given array). The routine should be
used to initialize each array .

345 V150 – 1

The performance of the above method is nearly independent of the shape of the function or number of bins.

Error handling:

If the the input data to are not valid (some values negative or all values zero), an error message is
printed, the input values are printed, and zero is returned instead of a random number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.
If is not called, and the input data are not already in cumulative form, performs the initial-
ization itself and prints a warning message. recognizes that the data are not in cumulative form if

.

V150 – 2 346

FUNRAN CERN Program Library V151

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 27.11.1984
Language : Fortran Revised:

Random Numbers According to Any Function

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (V152)

generates random numbers distributed according to any (one-dimensional) distribution . The
distribution is supplied by the user in the form of a subprogram. If the distribution is known as a
histogram only, (V150) should be used instead.

Structure:

subprograms
User Entry Names: ,
Internal Entry Names:
Files Referenced: Printer
External References: (D103), (V104), user-supplied subprogram

Block Names and Lengths:

Usage:

(once for each function)
(for each random number)

() A name of a subprogram declared in the calling program. This
subprogram must calculate the (non-negative) density function , for all in the interval

.
() One-dimensional array of length .
() Lower limit of the requested interval.
() Upper limit of the requested interval.
() A random number returned by .

A call to calculates the percentiles of between and stores them into the array .

Method:

In , the percentiles are calculated using a combination of trapezoidal and Gaussian integration to a
rather high accuracy, which is printed out by . If the desired accuracy is not obtained, an warning is
printed in addition.
Subroutine finds the desired random number by calling (V104) and doing a 4-point inter-
polation on to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function is badly skew or spiked as long as
the width of a spike is not less than 1/1000 of the total range.

347 V151 – 1

Error handling:

An error message is printed

– if the integral of the user-supplied function is zero or negative,
– if ,
– if somewhere between and .

Notes:

Some additional information which may be of use is contained in

After a call to , contains the integral of from to .
After a call to , contains the integral of from to , divided by the total integral to

(i.e., it will be a number uniformly distributed between zero and one).

V151 – 2 348

FUNLUX CERN Program Library V152

Author(s) : F. James Library: MATHLIB
Submitter : Submitted: 22.02.1996
Language : Fortran Revised:

Random Numbers According to Any Function

generates random numbers distributed according to any (one-dimensional) distribution . The
distribution is supplied by the user in the form of a subprogram. If the distribution is known as a
histogram only, (V150) should be used instead.

Structure:

subprograms
User Entry Names: ,
Internal Entry Names:
Files Referenced: Printer
External References: (D102), (V115), user-supplied subprogram

Block Names and Lengths:

Usage:

(once for each function)
(for each vector of random numbers)

() A name of a subprogram declared in the calling program. This
subprogram must calculate the (non-negative) density function , for all in the interval

.
() One-dimensional array of length .
() Lower limit of the requested interval.
() Upper limit of the requested interval.
() A vector of random numbers returned by .
() Length of the vector .

A call to calculates the percentiles of between and and stores them into the array
.

Method:

In , the 100 percentiles of the integral of are calculated using a combination of trapezoidal and
Gaussian integration to a rather high accuracy, which is printed out by . Then both the left-hand and
right-hand 2 percentiles are expanded to 50 percentiles each in order to cater for functions with long tails. If
the desired accuracy is not obtained, a warning is printed in addition.
Subroutine finds the desired random number by calling (V115) and doing a 4-point inter-
polation on to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function is badly skew or spiked as long as
the width of a spike is not less than 1/1000 of the total range.

Error handling:

An error message is printed

– if the integral of the user-supplied function is zero or negative,
– if ,
– if somewhere between and .

349 V152 – 1

Notes:

Some additional information which may be of use is contained in

After a call to , contains the integral of from to .
After a call to , contains the integral of from to , divided by the total integral
to (i.e., it will be a number uniformly distributed between zero and one).

V152 – 2 350

PERMU CERN Program Library V202

Author(s) : F. Beck, T. Lindelöf Library: MATHLIB
Submitter : K.S. Kölbig Submitted: 15.09.1978
Language : Fortran Revised: 07.06.1992

Permutations and Combinations

Successive calls to subroutine subprogram will generate all permutations of a set of integers of total
length consisting of repetitions of the integer , followed by repetitions of the integer etc,
concluding with repetitions of the integer , where .
Subroutine subprogram generates directly a singlemember of the set of all lexicographically ordered
permutations of the first integers , as specified by its lexicographical ordinal.
Successive calls to subroutine subprogram will generate all the possible combinations without
repetition of integers from the set .

Structure:

subprogram
User Entry Names: , ,
Files Referenced:

Usage:

Subroutine PERMU:

() One-dimensional array of length . On entry, , must contain
the initial set of integers to be permuted (see Examples). A call with will place the set

in . On exit, contains the ”next” permutation. If all the permutations have been
generated, the next call sets .
() Length of the set to be permuted.

Subroutine PERMUT:

() Lexicographical ordinal of the permutation desired.
() Length of the set to be permuted.
() One-dimensional array of length . On exit, , contains the

-th lexicographically ordered permutation of the integers (see Examples).

Subroutine COMBI:

() One-dimensional array of length . The first call must be made with .
This generates the first combination . Each successive call generates
a new combination and places it in the first elements of . If all the combinations have been
generated, the next call sets .
() Length of the set from which the combinations are taken.
() Length of the combinations.

351 V202 – 1

Examples:

1. Consider the following set of objects, only 8 are different:

This set consists of sequences of length , ,
. Thus, in order to get the possible permutations, set

before calling the first time.

2. To generate all permutations of indistinguishable objects, set , which is equivalent to
, before calling the first time.

3. To compute the, lexicographically second, third and last permutions of the set :

sets
sets
sets

4. To generate and print all 20 combinations of 3 integers from the set one could write:

Restrictions:

.
.

Error handling:

If any of the above conditions is not satisfied, a message is written on .

Notes:

1. If or , the subprograms return control without action.

2. The number of distinct permutations of a set of numbers which can be decomposed into groups
of indistinguishable elements is given by

where . This number can become large even for seemingly simple cases,
e.g. in Example 1 above,

V202 – 2 352

UZERO CERN Program Library V300

Author(s) : J. Zoll Library: KERNLIB
Submitter : C. Letertre Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 16.09.1991

Preset Parts of an Array

These routines fill each word of an array with zero, ’blank’, or a quantity given in the argument list.

Structure:

subprograms
User Entry Names: , ,

Usage:

Required .

sets until to zero.

sets until to BCD blank.

loads until with the contents of .

353 V300 – 1

UCOPY CERN Program Library V301

Author(s) : R.K. Böck, C. Letertre Library: KERNLIB
Submitter : Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 16.09.1991

Copy an Array

These routines copy a continuous string of words into a continuous set of locations.

Structure:

subprograms
User Entry Names: , , , ,
External References: (N100) (Fortran version of only)

Usage:

copies words from into ; the beginning of may overlap the end of .

copies words from into , any overlap is allowed.

transfers into the negative values of integer words from ; the beginning of may overlap the end
of . (For numbers of type , use (F121).)

copies words from into , in reverse order, i.e. . No overlapping is
allowed.

exchanges the first words of arrays and . and must not overlap.

For the above routines act as ’do-nothing’.

354 V301 – 1

UCOCOP CERN Program Library V302

Author(s) : F. Bruyant Library: KERNLIB
Submitter : C. Letertre Submitted: 21.08.1971
Language : Fortran or Assembler Revised: 16.09.1991

Copy a Scattered Vector

and copy the contents of a scattered vector into a new scattered vector.

Structure:

subprograms
User Entry Names: ,

Usage:

extract times consecutive words from , every words, and place them into , every words.
Both routines have the same effect if the vectors and do not overlap. allows concentration,

allows dilation of a vector in situ.
For or , the routines act as ’do-nothing’.

Examples:

gives

355 V302 – 1

IUCOMP CERN Program Library V304

Author(s) : J. Zoll, C. Letertre Library: KERNLIB
Submitter : Submitted: 01.03.1968
Language : Fortran or Assembler Revised: 16.09.1991

Search a Vector for a Given Element

These routines all search through a vector for a given element. The calling sequences and the default returns
are different.

Structure:

subprograms
User Entry Names: , , , , ,

Usage:

or

returns the relative address in the array of the first (or the last) word which is equal to , or zero if
is not contained in or if .

or

returns the relative address in the array of the first (or the last) element between and
which equals , or if is not contained in

or if .

returns the relative address of the first word among of
array (the search does not go beyond which equals , or zero if is not found or if

.

returns the relative address of the last word which, in the array of elements, is not equal to , or
zero if or if all elements in equal .

Notes:

and above may be of type or , but the comparison is done in type .

356 V304 – 1

PROXIM CERN Program Library V306

Author(s) : J. Zoll, K.S. Kölbig Library: KERNLIB
Submitter : Submitted: 15.03.1976
Language : Fortran Revised: 15.02.1989

Adjusting an Angle to Another Angle

Function subprogram computes, for two angles given as arguments, and by adding a suitable
multiple of to , an angle such that

Structure:

subprogram
User Entry Names:

Usage:

In any arithmetic expression,

has the value for and . , and are of type and in radians.

Notes:

The Fortran statement function

with has the same effect.

357 V306 – 1

GRAPH CERN Program Library V401

Author(s) : A. Regl Library: MATHLIB
Submitter : H. Grote Submitted: 01.02.1974
Language : Fortran Revised: 15.09.1978

Find Compatible Node-Nets in an Incompatibility Graph

finds all compatible sets of events (nodes) in an incompatibility graph (in which incompatible events
or nodes are connected). It is useful, for example, in track-matching programs for eliminating spurious
tracks.
On each call, one compatible node-set is returned. The user may decide in the first call whether the solutions
should be evaluated over the whole graph or subgraph by subgraph. Indications on ”end-of-graph” and, if
applicable, ”end-of-subgraph” are given.

Structure:

subprogram
User Entry Names:
Internal Entry Names: , , , , ,
External References: (M421), (M421), (M421), (M421),

(V300), (V300)
Block Names and Lengths :

Usage:

See Long Write-up.

358 V401 – 1

RVNSPC CERN Program Library V700

Author(s) : K.S. Kölbig, F. Lamarche, C. Leroy Library: MATHLIB
Submitter : Submitted: 07.06.1992
Language : Fortran Revised:

Volume of Intersection of a Circular Cylinder with a Sphere

Function subprograms and calculate the volume of intersection of a circular
cylinder of radius with a sphere of radius , the distance from the center of the sphere to the axis
of the cylinder being .
This volume is given by

where the integration is performed over the intersection, if any, of the two circular disks
and . If this is equal to

Otherwise .
On CDC and Cray computers, the double-precision version is not provided.

Structure:

subprograms
User Entry Names: C347, C347
External References: (C347), (C347), (C347)

Usage:

In any arithmetic expression,

or has the value .

is if type , is of type , and , and are of the same type as
the function name.

Method:

The integral given above can be expressed in closed form in terms of complete elliptic integrals of the first,
second, and third kind. For details see Ref. 1.

Notes:

Any negative sign in the parameters is ignored.
In the single-precision version on machines other than CDC or Cray, the complete elliptic integrals
are calculated inside the subprogram. This version, faster than , is intended mainly for applications
in experimental physics, where its limited accuracy of about 6 digits can be tolerated.

References:

1. F. Lamarche and C. Leroy, Evaluation of the volume of intersection of a sphere with a cylinder by
elliptic integrals, Computer Phys. Comm. 59 (1990) 359–369.

359 V700 – 1

TRSPRT CERN Program Library W150

Author(s) : C.H. Moore, D.C. Carey Library: PGMLIB
Submitter : C. Iselin Submitted: 27.11.1984
Language : Fortran 4 Revised:

Transport, Second-Order Beam Optics

is a first- and second-order matrix multiplication program for the design of magnetic beam transport
systems. It has been in use in various versions since 1963. The present version, written by D.C. Carey at
FNAL and extensively modified at CERN is described in CERN 80-04, NAL 91 and SLAC 91. It includes
both first- and second-order fitting capabilities. A beam line is described as a sequence of elements. Such
elements may represent magnets or the intervals separating them, but also specify calculations to be done, or
special conditions to be applied. The program works in six-dimensional phase space ;
it is therefore also capable of calculating coupling between planes.

Structure:

Complete
User Entry Names:
Files Referenced: , ,
External References: (M409), (Z035), (Z007)

Usage:

See Long Write-up. is accessed from as described in section ’Execution of Complete
Programs, ’ in Chapter 1 of the Program Library Manual.

Source:

SLAC and FNAL, USA

References:

1. K.L. Brown, D.C. Carey, C. Iselin and F. Rothacker, Designing Charged Particle Beam Transport
Systems, CERN 80-04 (1980)

A copy of Ref. 1 is available as Long Write-up.

360 W150 – 1

TURTLE CERN Program Library W151

Author(s) : D.C. Carey, C. Iselin Library: PGMLIB
Submitter : C. Iselin Submitted: 01.07.1974
Language : Fortran 4 Revised: 27.11.1984

Beam Transport Simulation, Including Decay

is designed to simulate charged particle beam transport systems. It allows evaluation of the effects
of aberrations in beams with a small phase space volume. These include higher-order chromatic aberra-
tions, non-linearities in magnetic fields and higher-order geometric aberrations due to the accumulation of
second-order effects. The beam at any point in the system may be represented by one- or two-dimensional
histograms. also provides a simulation of decay of pions or kaons into muons and neutrinos.

uses the same input format as (W150). An input stream set up for can thus be used
for with only a few additions.

Structure:

Complete
User Entry Names:
Files Referenced: ,
External References: (G900), (M409), (Z007), (Z035)

Usage:

See Long Write-up. is accessed from as described in ’Execution of Complete Programs,
’ in Chapter 1 of the Program Library Manual. Page 50 of the Long write-up is obsolete.

Source:

FNAL. The parts concerning decay have been written at CERN.

References:

1. K.L. Brown and C. Iselin DECAY TURTLE, a Computer Program for Simulating Charged Particle
Beam Transport Systems, including Decay Calculations, CERN 74-2 (1974).

A copy of Ref. 1 is available as Long Write-up.

361 W151 – 1

FOWL CERN Program Library W505

Author(s) : F. James Library: POOL
Submitter : Submitted: 13.11.1972
Language : Fortran Revised: 01.12.1981

General Monte-Carlo Phase-Space

uses the Monte-Carlo method to calculate phase space distributions arising from particle interactions.
The events are generated according to Lorentz-invariant phase space, and after each event the user may
calculate (in a subroutine) all quantities (effective masses, angles, moments, delta squared, etc.) whose
distribution he wants.
Moreover, the user may calculate, for each quantity, a weight (or ’matrix element’, for example a Breit-
Wigner) which is in general a function of the kinematic quantities for the event. In addition, one can
investigate the effects of cutoffs, selections or biases in an actual experiment by imposing the same selections
on events in . The program then prints histograms and/or scatter plots of quantities calculated by the
user.

Structure:

subprogram
User Entry Names:
Files Referenced: , ,
External References: (V104), (V300), (Y201), (Z007),

user-supplied subroutine .

Usage:

See Long Write-up.

Source:

Event generator was adapted by K. Kajantie from a program by G. Lynch.

362 W505 – 1

GENBOD CERN Program Library W515

Author(s) : F. James Library: POOL
Submitter : Submitted: 20.10.1975
Language : Fortran Revised:

N-Body Monte-Carlo Event Generator

generates a multi-particle weighted event according to Lorentz-invariant Fermi phase space. It is a
modification of the routine (in (W505)) and uses the method of Raubold and Lynch (see Ref.
1). The total CM energy as well as the number and masses of the outgoing particles are specified by the
user, but may be changed from event to event. generates the CM vector momenta (and energies) of
the outgoing particles and gives the weight which must be associated with each event. The weight may then
be multiplied by any ’matrix element’ or geometrical detection function calculated by the user.

Structure:

subprogram
User Entry Names:
Files Referenced: Printer
External References: (M103), (V104), (W505), (W505)

Block Names and Lengths : ,

Usage:

Input:

() Number of outgoing particles .
() Total CM energy.
() Array where element contains the mass of the -th outgoing particle.
() for cross section constant with energy, for Fermi energy dependence.

Output:

() of -th particle.
() of -th particle.
() of -th particle.
() Energy of -th particle.
() of -th particle.
() Weight of the event.

See also the Long Write-up for (W505).

References:

1. F. James, Monte Carlo Phase Space, CERN 68-15 (1968)

363 W515 – 1

IUCHAN CERN Program Library Y201

Author(s) : J. Zoll, P. Rastl Library: KERNLIB
Submitter : C. Letertre Submitted: 01.09.1969
Language : Fortran or Assembler Revised: 16.09.1991

Find Histogram-Channel

, , all find the histogram-channel for a given quantity in the same way. They differ
only slightly in the way in which the parameters are passed.

Structure:

subprograms
User Entry Names: , ,

Usage:

All routines need the the following parameters:

() Quantity to be histogrammed.
() Lower limit of the histogram.
() Channel width.
() Number of channels.

and they return the channel number normally, or for underflow (),
or for overflow ().

is a small bias to counteract rounding effects when is exactly on a bin edge, a likely and serious
problem when compressed data are histogrammed.

on 32-bit machines, on machines with a larger word size.

Function IUCHAN:

Functions IUBIN and IUHIST:

with

Histogram parameters:

(for), or reciprocal of the channel width (for).

() Flag set to or depending on whether is outside or inside the his-
togram.

364 Y201 – 1

HBOOK CERN Program Library Y250

Author(s) : R. Brun, I. Ivanchenko, P. Palazzi Library: PACKLIB
Submitter : Submitted:
Language : Fortran Revised:

Statistical Analysis and Histogramming

offers as basic options the booking, filling and printing of a histogram, scatter plot or table. Other
available facilities are:

Projections and slices of scatter plots and tables.
Wide choice of editing options (what to print and how).
Easy access to the information.
Operations on histograms (arithmetic, smoothing, filling, fitting).
Packing of several channels in 1 computer word/or extension of the memory on disk file, to allow
simultaneous handling of a very large number of plots.

Structure:

and subprograms

Usage:

See Long Write-up.

365 Y250 – 1

HPLOT CERN Program Library Y251

Author(s) : O. Couet Library: GRAFLIB
Submitter : Submitted: 01.03.1976
Language : Fortran Revised: 01.11.1994

HPLOT : HBOOKGraphics Interface for Histogram Plotting

is a -callable facility for producing (Y250) output on all kind of graphic devices. The
output is of a quality suitable for publications.

Structure:

subprograms

Usage:

A full description of the system is given in the HIGZ-HPLOT Manual (Q120, Y251). The full
facilities are available in the (Q121) system.

366 Y251 – 1

KERNGT CERN Program Library Z001

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 19.09.1991
Language : Fortran Revised:

Print KERNLIB Version Numbers

prints the titles of the PAM-files which have been used to make the general part of .

Structure:

subprogram
User Entry Names:
Files Referenced: Parameter

Usage:

with:

LUN Fortran logical unit number for printing, if zero: use ’standard output’.

Examples:

gives something like:

367 Z001 – 1

DATIME CERN Program Library Z007

Author(s) : See below Library: KERNLIB
Submitter : Submitted: 15.01.1977
Language : Fortran or C or Assembler Revised: 18.09.1991

Job Time and Date

Authors: J. Harms, E. Jansen, A. Michalon, J. Zoll, A. Berglund, T. Cass, C. Wood, H. Renshall.

The package interfaces with the system of any particular machine to obtain the current calendar
date and time, as well as the central processor time used by and remaining to the job.

Structure:

subprograms
User Entry Names: , , , , ,
External References: Machine dependent

Block Names:

Usage:

returns decimal date and time: , . It also stores the components into
as small integers:

for convenience of further processing by the user.

returns Hollerith date and time: and

returns the execution time used by the job so far; is the central processor time in seconds, a number
with fractional part. In supported interactive systems the time returned is that relative to the first call to

.

returns the execution time remaining until time-limit; in seconds as for . In supported interactive
systems the time returned is the time left until the time-limit set by the first call to . See Note 4
below.

returns the execution time interval since the last call to ; in seconds as for .

368 Z007 – 1

This routine is necessary to initialise the timing operations in the interactive mode of VM-CMS. In other
systems (including VM-CMS batch) it is a dummy do-nothing routine.
It must be called once (subsequent calls are ignored) before any calls to and . Before this
routine is called will return zero and will return . is an input floating point value
which will be used inside as if it were the job time-limit. The first call to also establishes the
time origin for subsequent calls to and .

Accuracy:

IBM: The RMS error returned in consecutive calls to without any intermediate code is of the order
of 3 sec on the the CERN IBM 3090 with a minimum time for one call of 20 sec. The timing distribution
has a long tail, however, and any individual measurement could take as long as four or five times this value.

is accurate to within a tenth of a second and only to the nearest second.

Notes:

1. The symbols used above stand for the two decimal digits of year, month, day,
hours, minutes, seconds.

2. and in the call to are 2-word vectors on machines with a character-capacity of less than
8 characters per word.

3. The information returned by these routines is obtained by a system request. On some machines this is
expensive in real time, so one should avoid too many calls, to in particular.

4. Some machine/operating system configurations do not have a value for timelimit, for example inter-
active work under VM-CMS (IBM) or VMS (VAX) or no-limit batch job classes under VMS. In these
cases a constant time-left of 999.0 seconds is returned, unless the time limit has been set with .

Examples:

Suppose the date is Sept 16, 1976, and the time of day 19h 24m 55s.

returns

returns and .

Z007 – 2 369

CALDAT CERN Program Library Z009

Author(s) : O. Hell Library: KERNLIB
Submitter : Submitted: 27.11. 1984
Language : Fortran Revised:

Calendar Date Conversion

converts any calendar date represention in a set of such representations to all other calendar date
representations in the set; in addition a few extra bits of information are produced.

Structure:

subprogram
User Entry Names:
Internal Entry Names: , , ,
External References: (Z007)

Usage:

() Integer specifying which of the possible date representations is being given as the
input representation. This input may either be as type within the string or
as type within the array.
() A character string containing, as substrings, the possible date representa-
tions. One such substring may be filled as the input representation, in which case it should be
pointed to by .
() Array of length 8 containing various binary date representations. One such date
representation may be filled as the input representation, in which case it should be pointed to
by .
() Error flag. success, failure of the conversion.

The substrings of can be accessed directly, using substring operations. Alternatively all,
or part, of the statements below may be used:

370 Z009 – 1

Details of the substrings in argument and the corresponding values:

Details of the elements in argument and the corresponding values:

Notes: Julian date days since , without Gregory’s pause. Week 1 of the year contains the 1st
Thursday in the year (ISO).

Names of the months:
3 characters: , , , , , ,

, , , , ,

5 characters: , , , , , ,
, , , , ,

Names of the week days:
2 characters: , , , , , , .
4 characters: , , , , , , .

Method:

Two arguments are used for passing the calendar dates: a character string and an array of full words. The
various representations are numbered, and an input parameter (’input index’) specifies the representation
containing the input calendar date.
An extra output parameter receives a return code.

Special cases:

Input index = 0 designates today which will find.
Input year rather than , designates this century.
Input index or input data invalid:
– output character string with all ;
– output numbers all = .

Z009 – 2 371

Restrictions:

will give incorrect dates and weekdays for dates prior to the reformation of the Calendar by pope
Gregory (16th century).

Error handling:

Meaning
0 everything fine
4
8 upper bound for lower bound for
12 upper bound for
16 out of bounds
20 out of bounds
24 out of bounds

Syntax errors:

Notes:

Element of is not a Fortran type. Nevertheless this calendar date format may show up in data from
the ’real world’. Element of is especially well suited for arithmetical calculations with dates.

Examples:

372 Z009 – 3

UMON CERN Program Library Z020

Author(s) : F. Carminati Library: KERNLIB, VAX/VMS only
Submitter : Submitted: 01.03.1989
Language : VAX Fortran Revised:

Usage Monitor for VAX/VMS

is an usage monitor package for VAX/VMS systems. Usage log requests are performed either via
Fortran calls or via DCL commands.

Structure:

Complete and subprograms
User Entry Names: ,

Usage:

() The first two letters of are interpreted as a command to . See the
Long Write-up for possible commands.
() Name of the monitor to be affected by the command. If this name is longer
than 8 characters, only the first 8 will be taken into account.
() A character string containing information about the command given. If this
string is longer than 80 characters, only the first 80 will be taken into account.

() Name of the monitor to be affected by the command. If this name is longer
than 8 characters, only the first 8 will be taken into account.
() A character string containing the text to be logged. If this string is longer than
80 characters, only the first 80 will be taken into account.

See also the Long Write-up.

373 Z020 – 1

ABEND CERN Program Library Z035

Author(s) : B. Lautrup, R. Matthews Library: KERNLIB
Submitter : C. Letertre Submitted: 06.01.1971
Language : Fortran or Assembler or C Revised: 20.01.1986

Abnormal Termination of Fortran Programs

causes abnormal termination of a program. (On CDC all subsequent JCL control cards up to the next
card will be ignored by the system).

Structure:

subprogram
User Entry Names:

Usage:

Not IBM:

causes abnormal termination of execution and prints the dayfile message . The output files are closed
and is correctly positioned.

IBM:

The optional argument is used as the user completion code and must be an integer expression with
a value in the range . If the argument is omitted, or does not have a value in this range, a default
value of will be used.

374 Z035 – 1

ABUSER CERN Program Library Z036

Author(s) : R. Matthews, A. Cass Library: KERNLIB, IBM only
Submitter : Submitted: 01.02.1983
Language : Assembler Revised: 19.07.1988

Intercept a Fortran Abend on IBM

enables a user-supplied subroutine to receive control when the user’s program abends. A call to
identifies the user-supplied subroutine which is to receive control. The identified subroutine will be

called if the user’s program abends and can perform pre-termination processing such as printing summaries
or plotting histograms.

Structure:

subprogram
User Entry Names:

Usage:

Name of a user-supplied subprogram declared in the calling program.

This subprogram receives control via a call of the form

A 4-byte integer containing, if available, the system completion code as hexadecimal number (use
format for printing).

A 4-byte integer containing, if available, the user completion code as integer number (use format
for printing).

Restrictions:

This subprogram is compiler and system dependent.
MVS:
The Fortran 4 version relies on modifications to the IBM H-extended compiler library and is therefore not
portable. The Fortran 77 version uses a standard interface into the compiler library.
CMS:
The subprogram is compiler independent but and are not available and so are set to zero. Note
that the routine uses storage in the CMS nucleus – the field and also 8-bytes at – which
must not be overwritten. (No other CERN Library routine uses these locations.)

Notes:

can be called at any time during normal processing, (i.e. before an abend occurs), to re-specify the
name of the user-supplied subroutine. Alternatively, the effect of previous calls can be cancelled by

. A call to after an abend will have no effect.
A secondary abend which occurs while the user is processing the primary abend will cause program termi-
nation.

375 Z036 – 1

Under MVS the user-supplied subroutine will not receive control for the following completion codes:

– job cancelled with dump
– job cancelled
– cpu time exceeded
– wait time limit exceeded

Examples:

In the following example, is called to identify a subroutine called as the subroutine which is
to receive control when the user’s program abends. If an abend occurs, subroutine will be called and
will print the completion codes and then call to plot histograms.

Z036 – 2 376

VAXAST CERN Program Library Z037

Author(s) : C. Mekenkamp Library: KERNLIB
Submitter : R. Veenhof Submitted: 10.03.1988
Language : Fortran, Vax Macro Revised:

Routines to Handle Control-C Interrupts on Vax

These routines allow you to write a program that, when interrupted with a control- , resumes execution in a
routine that you specify, which is higher up in the calling tree.

Structure:

Vax Macro and Vax Fortran routines
User Entry Names: , , , , ,
Internal Entry Names:

Usage:

should be initialised at the beginning of the program by

The routine to which control should be returned after a control- has been typed, should have in its header

When a control- is typed on the terminal, is called. This routine is part of , its main job
is to unwind the stack of routine calls until the routine is found in which the was issued.
Your program then continues execution just after the call to the routine that was interrupted. You may have
several routines with the header shown above. Only the last call to has effect.
When you no longer wish to make use of the routines:

You may not wish to have control- trapped all the time, for instance when the program is waiting for input.
To suspend trapping for a short while, do the following:

Between and a control- typed on the terminal has the same effect as a control- , i.e.
stopping the program and returning to . Execution can, as with control- , be resumed at the point it was
interrupted, via the command.
Not all programs survive the stack unwind performs. A classical example is the set of I/O routines
in the Vax Fortran run time library (RTL). replaces those routines by variants that are stack unwind
proof but perform otherwise identical tasks. You will see 29 messages about multiply defined symbols when
you your program, you can safely ignore them.

377 Z037 – 1

If there is a part in your own program where the stack should not be unwound but during which you would
like a control- to be stored, do the following:

A control- typed between the and calls remains ’dormant’ and takes effect only at the
call.

Notes:

1988 C.A.J. Mekenkamp. All Rights Reserved.
Carlo Mekenkamp, President Krugerstraat 42, NL-1975 EH IJmuiden.

Z037 – 2 378

QNEXTE CERN Program Library Z041

Author(s) : W. Jank, D. Lellouch, R. Matthews, E. Pagiola, J. Zoll Library: KERNLIB
Submitter : Submitted: 28.08.1984
Language : Assembler or C Revised:

Restart of Next Event

This interface routine allows the user to restart his program at the entry point , provided he has
initiated it at this same entry point.
For first entry, remembers all necessary internal Fortran parameters, such as registers, trace-back,
stack pointers, signal mask, whatever is needed on a given machine, and then calls a user-supplied routine

.
On any subsequent entry, resets all internal parameters so as to cancel all open s below its own
level, and then transfers again control to . If in a statement is reached this will lead
back to the routine which did the first call to , usually the program.

Structure:

(Pseudo) subprogram
User Entry Names:
Internal Entry Names: (on Vax)
External References: User-supplied subprogram (Z041)

Usage:

will transfer control to the routine supplied by the user, via a (no parameter list).

Notes:

is a user routine which cannot be loaded implicitly from a library. If to be used at all, it has to be
loaded explicitly, either from a load file (such as produced by the compiler) or by some form of
from a user library.
Because is referenced by some general packages, whose user may not want to supply a , the
reference from to has been made ’weak’ (to avoid the ’missing external’ message from the
loader) on the Vax (and probably also on some other machines in the future). In this case has a call
to a Fortran dummy routine to print a message if it is reached without the user having supplied a
routine .
On most UNIX machines the loader is not able to start a module with missing externals; in this case, the
user is obliged to provide a routine , to stop the run, for example.

Examples:

Schema of Fortran levels :

The last abandons the current event.

379 Z041 – 1

JUMPXN CERN Program Library Z042

Author(s) : J.Zoll, R.Brun et al. Library: KERNLIB
Submitter : J. Zoll Submitted: 27.04.1988
Language : Fortran or C or Assembler Revised: 20.02.1995

Calling a Subroutine by its Address

The purpose of this package is to provide a (limited) tool to connect what is called a user-routine with an
arbitrary name to a in a package, pre-existing on a library.
Because on most machines is implemented in Fortran or C, separate entries are needed for calling
the user-routine with zero, one, two, ..., nine parameters.

Structure:

subprogram
User Entry Names: , , , ()
Internal Entry Names: (Z042) () (if not Assembler or C)

Usage:

Three steps are necessary:

Get the transfer address of the routine (for example) to be called:

Set the transfer address for the next transfer(s):

Execute a transfer, for a call with parameters:

Restrictions:

Since on most machines is written in Fortran or C, the call to will be found in the trace-
back of routine , and from will pass through . Hence, normally (i.e. unless
recursion is handled by a particular machine), or any of its called routines may not again call

.

380 Z042 – 1

INTRAC CERN Program Library Z044

Author(s) : F. Carminati, T. Lindelöf, R. Matthews, C. Vosicki, J. Zoll Library: KERNLIB
Submitter : Submitted: 01.12.1974
Language : Fortran or C or Assembler Revised: 01.06.1993

Identify Job as Interactive

allows an executing module to determine whether it is running interactively or not.

Structure:

subprogram
User Entry Names:

Usage:

In any logical expression,

has the value if the module is executing interactively and otherwise. Note that
must be declared in the calling routine.

Method:

On machines execution is interactive if ’standard input’ (System , i.e. Fortran nor-
mally) is connected to a terminal. The same is true on VAX as from June 1993.

381 Z044 – 1

IFBATCH CERN Program Library Z045

Author(s) : J. Shiers, C. Vosicki Library: KERNLIB, VAX only
Submitter : Submitted: 01.04.1994
Language : Fortran Revised:

Identify Job as Running in Batch Mode

allows an executing module to determine whether it is running in batch mode or not.

Structure:

subprogram
User Entry Names:

Usage:

In any logical expression,

has the value if the module is executing in batch mode and otherwise. Note that
must be declared in the calling routine.

382 Z045 – 1

XINOUT CERN Program Library Z203

Author(s) : R. Matthews, J. Zoll Library: KERNLIB
Submitter : Submitted: 15.07.1978
Language : Fortran Revised: 18.09.1991

Short List Reading andWriting

The ’long list’ form is translated into slow object code by some compilers.
Normally, these compilers handle the ’short list’ form

correctly, compiling just one system request, rather than requests.
Furthermore, some machines require the calling program to know the record size beforehand, if reading is
done in Fortran. The problem can be solved by adding the record size as the first word of the record, thus
for

writing:
reading:

This way of reading and writing is an extra convention; it is called ’variable length’ in the descriptions
below.
Sometimes it is convenient to prefix each record with some identifiers, always the same number of words,
say words:

writing:
reading:

This mode is called ’split mode’ in the descriptions below.
The routines of provide ’short list’ reading and writing for split mode, variable length mode and
also for fixed length mode.

Structure:

subprograms
User Entry Names: , , , , ,

Block Names and Lengths:
Files Referenced: Parameter

Notes:

The routines and to handle formatted files are obsolete.

383 Z203 – 1

Usage:

Reading:

The vectors to be read are and of length and ; the read routines contain effectively

Before calling, must be preset to the maximum number of words to be accepted into with, say,
.

Read binary, variable length:

Read binary, fixed length:

Read binary, split mode:

On return contains:

Read successful, number of words transmitted into .
End-of-file.
Read error, its value contains the error code on most machines.

For and the record length read from the file is stored into the first word of .

Writing:

The vectors to be written are and of length and ; the write routines contain

Write binary, variable length:

Write binary, fixed length:

Write binary, split mode:

Z203 – 2 384

IARGC CERN Program Library Z264

Author(s) : F. Carminati, M. Marquina Library: KERNLIB or Fortran Run-Time Library
Submitter : Submitted: 13.07.1988
Language : Fortran + C Revised: 15.03.1993

Returns Command Line Arguments

is used to return arguments that the user has given to an executable module on the command line.

Structure:

subprograms
User Entry Names: ,

Usage:

sets to the number of blank delimited arguments present after the program name on the command line.
and are of type .

() Contains, on entry, the number of the argument to retrieve. Unchanged on exit.
() Contains, on exit, the -th argument.

Notes:

1. Arguments surrounded by double quotes () are treated as single, e.g.

is equivalent to one argument.

2. On VM/CMS, due to technical restrictions, at least one of the routines must be called before any I/O
(typically a PRINT statement).

3. returns name of executing program (not VM).

Example:

385 Z264 – 1

CINTF CERN Program Library Z265

Author(s) : see below Library: KERNLIB
Submitter : Submitted: 19.09.1991
Language : Fortran + C Revised: 01.04.1994

Immediate Interface Routines to the C Library

Authors: F. Carminati, M. Marquina, A. Rademakers, J. Shiers, J. Zoll.

The routines of this package are Fortran callable routines which in turn call their corresponding C Library
routines, after having taken care of the Fortran way of passing parameters.
The names of the interface routines are exactly the names of the C functions with the letter F added; the
parameters are in one-to-one correspondence with the C functions; thus gives the exact
details also for the interface routine.
Most Fortran systems on Unix machines are clever, they protect the Fortran user against name-clashes with
the C library, for example a compiles as a reference to (or to
on the Cray).
If this is not strictly true, and/or if moreover the Fortran Run-time library does itself contain an interface
routine then there might be trouble because it is not obvious which will be linked to
the interface routine . The IBM 6000 machine has succeeded in creating this problem, it has both

and on the Fortran Run-time library. In this case one has to give an explicite on
the link statement to ensure that the C library is searched before the Fortran library (but after the Kernlib
library).

Structure:

and subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , ,

Block Names and Lengths:

Usage:

The types of all variables and functions follow from the Fortran default typing convention (unless typed
explicitly), except that variables starting with the letters are of type .
The symbol designates an output parameter.
For convenience, routines which return a string also return the occupied useful length of this
string in of .

386 Z265 – 1

’access’ — determine accessibility of file

’chdir’ — set current working directory

’ctime’ — convert encoded time to ASCII

’exit’ — terminate the process with a status code

stops setting return status . This should not be used for normal run termination. On the IBM VM this
had to be implemented with a computed , hence if a is executed.
On the Unix machines will appear in the shell variable ”status” which is reset after execution of each
command, thus for more complicated logic the value of status has to be saved like (in the C shell):

Z265 – 2 387

’getenv’ — get the text of an environment variable

’getgid’ — get group identification

’getpid’ — get process identification

’getuid’ - get user identification

’getwd’ — get the path-name of the working directory

’gmtime’ — blow encoded time to time elements for Greenwich Mean Time

’kill’ — send a signal to a process

388 Z265 – 3

’perror’ — print message for the most recent C Library error

’readlink’ — read value of a symbolic link

’rename’ — rename a file

’setenv’ - set environment variable

On machines where the function of system BSD is not available, is used instead on a string
constructed from and in allocated memory, hence one should avoid re-defining the same
variable very many times.

’sleep’ — suspend execution

Z265 – 4 389

’stat’ — get file status

This routine returns the properties of a given file in a 12-word integer vector:

On machines where and are not available (like Silicon Graphics) the words
will always be zero.

’lstat’ — get file status
is like except in the case where the named file is a symbolic link, in which case

returns information about the link, while returns information about the file the link references.
For convenience stores into some information about the nature of :

’system’ — issue a shell command

390 Z265 – 5

’unlink’ — remove directory entry

Normally this deletes file . If is a soft link, the link is deleted, but not the file pointed to.

Notes:

The routine , which belongs to this family, will be described separately in the next paper

These routines have also been implemented on some machines which are not running Unix. The present
state is as follows:
VAX system has :

Presently looks in the symbol table, except if the name of the environment variable is for
which it will return the value of the logical name .
Some other routines are available through the C run-time library.
IBM 3090 system has :

Z265 – 6 391

WHOAMI CERN Program Library Z266

Author(s) : F. Carminati, J. Zoll Library: KERNLIB, VAX only
Submitter : Submitted: 01.04.1994
Language : Fortran Revised:

Get the name of the executing module

This routine will figure out the path-name of the executing image. On the VAX this is done with a system
call, on UNIX by scanning the search path until it finds the module whose name is in .

Structure:

subprograms
User Entry Names:
Common Blocks:

Usage:

On exit, contains the full path-name of the module.
Status and various lengths are returned in :

On the VAX:

For example:

Note: At the moment this is available only on the VAX; the code exists for UNIX but is not yet in the library.

392 Z266 – 1

FTOVAX CERN Program Library Z267

Author(s) : J. Zoll Library: KERNLIB, VAX only
Submitter : Submitted: 01.09.1990
Language : Fortran Revised: 01.11.1994

Convert File-name to and from UNIX Syntax

These routines convert a file name from form to form, and vice versa. The correspondance
is as follows:

Forms like and are also handled.
For back-compatibility is handled as .

Structure:

subprograms
User Entry Names: ,
Common Blocks:

Usage:

Convert to VAX form

No conversion is done if the file-name does not contain a character on input.

Convert to UNIX form

No conversion is done if the file-name does already contain a character on input.
This routine does some tidying up if necessary, thus for example the troublesome

becomes the correct

Both routines return if no conversion was needed, for successful conversion,
and if a syntax error was detected.
Note that both routines update both the file-name and its useful length in situ.

Examples:

393 Z267 – 1

VAXTIO CERN Program Library Z301

Author(s) : C. Ciapetti, J. Zoll Library: KERNLIB, VAX only
Submitter : Submitted: 01.09.1983
Language : VAX Fortran Revised:

VAX Fortran Interface for Reading and Writing ’Foreign’ Tapes

handles non-native tapes on the VAX; it is needed because VAXFortran does not provide a format.
If the tape to be handled is on logical unit , mounted on , with physical records of 3600 bytes
maximum, for example, the following commands have to be given:

Structure:

subprogram
User Entry Names:
Internal Entry Names:
Files Referenced: User defined parameter

Block Names and Lengths:

Usage:

Input parameters:

Logical unit number ().
Operation mode, indicating the kind of operation to be performed; for details, see below.
Data area for read and write.
Number of units to be done.
Fortran logical unit number for printing diagnostic messages; if zero, printing is suppressed.

Output parameters:

Number of units done; error if negative.
System status code.

The following operations are provided at present:

Write (3 tape marks are written and the tape is positioned after the first
tape mark).

Successful.
End-of-tape.
Trouble.

Write one record, tranfer bytes from to tape.
Number of bytes written.
End-of-tape, but record written.
Trouble.

394 Z301 – 1

Read one record, transfer at most bytes from tape to , excess data
are lost.

Number of bytes transferred.
, end-of-tape.

Read error, record skipped.
Trouble.

Assign a channel for logical unit (if not done explicitly, assignment occurs on
first contact).

Successful.
Channel already assigned.
Trouble.

Skip records, forward if , reverse if . ()
Number of records skipped.

seen, skipped, counted.
Trouble.

Skip files, forward if , reverse if .
Number of files skipped.
End-of-tape seen.
Trouble.

Rewind.
Rewind and unload.

Successful.
Trouble.

De-assign channel; this should be done if a logical unit is no longer needed.
Successful.
Trouble.

Z301 – 2 395

KAPACK CERN Program Library Z303

Author(s) : R. Matthews Library: PACKLIB
Submitter : Submitted: 25.08.1983
Language : Fortran Revised: 07.02.1986

Random Access I/O Using Keywords

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (Q100) or (Q180)

A package of Fortran-callable subprograms for manipulating a random access file in which the records are
of variable length and identified by a two-component name. This package may be used as the basis of a data
base or bookkeeping system.

Structure:

subprograms
User Entry Names: , , , , , , , ,

, , , , , , , ,
, , , , , , ,

Usage:

See Long Write-up.

396 Z303 – 1

CFIO CERN Program Library Z310

Author(s) : J. Zoll Library: KERNLIB, UNIX and VMS
Submitter : Submitted: 19.09.1991
Language : Fortran + C Revised:

Handle Fixed-length Records on Unix Streams

The routines of this package are an interface to the C library functions open, read, write, lseek, close, to
permit a Fortran program to handle an unstructured Unix file as a string of fixed-length binary records. Both
sequential and direct-access READ / WRITE can be simulated.
These routines are simple little interface routines, there is no book-keeping done of the files which have
been opened, the properties of the file have to be specified on each call, and the user is responsible for the
consistency of all his calls for a particular file.
Processing has to be different for a disk file or for a tape file; therefore the medium must be indicated in the
calls. Also, a user could take the source of these routines and modify them to add other branches for special
processing.
New files are opened with the default permissions 644; one may set different permissions by calling
just before calling , which resets to the default after every call.
Three parameters are common to almost all routines :

In the examples below it is assumed that for a given file these three parameters are available in something
like storage.

Structure:

subprograms
User Entry Names: , , , , , , , ,
Files Referenced: Parameter

Usage:

Note: the symbol designates output parameters.

397 Z310 – 1

Open a file

For example, create a new file in the current directory :

Read next record

To simulate direct-access reading one has to call first.
For example:

Z310 – 2 398

Write next record

Get the size of the file

Get the current file position

Set the current file position

For example :

Rewind the file

Close the file

Set the permissions for the next open

For example (using of :

399 Z310 – 3

CIO CERN Program Library Z311

Author(s) : J. Zoll Library: KERNLIB, VAX and UNIX systems only
Submitter : Submitted: 31.10.1991
Language : Fortran + C Revised: 01.04.1994

Handle Unix Disk Files

The routines of this package are an interface to the C library functions open, read, write, lseek, close, to
permit a Fortran program to handle an unstructured Unix file as a string of bytes. Both sequential and
direct-access READ / WRITE can be done.
New files are opened with the default permissions 644; one may set different permissions by calling
just before calling , which resets to the default after every call.
One parameter is common to almost all routines : is the file-descriptor of C to identify the file; with
CIOPEN this is an output parameter, for all other routines it is an input parameter.

Structure:

subprograms
User Entry Names: , , , , , , , , , ,

Files Referenced: Parameter

Usage:

Note: the symbol designates output parameters.

Open a file

For example, create a new file in the current directory :

400 Z311 – 1

Read next string of bytes

Read next string of full words

A full word is normally 4 bytes; on the CRAY it is 8 bytes.
To simulate direct-access reading one has to call first.
For example:

Write next string of bytes

Write next string of full words

Z311 – 2 401

Get the size of the file

Get the current file position

Set the current file position

For example :

Rewind the file

Close the file

Set the permissions for the next open

For example (using of :

Note: formally the buffer for reading and writing should be of type for and , and
of type for and . On most machines there is no difference, but on the VAX this
must be observed, because the parameter passing mechanisme differs crucially for the two cases. Also, on
the CRAY there would be problems if one were using to read into a Character address other than a
word boundary.

402 Z311 – 3

TMREAD CERN Program Library Z313

Author(s) : J. Zoll Library: KERNLIB
Submitter : Submitted: 01.11.1994
Language : Fortran Revised:

Terminal Dialogue Routines

These routines prompt the user on-line to the executing program for input from the terminal, and read it. The
prompt is written to standard output by calling , the input is read from standard input with .
Whether or not standard input is in fact a terminal can be detected with (Z044); if it is not the call
to should be by-passed.

Structure:

subprograms
User Entry Names: , ,
Files references: standard input, standard output

Usage:

Initialize the dialogue

On some machines it is necessary to switch off buffered mode on standard output, this is done by calling
once, and before the first call to :

Put the prompt to standard output

Read next line from standard input

403 Z313 – 1

Index

, 17, 22, 24, 28, 29, 32–36, 40, 41, 43–45,
48, 50, 52, 55, 56, 58, 60, 63, 66–68, 70,
71, 74, 76, 78, 80, 83, 87, 89, 91, 94, 96,
97, 100, 103, 106, 115, 117, 124, 135,
145, 148, 150, 155, 157, 176, 189, 191,
193, 213, 215, 217, 218, 221–223, 231,
296, 298, 323, 360, 361, 374
, 375
, 386
, 112
, 34, 63, 223
, 34
, 147

, 208
, 15, 80
, 58
, 233
, 377
, 377
, 377
, 377
, 377
, 377
, 377
, 53

, 14

, 41
, 41, 60
, 60
, 40
, 40, 60
, 60, 73
, 41, 71
, 41, 71
, 40, 73
, 40
, 112
, 13
, 241
, 208
, 295

, 262
, 112
, 112
, 112

, 74
, 70
, 55
, 74
, 71
, 70, 71

, 55, 71
, 287
, 285
, 112
, 112
, 112
, 283
, 78

, 370
, 96
, 76
, 258, 263
, 37, 56
, 185
, 268
, 268
, 268
, 268
, 185
, 48
, 87
, 268
, 189

, 189
, 68
, 189, 191
, 397
, 189, 191
, 397
, 268
, 189, 191
, 397
, 397
, 397
, 397
, 397
, 397
, 141, 143

, 139
, 397
, 35, 60
, 106
, 50
, 386
, 176
, 218
, 178
, 253, 267
, 400
, 400
, 400

404 Index – 1

, 189
, 400
, 400
, 400
, 400
, 400
, 400
, 400
, 400
, 268
, 268
, 36, 37, 56, 60
, 268
, 185
, 185
, 185
, 185
, 187
, 187
, 187
, 187
, 185
, 185
, 185
, 185
, 185
, 185
, 187
, 187
, 185
, 185
, 185
, 185
, 185
, 208
, 208
, 351
, 313

, 208
, 337
, 337
, 66
, 16
, 28
, 37, 45
, 268
, 201
, 268
, 268
, 268
, 268
, 268
, 268

, 268
, 386
, 268
, 185
, 185
, 185
, 185
, 185
, 185
, 268
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 183
, 65
, 56

, 92
, 110
, 15, 80
, 58
, 53
, 239, 362, 368, 370
, 360, 368
, 69
, 213
, 41, 60
, 41, 60
, 40, 60, 73
, 40, 60
, 41, 71
, 41, 71
, 40, 73
, 40
, 13
, 74
, 70
, 55
, 74
, 71

Index – 2 405

, 70, 71
, 55, 71
, 78
, 96
, 168
, 176
, 179
, 178
, 54
, 319
, 66
, 166
, 166
, 69
, 115
, 117
, 124
, 62
, 323
, 70
, 55
, 71
, 70, 71
, 55, 71
, 41
, 41
, 41, 71
, 41, 71
, 112
, 112
, 46
, 80
, 83
, 80
, 83
, 80
, 83, 359
, 60, 83, 359
, 83
, 60, 83, 359
, 83
, 83
, 112
, 224, 226
, 115
, 189
, 117
, 135, 189
, 30
, 30, 217
, 124
, 67
, 67

, 189, 191
, 60
, 189, 191
, 52
, 189, 191
, 51
, 135
, 135
, 135
, 31
, 51
, 126
, 63
, 32, 43, 74, 76
, 33
, 63
, 222
, 94, 96
, 157
, 157
, 126
, 157
, 103
, 103
, 103
, 103
, 103
, 103
, 100
, 92, 99
, 100, 135
, 224
, 62
, 189, 215
, 224, 226
, 150
, 112
, 319
, 323
, 34, 63
, 215
, 34
, 153
, 153
, 153
, 185
, 126
, 126, 185
, 126, 157, 185, 215
, 185
, 131
, 187
, 187

406 Index – 3

, 126, 187
, 185
, 185
, 185
, 185
, 126, 157, 185
, 187
, 187
, 185
, 126, 185
, 126, 185, 215
, 185
, 22
, 185
, 126

, 208
, 200
, 16
, 44
, 179
, 319
, 183, 185, 230
, 43
, 119
, 113
, 26, 27
, 27
, 153, 155, 193
, 193
, 193
, 193
, 91
, 66
, 126, 193
, 231
, 20
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 17
, 224
, 73

, 73
, 126
, 89
, 181
, 97
, 126
, 185
, 185
, 185
, 185
, 185
, 183
, 112
, 126, 157, 183, 215
, 183
, 112
, 183
, 126, 153, 157, 183, 215
, 183
, 183
, 183
, 112
, 112
, 359
, 183
, 168, 183
, 126, 168, 183, 215
, 168, 183
, 126, 153, 157, 168, 183
, 126, 183
, 153, 157, 183
, 168, 183
, 319
, 319
, 319
, 24
, 18

, 41
, 41
, 41, 71
, 41, 71
, 70
, 55
, 71
, 70, 71
, 55, 71
, 46
, 83
, 83
, 122
, 235
, 235
, 121

Index – 4 407

, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235
, 235

, 30
, 30, 217
, 134
, 386
, 112
, 67

, 60
, 112

, 112
, 52
, 237
, 237
, 237
, 237
, 237
, 393
, 237
, 237

, 148
, 246, 363
, 316

, 362
, 51
, 31
, 267
, 51
, 393
, 134

, 112
, 349
, 349
, 347
, 347

, 63
, 223
, 32, 43, 74, 76, 223

, 33
, 63
, 206
, 218, 221, 222
, 94, 96, 347
, 363
, 112
, 385
, 284
, 286
, 386
, 386
, 386
, 386
, 386
, 386

, 358
, 112
, 208

, 345
, 345

, 287
, 385
, 287
, 287
, 287
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 268
, 251
, 251
, 251

408 Index – 5

, 251
, 287

, 382
, 267

, 206
, 206
, 261
, 311
, 279
, 279
, 279
, 279
, 279
, 279
, 279
, 279
, 208
, 112
, 381
, 246
, 235

, 287
, 324
, 279
, 287
, 287
, 253, 267
, 364
, 362, 364
, 356
, 302, 356
, 356
, 356
, 364
, 356
, 356
, 291, 302
, 300
, 208
, 208

, 258, 358
, 258, 260, 263, 358
, 258
, 258
, 260
, 258
, 380
, 380
, 380
, 380

, 396
, 396

, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 396
, 13
, 145, 148, 150, 155, 189, 191, 193, 213
, 367
, 303
, 296
, 386

, 316
, 112
, 294

, 174
, 174
, 215
, 134

, 155
, 268
, 152
, 152
, 152, 226, 344, 345

, 299
, 265

, 183, 185, 187, 299, 302, 354
, 112
, 317
, 318
, 318

, 155
, 386
, 203
, 203
, 203
, 203

Index – 6 409

, 203
, 203
, 203
, 203
, 203
, 203

, 146
, 146
, 146
, 146
, 258
, 258
, 258
, 146
, 146
, 146
, 146
, 112
, 258
, 258
, 258
, 258
, 17, 22, 24, 28, 29, 32–36, 40, 41, 43–45,
48, 50, 52, 55, 56, 58, 60, 63, 66–68, 70,
71, 74, 76, 78, 80, 83, 87, 89, 91, 94, 96,
97, 100, 103, 106, 115, 117, 124, 135,
157, 176, 215, 217, 218, 221–223, 231,
323
, 40, 41, 298
, 112
, 287
, 211
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 196
, 112
, 196
, 196

, 289
, 208
, 268

, 268
, 268
, 112
, 112
, 112
, 112

, 208
, 287
, 208
, 112, 326, 338
, 326
, 326
, 266
, 29

, 208
, 208

, 112

, 175
, 112

, 363
, 351
, 351
, 386

, 260
, 263, 283
, 316
, 145
, 195
, 11

, 217
, 219, 220
, 357
, 250

, 74
, 74
, 176
, 32, 74, 76
, 94
, 34
, 379
, 379

, 112
, 112

, 92, 349
, 110, 112
, 338
, 330
, 330

, 183, 185, 230, 361
, 208
, 112

410 Index – 7

, 230
, 224
, 332, 339–344, 349
, 327
, 230
, 112
, 58
, 53
, 213
, 13
, 78

, 137
, 96
, 168
, 176
, 179
, 178
, 54
, 319
, 66, 228
, 166
, 166
, 69
, 115
, 117
, 124
, 62
, 323
, 324
, 324
, 386
, 112
, 46
, 80
, 83
, 80
, 83
, 80
, 83
, 60, 83
, 83
, 60, 83
, 386
, 279
, 189

, 135, 189
, 67
, 67, 228
, 189, 191
, 60
, 189, 191
, 52
, 189, 191

, 51
, 135
, 135
, 135
, 51
, 141

, 122, 137
, 126
, 63
, 63
, 157
, 157
, 126
, 157
, 103
, 103
, 103
, 103
, 103
, 103
, 100
, 92, 99
, 100, 135
, 189, 215
, 108
, 319
, 208
, 119
, 113
, 112
, 215
, 153
, 153
, 153
, 332
, 332
, 332
, 332

, 334
, 334
, 334
, 185
, 327
, 327
, 126
, 126, 185
, 126, 157, 185, 215
, 185
, 131
, 327
, 327
, 187
, 187

Index – 8 411

, 126, 187
, 185
, 185
, 185
, 185
, 126, 157, 185
, 187
, 187
, 185
, 126, 185
, 126, 185, 215
, 185
, 22
, 185
, 339
, 339
, 342

, 108, 324, 345, 347, 362, 363
, 340
, 344
, 344
, 343
, 335
, 335, 340, 341
, 341
, 341
, 126

, 202
, 363

, 137
, 16

, 137
, 44
, 179
, 319
, 43
, 119
, 26, 27
, 27

, 137
, 155, 193
, 193
, 193
, 193
, 66, 228
, 126, 193
, 231
, 20
, 157
, 157
, 157
, 157
, 157

, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 157
, 17
, 73
, 73
, 126
, 321
, 26
, 27
, 89
, 181
, 97
, 126
, 185
, 185
, 185
, 185
, 185
, 183
, 126, 157, 183, 215
, 183
, 183
, 126, 157, 183, 215
, 183
, 183
, 183
, 359
, 183
, 168, 183
, 126, 168, 183, 215
, 168, 183
, 126, 153, 157, 168, 183
, 126, 183
, 155, 157, 183
, 168, 183
, 319
, 319
, 319
, 24, 228
, 18

, 258, 358
, 258
, 258
, 258, 260, 263, 358
, 258
, 260

412 Index – 9

, 208
, 206

, 208
, 284
, 286
, 386
, 112
, 112
, 91
, 66
, 386
, 20
, 247
, 248
, 249
, 248
, 249
, 248
, 249
, 244
, 279
, 112
, 386
, 73
, 73
, 279
, 221
, 221
, 279

, 208
, 208

, 386

, 302
, 368
, 312, 361, 368
, 368
, 312, 368
, 220
, 170
, 170

, 170
, 170
, 403
, 189, 193
, 403
, 403
, 198
, 301

, 198
, 198
, 102

, 198
, 198

, 198
, 198
, 198
, 198
, 198
, 112
, 112
, 97
, 198
, 316

, 198
, 198
, 198
, 198
, 198
, 198
, 198
, 198
, 198
, 360
, 198
, 112
, 361

, 293
, 353, 362
, 255, 302
, 255, 360, 361
, 355
, 354
, 235, 237, 285, 354
, 354
, 354
, 237, 255
, 255
, 355
, 353, 358
, 255
, 237, 255
, 373
, 373
, 386

, 292
, 292
, 260, 293
, 262, 263
, 295
, 112
, 112
, 248, 249, 354
, 255
, 235, 353, 358

, 203

Index – 10 413

, 203
, 226
, 226
, 226
, 226
, 226
, 394
, 203
, 203
, 203
, 203
, 203

, 203
, 203
, 203
, 248
, 279
, 203
, 203
, 203
, 203
, 238, 239
, 203
, 203
, 203
, 203
, 203
, 203
, 203
, 203
, 203
, 203
, 208
, 203
, 203
, 203
, 228
, 228
, 228
, 282
, 282
, 208
, 203

, 76
, 37, 56
, 48
, 87
, 68
, 35, 60
, 106
, 50
, 206
, 206

, 206
, 206
, 206
, 206
, 206
, 206
, 206
, 206
, 392
, 36, 37, 56, 60

, 279
, 279
, 279
, 16
, 28
, 37, 45
, 76
, 65
, 56

, 239
, 383
, 383
, 383
, 224
, 224

, 208
, 383
, 383
, 383
, 208

, 243
, 243
, 243

, 243
, 208
, 208
, 243
, 243
, 243
, 243
, 243
, 243

, 310
, 303
, 208
, 18

414 Index – 11

