Reference Manual

PATCHY

Version 5.04
November 1995

Julius Zoll

The address of this document is:
ftp://asisftp.cern.ch/cernlib/doc/ps.dir/p5refman.ps.gz
or in URL http://wwwcn.cern.ch/asdoc/ as P5 Reference

Please mail error corrections
to zoll@cern.ch

November 13, 1995

CERN

Geneva, Switzerland

Table of Contents

1 Principles 3
1.1 Program Nypatchy 3
1.2 The Patchy Auxiliary programs o .. 5

2 Control lines to structure PAHN files 7
2.1 Control-line format L o 7
2.2 Header lines: +TITLE, +PATCH, +DECK v v v v v v ... 10
2.3 Usage of sequences: +KEEP, +SEQ, +CDE« v v v v v v v v v .. 12
2.4 Built-in sequences e e e e e 15
2.5 Action lines: +ADB, +ADD, +REPL, +DEL 17
2.6 Sections of self material: +SELF, +SKIP v v v ... 20
2.7 Conditional material: +IF, +ELSE, +ENDIF 21
2.8 Usage of ”include” files: +INCLUDE v v v v v v v v e e e o 22
2.9 Patchy comment lines: +NIL 22

3 Control lines to define program versions 23
3.1 Adding to a program version: +USE 23
3.2 Imitate USE status: +IMITATE oo v i i v ittt e 25
3.3 Kill the run for bad selection: +KILL ot v v v v v .. 25

4 Control lines to steer Nypatchy 26
4.1 Running Nypatchy 26
4.2 Continue the cradle from afile: +MORE 28
4.3 Memory tuning: +NAMES, +GAP e 29
4.4 Operating options: +0PTION, +PARAMETER 30
4.5 Select processing modes: +EXE, +DIVERT, +XDIV, +LIST 32
4.6 Forcing processing modes: +FORCE, +SUSPEND 35
4.7 Invoking Pam file input: +PAM oL 36
4.8 Defining physical output streams, concepts 37
4.9 Defining physical output streams: +ASM 40
4.10 Updating a PAM file: +UPDATE i v it v v 42
4.11 Handling of clashing actions 43

5 Example jobs using Nypatchy 44
5.1 Ex1: Create the Patchy modules from the PAMfile 44
5.2 Ex2: Make test versions of Kernlib 48
5.3 Ex3: Make a test version of the Zebra library 49
5.4 Ex4: Develop a new part of Zebra, 50

5.5 Ex5: Using Nypatchy without a PAMfile 51

6 Auxiliary programs 52
6.1 Nyindex and Nylist — to print PAM file listings 53
6.2 Nysynopt — to print synoptic PAM file listings 54
6.3 Nycheck and Nytidy — to clean PAMfiles 58
6.4 Nydiff — to compare two PAM files for differences 59
6.5 Nymerge — to ready PAM files for release 62
6.6 Nyshell — to construct the commands to compile 64

7 Index 70

Chapter 1: Principles

Patchy is a family of programs, consisting of the principal program Nypatchy and its Auxil-
iary programs Nyindex, Nylist, Nysynopt, Nycheck, Nytidy, Nydiff, Nymerge, and Nyshell.

1.1 Program Nypatchy

Nypatchy is a pre-processor primarily intended to extract for compilation the routines of a
particular program version from a file, the so-called Patchy Master file or PAM file, which is
a file holding simultaneously all programmed-for versions of that program.

Patchy Master files

Such a PAM file is an ordinary text file containing the source code of the program, interleaved
with Patchy control lines supplying context information. It can be edited with normal text
editors.

A PAM file is subdivided into ”decks”, one deck normally being one routine. The text of a
deck is headed by a control line +DECK ,dname . For the deck name dname one usually chooses
the name of the routine.

Related decks are grouped into a higher level unit, which for historical reasons is called a
"patch” (a somewhat misleading use of this word). The text of a patch is headed by a
control line +PATCH,pname. This line and any following, until excluding the first line +DECK
in this patch, if any, are called the ”blank” deck of the patch.

.Program versions

These higher level units, the ”patches”, are the instrument to specify program versions. A
given version is defined by the list of the names of all the patches which together make
up this version. Patches on the PAM file whose names do not appear in this list are simply
ignored. A patch name is added to this list by a control line +USE,pname. occuring in a
patch which is itself already selected for USE. This selection has its origin in the ”cradle”,
the initial input to Nypatchy, whose begining is pre-selected for USE.

Almost all Patchy control lines, and thereby sections of source code, can be made conditional
on the USE status of some patches. A patch name used for this purpose does not necessarily
have to be the name of a patch physically present on the PAM file.

.Cradle

The ”cradle”, read by Nypatchy from standard input by default (unless a file is substituted),
controls the particular execution of Nypatchy through the control lines necessary to select
the program version and what to do with it. At least conceptually, the cradle is a file and
can be structured into patches and decks, just like a PAM file, except that its beginning is
considered to belong to the patch CRA*, which is pre-selected for USE. A control line +PAN, . . .
given in the cradle instructs Nypatchy to continue input from a file, whose name has to be
given. Having reached the end of the PAM file, input continues from the cradle with the next
line after. One excecution of Nypatchy may involve zero, one, or many, PAM files. PAM files
can only be called from the cradle, not from PAN files.

.Sequences

A 7sequence” is a set of text lines of which identical copies have to be delivered to maybe
many decks. A sequence is defined by heading the set of lines with a line +KEEP,sname.
Any deck which needs it pulls in a copy with the control line +SEQ,sname.

.Actions

The Patchy Auxiliary program Nydiff allows to compare two versions of the same PAM file
at different stages of evolution. The differences are delivered as a set of "actions” which
permit the older to be updated to the newer file. Action control lines are +DELETE, and

4 Chapter 1. Principles

+ADD or +REPLACE which head the addition or replacement material. Lines on the PAM file
are addressed by the names of the patch and deck to which they belong, plus their ordinal
line numbers within the deck.

.Deck contents
There are thus three different kinds of material which a deck may contain:

”Control material” on a PAM file is made up essentially of +USE lines (and just possibly
+DIVERT); for the cradle there are a number of other control lines of this kind.

”Foreign material” of a deck is material given in this deck, but for use elsewhere: sequence
definitions with +KEEP, and actions with +ADD, +REPL, etc., which influence the assembly
result of other decks.

”Self material” is material really belonging to the deck where it occurs, not affecting the
assembly result elsewhere. Most decks contain just that.

Most of the time a deck contains just one Fortran or C routine. But there will also be
decks containing only control material, or there may be decks holding shell-scripts, or other
material not meant to be compiled. Also, there may be decks which contain several related
small routines together in same same deck.

All the control lines in a deck (except a few run-initializing control lines of the cradle) can
be made conditional; moreover ordinary text lines can be made conditional by surrounding
them with control lines +IF, +ELSE, +ENDIF.

.Processing modes

Having defined the wanted program version with +USE lines, one has to tell Nypatchy, by
means of control lines given in the cradle, what it is supposed to do with the material of
this version. This is done by attaching ”processing modes” to some or all of this material.

The most obvious is EXE mode, which causes transfer of the assembled material to the
output file(s), ready for compilation (or whatever it may be needed for). The control line
+EXE. (without parameters) will cause delivery of all the material belonging to the selected
program version. With control lines +EXE,pname. one can select individual parts.

LIST mode can be assigned to all or some patches or decks of the program version, to obtain
a listing showing how each selected deck is assembled.

There are two other modes, DIVERT and XDIVERT, diversion and extra diversion, which can
be used to divide the material between different output streams. DIVERT mode is mainly
used to designate routines which have to be compiled with down-graded optimization.

Nypatchy operating in normal mode

The task of a normal run is the assembly of the EXE selected parts of the wanted program
version onto the so-called Assembled Material or ASM output files, ready to be compiled, or
to be used in some other way.

Operation is a single-pass scan through the homogenous sequential input stream:

- input starts with the cradle, whose beginning is the "blank deck” of the cradle patch
CRA*. With control lines given here one specifies the wanted operation:

- +USE lines select the program version;

+EXE etc. lines select processing modes;

+ASM lines select the output streaming;

+0PT etc. lines may select processing options.

- input continues with the cradle which may contain more decks of P=CRA* and other
patches, until the first line +PAM.

- a line +PAM effectively includes the contents of the named file at this point. Normally
the file is rewound before processing, processing runs until the end-of-file, and the file
is again rewound.

1.2. The Patchy Auziliary programs 5

- input reverts to the cradle just after the line +PAM when processing of the PAM file is
complete.

- several PAM files may be called up in succession; any number of decks or patches may
be given in the cradle. Input is stopped either by a control line +QUIT or by End-of-File
for the cradle.

This single-pass sequential processing has important consequences: it permits rules for re-
solving ambiguities by the principle that upstream material over-rules downstream material,
for example for multiple definitions of the same sequence with +KEEP. It requires that any
action, activation, or definition, be given upstream to the material concerned. Thus a se-
quence has to be defined by the time it is called, a patch has to be USE selected (or not) by
the time its processing starts.

The processing unit of Nypatchy is the deck. To process an accepted deck it is read complete
into memory. The accumulated actions into this deck, if any, are inserted, sequence calls are
resolved, and processing modes are evaluated.

The handling of the material contained in the deck depends on its nature:

a) self material, suitably interleaved with foreign material coming into this deck, is copied
to the ASHM file if EXE mode is on. If LIST mode is on a listing is produced on standard
output of all the details of the assembly process, showing every line going into the
assembled result, with its line number and patch/deck origin.

b) foreign material, i.e. sequences and actions, going out from this deck is held in memory,
waiting until it is needed, with processing mode flags attached as appropriate.

¢) +USE lines cause setting of flags, waiting for patches and decks to come, or to be
inspected for conditional control lines.

Nypatchy operating in Update mode

The task of an UPDATE run is to apply a set of corrections to a PAM file, delivering again a
PAM file (rather than compilable material). See para. 4.10 for details.

1.2 The Patchy Auxiliary programs

With the exception of Nyshell, these programs are straight-forward utilities handling PAM
files:

Nyinder produces a sorted index of the patches, decks, and sequence definitions, contained
on a PAN file, along with a table-of-content.

Nylist and Nysynopt list PAM files, with patch and deck page headers, and with local and
global line numbers. They list a PAM file as is, line by line; with Nypatchy one can list a
particular program version, showing how each routine is put together.

Nycheck runs through a PAN file to check the syntax of all control lines contained.
Nytidy makes a cleaned-up copy of a PAM file.

Nydiff compares two versions of the same PAM file at different stages of evolution, delivering
a correction patch with which the older version could be updated to the newer version.

Nymerge updates PAM file titles and replaces decks by new versions.

Nyshell receives from Nypatchy a ”log file” describing all the routines which have been
created through a particular physical output stream in SPLIT or MODIFY mode, writing
each routine to a file of its own. Its purpose is to produce a shell-script to compile all the
routines, with Fortran, CC, or the assembler, with or without optimization, depending on
the properties of each routine. It can be made to compare the dates of the source file of
each routine, of its corresponding .o file, and of any include file used, to decide whether
re-compilation of the routine can be avoided, thereby saving run time.

Chapter 1. Principles

Chapter 2: Control lines to structure PAM files

2.1 Control-line format

.Examples:

+PATCH, P=LILIUM, T=DATA, IF=SIX, IF=WHITE.
+USE, P=CONVALLARIA, POLYGONATUM, MAIANTHEMUM.
+KEEP, Z=HUMUS.

+SEQ, Z=HUMUS, AQUA, LUX.

+ADD, P=ROSA, D=ALPINA, L=24.

+__IF, WHITE.
+__ELSE, IF=GREEN.
+__ENDIF.

.Control line key

Control-lines are flagged by "+" in column 1 and are normally identified by the first 3 letters
of the key word in columns 2-4, but for the control-lines +_IF, +_IFNOT, +_ELSE, +_ENDIF
(without or with leading underscores) where the full key word should be given.

Trailing characters of the key word are allowed and ignored, the key is separated from the
first parameter by comma:

+REPLACE, P=...
+REPL, P=...
+REP, P=...

Lines with "+" in column 1 but unknown key are treated as ordinary lines. The significant
part of the key word may not contain blanks.
.Environment variable substitution

Before parsing a Patchy control line given in the cradle, identified as such by its key-word,
Nypatchy will substitute environment variables specified a la Unix with the curly brackets
required, for example:

+USE, ${machine}.
where the variable might have been set in the shell-script like:
setenv machine "SUN, SOLARIS" (C shell)
.Comment field

Normally Patchy processes the information on a control-line up to and excluding the first
character " .", case-insensitive.

The columns starting with the first after the terminating "." until the end-of-line are called
the comment field of the control-line. Normally this is freely available for any comment:

+DEL, P=ROSA, D=ALPINA, L=258. Suppress temporary test

But with some control-lines the comment field is used to carry case-sensitive long-text in-
formation, with leading blanks being significant:

+PAM, T=ATTACH ./cern/new/src/car/zebra.car
+SEQ, QDATE . PARAMETER (IPDATE=7)

To protect the user against mistyping a dot for a comma Nypatchy will print a warning if
the terminating dot is ”obscured”. It is not obscured if the comment field is empty, or if the
terminating dot is preceded or followed by at least 2 blanks, or surrounded by at least one
blank, like so:

+PAM, T=ATTACH ./cern/new/src/car/zebra.car
+USE, QS_UNIX. running Unix
+USE, QS_UNIX . running Unix

7

8 Chapter 2. Control lines to structure PAM files

This check is switched off if BACK compatible operation mode is "on” (the default for the
time being).

Parameter key

A parameter consists of the parameter key and the parameter value(s) separated by "=".
Of the parameter key only the first letter is significant:

+ADD, PATCH=ROSA, DECK=ALPINA, LINE=24
+ADD, P=ROSA, D=ALPINA, L=24

The parameter key of the first parameter may be omitted, in which case a default key is
assumed; the default depends on the kind of the control-line:

+PATCH, LILTUM, T=DATA.
+USE, CONVALLARIA, POLYGONATUM, MAIANTHEMUM.
+EXE, CONVALLARIA, D=MAJALIS.

The default key for any control line is indicated in the specifications by including it in round
brackets, for example:

+USE, (P=)pname, D=dnane,...

Special handling has been provided for further omitted keys only with the action lines +ADB,
+ADD, +REPL, +DEL (example: +ADD,ROSA,ALPINA,24.) This is described in para. 2.5.

Parameter value
Parameter values are, depending on the key:

names for keys P=, D=, Z=, IF=; S=, R=, F=:
character value of up to 32 characters, excess characters are permitted but ig-
nored; normally all characters are alphanumeric, but other FORTRAN characters
are allowed, except the separators "=, .-". The number of significant characters
can be reduced with the control line +NAMES,n.

numbers for keys L=; C=: unsigned integer or pair of integers separated by "-".
for key N=: integer or pair of integers separated by "-".

options for key T=:
a word, normally alphanumeric. The first 1 or 3 characters (depending on the

contex) must be given, further characters must be correct if present. In the
specifications the optional extra characters are indicated in lower case.

In many circumstances multiple parameter values are accepted:

+USE, CONVALLARIA, POLYGONATUM, MAIANTHEMUM.

+DEL, ASPARAGUS, L=12, 36-38, 54-56, 75, 91.

+SEQ, HUMUS, AQUA, LUX.

+EXE, POLYGONATUM, D=0DORATUM, VERTICILLATUM.

Not every intuitively meaningful form is actually programmed for; only the explicitly allowed
forms will operate correctly.

For backward compatibility, the parameter key may be repeated with every parameter value:

+SEQ, Z=HUMUS, AQUA, LUX.
+SEQ, Z=HUMUS, Z=AQUA, Z=LUX.

Except in the case of the IF parameter, there is no difference between the two forms.

2.1. Control-line format 9

.Conditions

Any Patchy control-line (except +UPDATE, +NAMES, +GAP, +MORE, +TITLE, +ENDIF) may be
made conditional on the USE status of some patches by adding IF parameters.

If present, the IF parameters must be the last parameters on the line:
+PATCH, LILIUM, T=DATA, IF=SIX.
Logical operations OR, AND and NOT are possible with the IF parameters:
+EXE, GEUM, D=RIVALE, IF=APR,MAY,JUN, IF=HUMID, IF=-FROST.
The IF parameters are written in general as follows:
., IF=pl1,pl12,..., IF=p21,p22,..., IF=p31,p32,...,

The pij are patch names, possibly preceded by "-" to indicate the logical NOT, used as
variables in the above truth-function. The truth-value of a particular pij given as ”pname”
is "true” if patch pname is USE selected, and ”false” otherwise; if given as ”-pname” the
value is ”true” if patch pname is not USE selected. The elements pij of the IF group "i"
combine by the logical OR; all IF groups combine by the logical AND.

Hence, a line with IF parameters is accepted if each IF group is ”true” (logical AND); the
IF group "i'" is ”true” if at least one of its pij is "true” (logical OR). The truth-value is
evaluated with the USE selection status of the patches involved at the moment in time when
the action requested by the control-line is actually performed for the first time.

Associated material belonging to a rejected control-line is skipped:
+ADD, HYPERICUM, PERFORATUM, 24, IF=-COWS,-SUNSHINE.

<action material>

+PATCH, EPIPACTIS, IF=EUROPA.
<patch material>

+KEEP, AQUA, IF=WINTER.
<sequence material>

Patch names quoted in IF parameters need not be actual patches physically present on the
PAM file.
.Changed features since Patchy version 4:
1) the maximum line length is now 512 characters for all lines;
2) control-lines are no longer cut after column 72;
3) a terminating dot can no longer be cancelled by following it with a comma;

4) the IF status of a control line is no longer evaluated at the time the line is read, but only
when it is used.

10 Chapter 2. Control lines to structure PAM files

2.2 Header lines: +TITLE, +PATCH, +DECK

A PAM file should start with some text identifying or describing the file. This material, up
to and excluding the first line +PATCH we call the "title patch”. Its very first line is the PAM
title in the restricted sense, whose standard format is, for example:

PATCHY 5.00 /55 1994/02/18 11.20 CERN library L400

Its first word is the PAM file identifier, consisting of up to 32 characters like other Patchy
names, (leading blanks or an initial "C" followed by blanks ignored) followed by the version
number and maybe the optional update level, followed by the date and the time; the rest of
the line may contain arbitrary text.

The name of the title patch is the PAM file identifier prefixed with the ”commercial at”, for
this example it would be QPATCHY. A title patch is not normally USE selected (except in
UPDATE mode).

The line

+TITLE.
or +TITLE: PATCHY 5.00 /55 1994/02/08 11.20 anything

may be used to separate 2 PAM files residing on the same file, it starts a new title patch
which must give a new PAM title. The line +TITLE and the first line of the title patch may
be joined, as shown above. Note the use of the colon in this case.

The line

+PATCH, (P=)pname, T=type, IF=...

starts patch ”pname” and also the ”"blank deck” of this patch; it has line-number zero.

The parameter T=Repeat on a +PATCH line indicates that another patch of the same name
follows downstream. This causes Nypatchy to hang on to any non-consumed material for
this patch after the processing of the present patch has finished.

The line

+DECK, (D=)dname, P=pname, T=type, IF=...

starts deck ”dname”; it has line-number zero.

The parameter P=pname can be used to indicate the patch to which this deck belongs;
Nypatchy ignores it.

The type parameter T=Join on a line +PATCH or +DECK can be used to suppress the page
eject which normally occurs with Nylist in non-compact mode just before listing this patch

or deck.

As far as Patchy is concerned, deck names need not be unique on a PAM file, but there must
not be two decks of the same name belonging to the same patch; if this happens the second
deck cannot be addressed. But as far as the result from Nypatchy is concerned, duplicate
deck names are acceptable only for mutually exclusive decks, otherwise the sources of the
two decks may destroy each other.

2.2. Header lines: +TITLE, +PATCH, +DECK 11

.Data types

The T parameter is also used to specify the ”"data type” of the patch or the deck, that is
the nature of the material contained in the patch or the deck.

There are 7 standard data types:

FORT for Fortran

CC for C
INCL for C include files
AS for assembler

DATA for a data type with no implied actions
SHELL for shell scripts (VAX: .com files)
CRAD for Patchy cradles to be used in a subsequent run

For back-compatibility the data-type designators used with version 4
COmpile, Xcc, As*, Data
are also recognized (As* means: A or anything starting with AS).

Further data types may be defined by the user, for each type he chooses a name and sticks
to it. Data type names must be given exact, they cannot be abbreviated or have trailing
characters, except for the back-compatible handling mentioned just above. For details on
the use of data types, see the description of control line +ASM, para. 4.8.

The default value for a patch is T=FORT, the default value for a deck is the type of the patch
to which it belongs.
.Conditions

The whole patch or deck is skipped if the IF result is "false” or if it is not USE selected at
the time its processing is started. The contents of a skipped patch or deck are not analysed
in any way, except that the T=REPEAT parameter on the header line of a USE selected but IF
deselected patch is recognised.

.Examples:

+PATCH, LILIUM.
+DECK, CANDIDUM.

normal header lines of patch and deck.
+PATCH, LILIUM, T=DATA,REPEAT, IF=SIX.

header line of patch LILIUM, containing material of type DATA (for some user program, not
for the compiler or assembler); another patch with the same name will come later in the PAM
stream; the material of the present patch is to be ignored if patch SIX is not USE selected.

+PATCH, OPHRYS, T=LATEX.

header line of patch OPHRYS with material for processing with Latex.

12 Chapter 2. Control lines to structure PAM files

2.3 Usage of sequences: +KEEP, +SEQ, +CDE

”Sequences” are strings of zero, one, or several lines, which once defined with +KEEP ,name.
can be called up any number of times for inclusion in any downstream deck with +SEQ,name.
Two distinct kinds of usage are made of sequences: they are used to provide Common-
Dimension-Equivalence declarative statements for the Fortran decks of a program and they
are used to provide optional code for places where it is demanded.

.Defining

A sequence is defined thus:

global: +KEEP, (Z=)sname, T=type, IF=...
patch-directed: +KEEP, (Z=)sname, P=pname, T=type, IF=...
deck-directed: +KEEP, (Z=)sname, P=pname, D=dname, T=type, IF=...

<lines of sequence material>

A global sequence is available to any downstream deck; a patch-directed sequence is available
only to the decks of patch ”pname”; a deck-directed sequence is only available to deck
”dname” of patch ”pname”. The memory occupied by non-global sequences is liberated as
soon as the processing of patch ”pname” or of deck ”dname” is complete.

The sequence material may contain, apart from ordinary text lines, Patchy control-lines
+SEQ, +IF etc, +INCL, +NIL, +KILL; — any other control-line, or the end-of-deck, terminates
the sequence definition. Thus the definition of a sequence may ”quote” other sequences, and
it may contain conditional material.

Because of this property we call +SEQ, +IF etc, +INCL, +NIL, +KILL, ”soft” control-lines;
all others are "hard” control-lines, acting as terminators for material associated to a +KEEP
(and various other control lines, like +ADD, +SELF, +IF).

The T=type parameter may be used:
T=Append allows the sequence material to be appended to an existing sequence definition,
see below for examples; any sequence may be appended to only once.

T=Nolist prevents the contents of this sequence from being listed when called in a deck
with LIST mode selected.

T=Dummy causes this definition to be ignored; this exists only for back-compatibility.

.Calling

Sequences may be called or quoted with

+SEQ, (Z=)sname, s2, ..., T=PASS, IF=...
+CDE, (Z=)sname, s2, ..., T=PASS, IF=...

The form +CDE is exactly synonymous with +SEQ, it is usually preferred for CDE declaratives.
If several sequences are called, substitution occurs in the order indicated on the control line.
If a sequence is called which has not been defined upstream, a ”"missing sequence” diagnostic
is given unless the option T=Pass is specified. A well constructed PAM file does not cause
this diagnostic without good reason.

Sequences may also be called with

+SELF, (Z=)sname, s2, s3,..., T=PASS, IF=...
<default self material>

Depending on whether or not the first sequence ”sname” is defined, either the sequences are
called and the default self material is ignored, or the default self material is accepted and
the sequence names are ignored. For more details see para. 2.6.

2.3. Usage of sequences: +KEEP, +SEQ, +CDE 13

Dummy sequence calls of the form
+3EQ, sname, &2, ..., T=DUMMY, IF=...
are accepted for back-compatibility; they have no effect, except that processing modes at-
tached to the patches quoted in the IF= parameter are inherited.
.Overruling
Multiple definitions of the same sequence are resolved thus:

a) the global sequence takes precedence over the patch-directed sequence, and this over
the deck-directed sequence;

b) if both sequences are on the same level, the upstream definition (i.e. coming earlier in
the input stream) takes precedence over the downstream definition.

In fact, a sequence definition is skipped during input if it is already overruled at that moment.

.Conditional definitions

Conditional definitions may be given either by placing the corresponding +KEEP definitions
into separate patches which are, or are not, USE selected, or else by giving IF parameters on
the +KEEP lines, as in this example:

+KEEP, RUST, IF=ROSA.

< sequence material in case P=R0SA is selected >
+KEEP, RUST, IF=LILIUM.

< sequence material in case P=LILIUM is selected >
+KEEP, RUST.

< default sequence material >

In this example, if patch ROSA is USE selected the first definition of RUST is accepted, and the
other two are over-ruled. If neither ROSA nor LILIUM are USE selected the first two definitions
are skipped, and the third one holds.

If only part of the material is conditional one can use the control-lines +_IF etc, for example:

+KEEP, RUST.
< line group a >
+_IF, ROSA.

< line group bl >
+_ELSE, LILIUM.

< line group b2 >
+_ELSE.

< line group b3 >
+_ENDIF.

< line group c >

Such a set of conditions must be complete within the sequence definition. The conditions
are evaluated when the sequence is called up for the first time.

.Composites

Quoting a sequence in the definition of an other sequence is possible, as already said, for
example:

+KEEP, AIR.

< sequence material >

+SEQ, WATER, NOBLE, IF=EXACT.
< more sequence material >

The definition of Z=AIR quotes the sequences WATER and NOBLE, which must be defined by the
time Z=AIR is called for the first time; it is at this moment that the IF=EXACT is evaluated.
Up to 36 levels of quotation are allowed.

14 Chapter 2. Control lines to structure PAM files

.Appending

Appending to a sequence: the situation does occasionally arise that one would like to aug-
ment an already defined sequence by more material, and one might wrongly be tempted to
give for example:

+KEEP, Q. Wrong !!
+CDE, Q.
<more sequence material>

This definition would simply be ignored, because Z=Q is already defined. The desired effect
can be achieved with

+KEEP, Q, T=APPEND.
<more sequence material>

If at all, this feature has to be used with care, because the effect of +CDE, Q. is different before
and after the re-definition, and because the original definition does not remain available.

A better way of solving this problem is to define, for example:

+KEEP, QQ.
+CDE, Q.
<more sequence material>

and to call Z=QQ everywhere instead of Z=Q.

Jmmediate substitution

To permit the construction of frequently called composite sequences, which will appear
in listings as simple sequences, Nypatchy can do a direct substitution, thus reducing the
composite sequence to a simple sequence. The condition for this to happen is the following:

+KEEP, shigh. "shigh" contains only 1 line, it is global
<1 line only> and it is upstream to "slow'".
+KEEP, slow. "slow" quotes "shigh" with a +SEQ line

. which quotes no other sequence.
+CDE, shigh.

Normally, the different pieces of composite sequences are kept separately in memory, and are
assembled every time the sequence is called. But in the above case Nypatchy will replace in
memory the line +CDE,shigh. by the line belonging to ”shigh” whilst reading the definition
of ”slow”, thus joining the three pieces of ”slow” into one. On any listed output, this line
from ”shigh” will carry the line-number of the line +CDE,shigh.

.Built-in sequences

A number of sequence names are reserved; these so-called built-in sequences are used to
make Nypatchy do certain things or deliver context information. They are decribed in the
next paragraph; the reserved names are:

DATEQQ QENVIR QFTITLE QFVSNUM
QCARD1 QFHEAD QFVERS QTERMHD
QDATE QFNAME QFVPRIM QTIME
QEJECT QFTITLCH QFVSEC TIMEQQ

2.4. Built-in sequences 15

2.4 Built-in sequences

Unlike normal sequences which have to be defined by the user with a control-line +KEEP,
the built-in sequences have a pre-defined meaning for Patchy. Most of them deliver text like
normal sequences, but some are pseudo-calls calling for an action of Patchy:

+SEQ, QCARD1, R=rname.

This pseudo-call can be used either to change the routine name, or to mark the beginning
of a new routine in a multi-routine deck, specifying the routine name to be used with a
routine-header line or for a file name in split-mode output, cf. para. 4.8. It has no effect if
the parameter R=rname is absent.

+SEQ, QEJECT, N=n

This may be used for listings with Nylist to cause a page eject if there are less than n lines
left on the current page. If the N=n parameter is absent the page eject is unconditional.

+SEQ, QDATE, S=?7 .txa?txe
+SEQ, QTIME, S=7 .txa?txe

These calls can be used to obtain the current date or the time of the Nypatchy run. They
will deliver one line, containing the text given in the comment field with the escape character
replaced by the date or the time of the run. The escape symbol is "?" by default, it can be
changed with the S= parameter.

Examples: +SEQ, QDATE . PARAMETER (IPDATE=7)
might give: PARAMETER (IPDATE=19920229)

+SEQ, QTIME .#define now 7
night give: #define now 2204

+SEQ, QENVIR .statement

This call will deliver one line, containing the statement given in the comment field with
environment variable substitution; the name of the variable is specified in the Unix way
with the curly brackets required, and case-sensitive.

Example: +3EQ, QENVIR . PARAMETER (DIR=’${XDIR}/’)
might give: PARAMETER (DIR=’/cern/dev/’)

For back-compatibility only we have the following built-in sequences to obtain date and time
of the Nypatchy run and the PAM title line of the current PAM file for a Fortran context only:

+SEQ, DATEQQ. is replaced by IDATQQ=yymmdd
+SEQ, TIMEQQ. is replaced by ITIMQQ=hhmm

+SEQ, QFTITLE, N=n. is replaced by the FORTRAN continuation line
+ nnH< first n characters of last PAM title >

+SEQ, QFTITLCH, N=n. is replaced similarly by
+ ’< first n characters of last PAM title >’

The first n<63 significant characters of the title are transmitted; if the parameter N=n is
absent, n=8 is used.

16 Chapter 2. Control lines to structure PAM files

+SEQ, QFxxxx, S=7?, L=1lim, N=n .txa%txe

This set of sequences gets components of the PAM file header line. Each sequence call will
expand into one line of text starting with the text ”txa” given in the comment field, with
leading blanks significant, followed by the ”value” substituted for the escape symbol (here
and by default ”?”), followed by the text ”txe”, if any.

The optional parameters are:
S=sym can be used to specify the escape symbol, default "?".

L=1im may be used to limit the length of the value string, default is the 'natural length’
of the item, which for QFHEAD includes the file ID, the version, date and time of
the file.

N=n may give the ordinal number of the PAM file whose header line is to be used,
if n > 0: take the n’th PAM file
if n < 0: take the n’th PAM file before the current
default: the current PAM file.
Get the PAM file header line as is: QFHEAD

Example: +SEQ, QFHEAD . DATA VIDQQ /’@(#)7>°/
might give: DATA VIDQQ /’@(#)WYLBUR 1.08 /7 1992/02/29 12.00>’/

Get the Pam file identifier: QFNAME

Example: +3EQ, QFNAME . CHID = 7?7’
might give: CHID = ’WYLBUR’

Get the version as a text string: QFVERS

Example: +3EQ, QFVERS . CHVERS = ’7?
might give: CHVERS = °1.08 /7’

Get the version as a number: QFVSNUM

Example: +3EQ, QFVSNUM . int pamvers = 7;
might give: int pamvers = 10807;

Get the primary version number: QFVPRIM

Example: +SEQ, QFVPRIM, S=@ . NUMVERS = @ * 100.01
might give: NUMVERS = 1.08 * 100.01

Get the secondary version number: QFVSEC

Example: +3EQ, QFVSEC, S=@ . NUMALL = 1000*NUMVERS + @
night give: NUMALL = 1000*NUMVERS + 7

2.5. Action lines: +ADB, +ADD, +REPL, +DEL 17

2.5 Action lines: +ADB, +ADD, +REPL, +DEL

Action lines modify the assembly process of decks downstream. They can be used to change
the result from a deck without actually changing the deck on the PAM file, but they are
now not normally created by the user, they are used in correction cradles generated by the
Auxiliary program Nydiff.

The lines

+ADBEFORE, (P=)pname, D=dname, L=cnum, IF=...
<action material>

+ADD, (P=)pname, D=dname, L=cnum, IF=...
<action material>

cause the action material to be added just before or just after the specified line, unless the
IF result is ”false”. The version 4 parameter C= is recognised to mean L=.

The line

+REPLACE, (P=)pname, D=dname, L=c1-c2, IF=...
<action material>

causes the lines c1 to ¢2 inclusive to be deleted and replaced by the action material, unless
the IF result is ”false”. For single-line replacement the parameter is written as "L=cnum".

The line

+DELETE, (P=)pname, D=dname, L=cl-c2, c3-c4,.., IF=...

causes deletion of lines ¢l to ¢2, ¢3 to c4,... (inclusive), unless the IF result is ”false”.

As for sequences, the action material is terminated by the next "hard” control-line or the
end-of-deck, it may contain ”soft” control-lines, that is any of +SEQ, +IF etc, +INCL, +NIL,
+KILL. Thus the action material may ”quote” sequences, even if they are not yet defined,
and carry other soft control-lines to the target.

The course taken for conflicting actions is described in para. 4.11, Clash handling.

.Delayed control lines

To send a hard control-line to some downstream deck one has to replace the "+" in col.1 by
a "-" for example:

+ADD, *ROSACEAE, L=12.
-USE, CYDONIA.

which will add the line +USE,CYDONIA. after line 12 in the blank deck of P=*ROSACEAE.
Nypatchy will turn the "-" in column 1 into a "+", provided the key in cols. 2-4 is that of
a Patchy control line. In a normal run the control line will operate at the place where it is
put; in an UPDATE run it will appear in the updated PAM file at the right place.

18 Chapter 2. Control lines to structure PAM files

JImplied patch/deck name

If, in the same deck, a series of consecutive action lines all address the same patch or deck,
the corresponding designators need not be repeated; for example:

+ADD, P=TULIPA, D=BOEOTICA, L=12.
<action material>

+DEL, L=25, 39-51, 92, IF=FORMICA.

+REPL, D=SILVESTRIS, L=36-37.
<action material>

+DEL, L=25.

+ADD, P=SCILLA, L=64.
<action material>

+DEL, D=BIFOLIA, L=12.

.Omitted parameter keys

As a special facility for action lines +ADB, +ADD, +REPL, +DEL, Nypatchy accepts omitted
parameter keys as shown by the following transcription of the preceding example:

+ADD, TULIPA, BOEOTICA, 12.
<action material>
+DEL,,, 25, 39-51, 92, IF=FORMICA.
+REPL,, SILVESTRIS, 36-37.
<action material>
+DEL,,, 25.
+ADD, SCILLA,, 64.
<action material>
+DEL,, BIFOLIA, 12.

Rules: a) on a given action line, parameter keys P=, D=, L= (only) are implicitly substituted
for ”omitted keys” as long as no key has been given previously. b) ”Omitted designators”
must be marked by ",".

Valid examples:

+ADD, P=TULIPA, D=BOEOTICA, L=12, IF=FORMICA.
+ADD, TULIPA, D=BOEOTICA, L=12, IF=FORMICA.
+ADD, TULIPA, BOEOTICA, L=12, IF=FORMICA.
+ADD, TULIPA, BOEOTICA, 12, IF=FORMICA.

Invalid forms:
+ADD, P=TULIPA, BOEOTICA, 12, IF=FORMICA. faulty!
(multiple parameter values to P=)
+ADD, TULIPA, BOEOTICA, 12, FORMICA. faulty!
(key other than P,D,C).
Notes

To delete a sequence definition or an action with Patchy 5 one has to delete the +KEEP or the
action line itself and the associated action material exactly; this was required with Patchy
version 4 only in UPDATE mode, but not in normal mode.

For backward compatibility, the line

+REPL, ..., Z=sname, s2,
<action material>

is accepted, interpreted as

+REPL, ...
+SEQ, Z=sname, s2,
<action material>

Similar forms are allowed for +ADB and +ADD.

2.5. Action lines: +ADB, +ADD, +REPL, +DEL 19

.Actions on foreign material

Level 1 actions operate on the self material or control material of the deck addressed. Level
2 actions are operations on the foreign material of level 1 actions or sequences contained in
the deck addressed; Nypatchy handles actions up to level 80.

The meaning of higher level actions is straightforward, but it may be useful to visualize the
following examples:

Suppose we have this patch P=HYBRID:

W N RO O

SIS

8
9
10
11

12
13

0

+PATCH, HYBRID.
+DECK, TETRAHIT.
+KEEP, FOLIUM.
line 1

line 2

+ADD, P=GALEOPSIS, D=SEGETUM, L=36.
line 1
line 2

+DELETE, L=41-44.
+REPLACE, L=75-124.
line 1

line 2
line 3

+ADBEF, L=148
line 1

+DECK, SULPHUREA.

and the following actions:

+ADD, P=HYBRID, D=TETRAHIT, L=2.
<action material>

this causes the action material to become part of the sequence Z=FOLIUM.

+REPL, P=HYBRID, D=TETRAHIT, L=3-13.
<action material>

this causes the action material to become part of the sequence Z=FOLIUM and deletes the
rest of D=TETRAHIT.

+REPL, P=HYBRID, D=TETRAHIT, L=7-11.
<action material>

this causes the action material to become part of the +ADD action and it deletes the +DEL
and +REPL actions.

+DEL, P=HYBRID, D=TETRAHIT, L=7-11.

this causes the +DEL and +REPL action to be deleted.

20 Chapter 2. Control lines to structure PAM files

2.6 Sections of self material: +SELF, +SKIP

The control-line +SELF is used to structure the contents of a deck. It terminates any material
which preceds it, whether self material or foreign material (i.e. sequence material headed
by +KEEP or action material headed by +ADD etc.) It opens a new section of self material,
possibly conditional or optional.

A section of self material is terminated by the next ”hard” control-line or the end-of-deck, it
may contain ”soft” control-lines, that is any of +SEQ, +IF etc, +INCL, +NIL, +KILL. Sequence
calls within self-material are part of it.

+SELF, IF=...
<conditional self material>

starts a section of conditional self material, which is skipped if the IF result is ”false”, or is
accepted if "true”. In the absence of IF parameters the self material is unconditional, i.e.
always accepted.

+SKIP, IF=...
<conditional self material>

is much like +SELF,IF=..., it also starts a section of conditional self material, but this is
skipped if the IF result is ”true”.

Example:
+KEEP, AQUA.
< sequence material > foreign material goes to memory
+3ELF.
< self material > self material goes to the ASM file

However, mixing of foreign and self material in the same deck is not recommended.

+SELF, (Z=)sname, s2, ..., T=PASS, IF=...
<default self material>

starts a section of optional default self material: provided the IF result is ”true”, the assem-
bly result depends on whether or not the first sequence ”"sname” is defined:

yes: the sequences ”sname”, ”s2”,... are called,
missing sequences ”s2”,... cause a diagnostic unless T=PASS is specified,
the default self material is skipped.

no: the sequence calls are ignored, the default self material is accepted.
If the IF result is false, both the sequence calls and the default self material are skipped.

For several successive pieces of conditional code in self material using +SELF rather than +IF
can be more readable, for example:

+SELF, IF=LIGHT. instead of: +IF, LIGHT.

< material a > < material a >
+SELF, IF=WATER. +ENDIF.

< material b > +IF, WATER.
+SELF, IF=HUMUS. < material b >

< material ¢ > +ENDIF.
+SELF. +IF, HUMUS.

< material ¢ >
+ENDIF.

2.7. Conditional material: +IF, +ELSE, +ENDIF 21

2.7 Conditional material: +IF, +ELSE, +ENDIF

These control lines can be used to make ordinary text lines, interspersed with ”soft” Patchy
control lines, conditional. They may be part not only of self material, but also of foreign
material, i.e. sequence or action material.

+_IF, (IF=)... open an IF section of material,
<material> accept the material if "true"

+_ELSE, (IF=)... accept if the initial +IF and
<material> all previous +ELSE have failed,

and if the IF condition is true.

+_ENDIF terminate an IF section.

For convenience Patchy accepts also:

+_IFNOT, (IF=)... is the opposite of "+_IF, ...",
<material> i.e. accept the material if "false"

A section of conditional code must be opened with +IF (or +IFNOT), and it must be termi-
nated by +ENDIF; inside it may contain any number of +ELSE (left example).

IF sections may be nested within other IF sections, in which case the number of under-
scores should indicate the nesting level. Level 1 may be indicated either by zero or by one
underscore, level 2 should have one more, etc (right example).

.Examples:

+KEEP, RUST. +_IF, LILIACEAE.

< line group a > +__IF, LILIUM.
+_IF, ROSA. +___IF, CANDIDUM.

< conditional group bl > < material for Lilium candidum>
+_ELSE, LILIUM. +___ELSE, MARTAGON.

< conditional group b2 > <material for Lilium martagon>
+_ELSE, IRIS. +___ELSE, BULBIFERUM.

< conditional group b3 > <material for Lilium bulbiferum>
+_ELSE. +___ELSE.

< conditional group b4 > <material for Lilium sp.>
+_ENDIF. +___ENDIF.

< line group c > +__ELSE, PARADISEA.

+___IF, LILIASTRUM.

<material for Paradisea liliastrum>
+___ELSE, LUSITANICA.

<material for Paradisea lusitanica>

+___ELSE.
<material for Paradisea sp.>
+___ENDIF

+__ELSE, ANTHERICUHM.

<material for species of Anthericum>
+__ELSE.

<material for other genera of Liliaceae>
+__ENDIF.
+_ELSE, ROSACEAE.

<material for the family of Rosaceae>
+_ELSE, LABIATAE.

<material for the family of Labiates>
+_ENDIF.

22 Chapter 2. Control lines to structure PAM files

2.8 TUsage of ”include” files: +INCLUDE

The purpose of this control line is to make Patchy aware of the dependency of decks of
data type CC on include files, to trigger recompilation of decks which depend on include files
which have changed.

The line

+INCLUDE, (Z=)iname, IF=...

is replaced by Nypatchy with
#include "iname.h"

Like +SEQ, this is a ”soft” control line, i.e. it can be part of foreign material or of conditional
material under control of a +IF.

An include file present on the user’s Pam file is defined in a deck of its own with data type
INCL, for example:

+DECK, MZINC, T=INCL.
< text of the include file >

and its use is signalled with the control line
+INCLUDE, MZINC.

which line is replaced by Nypatchy with
#include "mzinc.h"

If the ASM output is generated in MODIFY mode, Nypatchy itself knows whether an include
file has changed and marks itself dependent decks for re-compilation. At the next step,
Nyshell will check on the dates of the object files and dependent include files of all decks
which Nypatchy has signalled as unchanged to make sure that re-compilation is really not
needed.

2.9 Patchy comment lines: +NIL

A control line whose key is +NIL is ignored by Nypatchy when seen as part of self material.

Many-line comments are more easily done by heading them with +SKIP. and terminating
with +SELF, for example:

+NIL. To extract the installation job for a given machine:

+WIL. #!'/bin/csh -f -v

+NIL. nypatchy patchy.car job.sh .go <</
+NIL. +EXE.

+NIL. +USE, *INSTAL.

+WIL. +USE, APOLLO. (for example)
+NIL. +PAIM.

+WIL. /

is better written as:

+3KIP.
To extract the installation job for a given machine:
#!/bin/csh -f -v
nypatchy patchy.car job.sh .go <</
+EXE.
+USE, *INSTAL.
+USE, APOLLO. (for example)
+PAM .
/
+SELF .

Chapter 3: Control lines to define program versions

3.1 Adding to a program version: +USE

The program version wanted with a particular run of Nypatchy is selected with +USE lines
given in the cradle, for example:

+USE, *PATCHY, APOLLO.

which selects the complete source code of Patchy to be used on Apollo. Just what are the
constituents of this complete program version is programmed on the PAM file itself, here in
the ”pilot patch” P=*PATCHY. This contains essentially a series of +USE lines, some of them
conditional on the USE status of P=APOLLO. (By convention, patch names of pilot patches
start with the character "*".)

The line

+USE, (P=)pname, p2, ..., T=type, IF=...

causes the patches "pname”, ”p2”, ... to be USE selected, if it occurs in a patch or deck
which is itself USE selected (unless T=INHIBIT or unless the IF result is ”false”).

The line

+USE, (P=)pname, D=dname, d2, ..., T=type, IF=...

causes the decks ”dname”, ”7d2”, ... of patch "pname” to be USE selected, without affecting
the USE status of patch ”pname” as a whole.
The line

+USE. without P/D - parameters

given in the cradle is a global selection of everything. This should be used only in UPDATE
mode.

The type parameter T=Inhibit turns any +USE line into its opposite: it definitely excludes
the specified patches or decks from the wanted program version, irrespective of any past or
future +USE; thus USE inhibition is stronger than USE selection.

The type parameter T=Repeat indicates that there are several patches of the same name.
Unless duplication of a patch name ”pname” is specified by +PATCH,pname,T=REPEAT.,
Patchy assumes that any patch-name occurs only once and discards any material for a
patch whose processing is terminated. If this has been forgotten on the PAM file it can be
corrected from the cradle with +USE,pname ,T=REPEAT.

The type parameters T=List, Exe, Divert, Xdiv may be used to select the processing
modes straight away with the +USE line, but this is rarely useful and, if at all, only in the
cradle, see para. 5.4.

The cradle patch P=CRA* is preset to be USE selected, so is the option patch PY_VS5 which
signals that Patchy version 5 is running. Other patches which the user cares to present in
the cradle become part of the wanted program version only if explicitly USE selected.

23

24 Chapter 3. Control lines to define program versions

.Examples:

+USE, CONVALLARIA, POLYGONATUM, MATANTHEMUM.
USE selection of 3 patches.

+USE, CENTAUREA, D=CYANUS, MONTANA.

USE selection of 2 decks in P=CENTAUREA. Normally USE selection is issued for entire patches
only, but occasionally it is convenient to group a number of utility routines together into a
single patch and to select them individually as decks.

+USE, TCGEN, D=UCOPY, T=INHIBIT.

USE inhibit of a particular deck. This can be used to overrule some default from a chosen
preference.

+USE, RIBES, T=INHIBIT.

USE inhibit of a particular patch.

.Notes:

Any patch (or deck) which is not USE selected by the time it comes along in the cradle /
PAM input stream is simply skipped over.

USE selection only indicates which material is to be taken into consideration, it does not in
itself imply what should happen to it. This is done in the cradle by assigning ”processing
modes” either to the complete wanted program version or only to parts of it, as described
in para. 4.5.

Be sure to specify always the complete wanted program version, even if the whole program
exists compiled on a library and you only want to re-compile one routine.

You should never try to get selective compilation by
not including material into the USE selected program.

Instead you should define the complete program with
USE lines, and select just the parts to be compiled
with EXE lines.

If you do not heed this advice all sorts of traps will be waiting. For example, some for-
eign material from somewhere which you forgot about will not arrive in just the particular
subroutine which you want to compile.

3.2. Imitate USE status: +IMITATE 25

3.2 Imitate USE status: +IMITATE

The line

+IMITATE, (P=)pname, p2,

causes the patches ”pname”, ”"p2”,... to appear USE selected for any evaluation of IF pa-
rameters, but inhibits the actual processing of those patches.

Example:

+PATCH, NEWDEBUG.
+IMITATE, DEBUG.

P=NEWDEBUG imitates P=DEBUG, that is P=DEBUG is actually excluded from the wanted program
version, yet the parameter IF=DEBUG has still the value ”true”.

Past or future +USE ,DEBUG. change nothing; but giving a line +USE ,DEBUG, T=INHIBIT. over-
rules, such that IF=DEBUG will have the value ”false”.

3.3 Kill the run for bad selection: +KILL

The line

+KILL, IF=

if reached and if the IF condition is true, will stop the Nypatchy run immediatly, causing
an error exit.

This (soft) control-line can be used to check against incompatible version selection, for
example:

+KILL, IF=SUN, IF=VAX.

will stop the run with errors if both SUN and VAX are selected at the same time.

Chapter 4: Control lines to steer Nypatchy
4.1 Running Nypatchy

.Program call

At CERN the ready-made module of Nypatchy normally resides on /cern/pro/bin. To run it
one calls it into operation with the program-call statement and gives it a cradle, containing
the instructions on what to do. The program call is:

nypatchy pam fort cradle print cc as data fort:2 cc:2 as:2 data:2

The parameters, which may be given on the program-call statement, or interactively, are:
pam the name of the PAM file may be given here, if any;
fort the name of the primary ASM output file may be given here, if any;
cradle the file name of the cradle, default: standard input;
print the name of the file to receive the printed output, default: standard output;
cc ... the names of the ASM files for data types CC, AS, DATA may be given here;

fort:2 the names of the ASM output files to receive the diverted material for data types
FORT, CC, AS, DATA may be given here.

Significant leading void parameters are marked by giving a "-", trailing void parameters are
cut short by giving ".", to start execution right away one gives " .go" instead.

To get details on the way the parameters are to be specified one can type on the computer:
nypatchy help .no

In particular, note that on the VAX or Alpha with system VMS a file name may be given in
Unix style; the correspondence is for example:

/cern/new/src/car/patchy.car;4
cern: [new.src.car]patchy.car;4

these forms also work:
“/dir/name dir/name ../name etc.
On the IBM with VMM/CUMS file names must be given in one of two possible ways, for example:

patchy.car.a or a/patchy.car
to mean PATCHY CAR A

.Error codes

Status return codes from Nypatchy are:

UNIX VAX IBM
$? or $status = 0 $STATUS = 1 rc = 0 normal
1 9 1 warning (not used)
2 4 8 error

Note that it is necessary to test the completion status of Nypatchy, because it will stop
delivering ASM output as soon as it has detected the first error, although it will continue to
run, to report all errors if possible. This test might look like this in a shell script:

C shell: set rc = $status Bourne shell: rc=$7
if ($rc !'= 0) exit 7 if [$rc '= 0]
then
exit 7
fi

Note that the status-code has to be copied to a shell-variable if more than one test is to be
done on it.

26

4.1. Running Nypatchy 27

.Examples:

nypatchy -- xyz .go
if ($status !'= 0) exit

In this example the cradle is read from file xyx.cra, all other files to be used are specified in
the cradle.

nypatchy .go <<\\
<cradle>

\\
Here the cradle is given as a here-document in the shell script.
nypatchy zebra.car zebra.fca zebra.cra zebra.lis .go

reads the PAM file zebra.car, delivering the ASM output to zebra.fca, taking the cradle from
zebra.cra, and printing is done to file zebra.lis.

.About the cradle

The cradle can, but need not, be structured into patches and decks like a PAM file. The
beginning of the cradle, up to the first line +PATCH, if any, is assumed to belong to the
default cradle patch CRA*.

The very beginning of the cradle, up to the first line +DECK, or +PATCH, or +PAN, is assumed to
belong to the ”blank deck” of the patch CRA*. A certain number of run-initializing control
lines, viz. +UPDATE, +ASM, +NAMES, +GAP, +MORE, can only be given in this blank deck of
P=CRA*, before normal processing starts.

Material after every line +PAM, and up to the next line +PATCH, if any, is again assumed to
belong to P=CRA*. Its beginning, up to a line +DECK, if any, is assumed to belong to a deck
D=CRA* of P=CRA*. As for the blank deck of P=CRA*, self material in such a deck is ignored.

In the cradle one does the following things:

1) One can limit the number of significant characters in Patchy names to less than 32 char-
acters with control line +NAMES. Very exceptionally one tunes the memory utilisation
parameters with lines +GAP or +NAMES.

2) If the purpose of the run is to update the PAM file one has to give the control line
+UPDATE, see para. 4.10.

3) Except in the simplest cases, one sets up the ASM output streams with +ASHM lines.
4) With lines +USE one has to select the wanted program version.

5) Processing modes, selected with lines +EXE, +LIST, +DIVERT, +XDIV,
have to tell Nypatchy what it should do with all or parts of the program version.

6) Certain minor options can be taken with lines +OPTION and +PARAM.

7) Corrections, headed by +ADD, +REPL, etc, and over-ruling sequence definitions, headed
by +KEEP, may be given.

8) Lines +PAM direct Nypatchy to pause taking input from the cradle and to continue by
reading a PAM file.

9) New routines may be given by adding them in the cradle; new decks not headed by a
line +PATCH will belong to P=CRA* and are thereby automatically USE selected.

10) The cradle is terminated by a control line +QUIT, or by an End-of-File.

28 Chapter /. Control lines to steer Nypatchy

4.2 Continue the cradle from a file: +MORE

With this control line it is possible to use a ready-made cradle residing on a file, but aug-
mented for the purpose of the current run.

+MORE .file—name

This line, given in the blank deck of the cradle, adds the content of the specified file to the
blank deck read so far. This file in turn could be terminated by an other +MORE line, as long
as none of +DECK, +PATCH, or +PAM have been present.

Example:

nypatchy patchy.car .go <</
+DIVERT, ARRIVE, D=INTERM.
+USE, QBEBUG.

+MORE. patchy.cra

/

4.3. Memory tuning: +NAMES, +GAP 29

4.3 Memory tuning: +NAMES, +GAP

These control lines, which are not normally needed, can only be given at the very beginning
of the cradle.

Patchy keeps the names of patches, decks, sequences, occuring on all control lines seen, on
the "name stack”, to permit representing a name by a small integer in the internal data
structures. Enough memory is reserved for this stack at the top end of the dynamic text
store even for the needs of very many PAM files. Should this ever overflow one can increase
this memory with the control line

+NAMES, (N=)len, nsl, nby

with the parameters:

len if >0: reset the number of significant characters in P/D/Z names to be len characters,
not less than 8, and not more than 32, default: 32.

nsl if present and >0: allocate nsl name slots, not less than 200, default: 6000.

nby if present and >0: allocate nby bytes of text store for all names together,
not less than 1200, default: 48000.

The status of the name stack is printed as part of the full summary at the end of the run
(if this summary is printed at all, see +OPTION,VERBOSE.)

Nypatchy processes one deck at a time, it requires the deck to be complete in memory, and
that there is enough free space to receive the result of the processing. Garbage collection
can only be handled between decks, and therefore some parameters are needed to forcast the
expected requirements, the "gap” parameters. Their default values can be overruled with

+GAP, (N=)gwd, gsl, maxl, chpl

with the parameters:

gwd if >0: the number of free words in the control store,
at least 1000, at most 10 per-cent of the control store, default: 4000.

gsl if present and >0: the number of free line slots for lines which have to be constructed,
at least 100, at most 400, default: 200.

max1l if present and >0: the expected maximum number of lines in any deck,
at least 2000, at most 10 per-cent of the text store, default: 5000.

chpl if present and >0: the average number of characters per line,
at least 20, at most 80, default: 40.

If you give this control line at all, be careful not to exaggerate: the total amount of memory
is fixed, all one can do is to vary the occupation level at which garbage collection occurs.
But if there is no garbage to be abandoned, and if you reserve too much space for processing,
you may find that there is no space left to read the deck into.

To inspect the state of the memory after processing of a PAM file is complete, one may give
the control line +SHOW,MEMORY. just after the corresponding line +PAM.

30 Chapter /. Control lines to steer Nypatchy

4.4 Operating options: +0PTION, +PARAMETER

.On/Off operating options

These can be set or reset by the user with:

+0PTION, (T=)optl, opt2, ... select options;

+0PTION, (T=)OFF, optl, opt2, ... de-select options;

where ”opt” is a word indicating the option. At least 3 letters of the option word have to
be given, further letters, if any, have to be correct.

Only the options mentioned on the control line change status, others remain untouched, i.e.
the effect of several lines +OPTION, ... is cumulative.

Lines +0OPTION and +PARAM are only allowed in the cradle; if found on a PAN file they cause
an error.

These are the available options:
ALL final summary to contain all patch names seen;

when starting a new patch, Nypatchy will normaly forget its name if it has not been ad-
dressed or activated in any way by upstream material, and hence it will not appear in the
final summary, unless this option is given.

BACkcom back-compatible operation;

this relaxes the new syntax checks of Patchy version 5 somewhat, it also allows some version
4 constructs. Set "on” by default for the time being.

COMpact 1listing is compact;

this suppresses page ejects at start of deck in Nypatchy listing. Set ”on” by default.
EJEct user control of page ejects in Nypatchy listings;

if this option is on Nypatchy will cause page ejects for control lines +SEQ,QEJECT,N=n.
FUL1 full listing;

the Nypatchy listing is to include control lines and foreign material. If this option is OFF
the listing only shows the lines which would go to the ASM file. Set "on” by default.

MAPasm monitor the decks written to the ASM files;

this causes Nypatchy to print one line for every deck which has been written to the ASH file,
showing its size and where it has been written to.

VERbose print full summary at the end;

to avoid too much output to the screen when running Nypatchy interactively, the final full
summary is not normally printed if the terminal receives the printed output. With this
option one can select to have the summary anyway.

The version 4 options BIGUSE, KEEPORD, LOST, SEQORD, TERM, UREF, WARN, YESIF, DETACH,
EOF, HOLD, RESUME, are no longer available.

4.4. Operating options: +OPTION, +PARAMETER 31

.Parameteric options

Some operating options take an integer value, they can be set with:

+PARAMETER, (T=)opt, N=value.

where ”opt” selects the option:
CLAsh, N=n report clashes at or above level n= 1 or 2.

Default is N=2 for normal mode, and N=1 for UPDATE mode.
For clash handling see para. 4.11.

LINes, N=n set page-size for the Nypatchy listed output.
The default is preset to 110 lines per page.
COLumns, N=n set the page-width for the Nypatchy printed output.
The default is preset to 120 columns across the page; it can be increased, or decreased, but
not below 90.
.Examples:

+0PTION, ALL, MAPASHM.
+0PTION, COMPACT, OFF.
+PARAM, CLASH, N=1.

32 Chapter /. Control lines to steer Nypatchy

4.5 Select processing modes: +EXE, +DIVERT, +XDIV, +LIST

Processing of any deck of the selected program version is done in zero, one, or several of the
following modes:

EXE write the assembly result of the deck onto an ASM output stream.

DIVERT divert the output, if any, to the diverted ASM output stream.

XDIV divert the output, if any, to the ”extra diverted” streams, see para. 4.8.

LIST list the composition of the deck on the print file.

Processing mode selections (except +DIVERT) should only ever be done in the cradle; it is
only for back-compatibility to Patchy version 3 that they are allowed also on PAM files.

Activations of any of the processing modes, EXE, DIV, XDIV, LIST, are handled exactly in
the same manner. In order to simplify the reading of the present paragraph, the description
is given in terms of the EXE mode, but everything stated is also valid, mutatis mutandis, for
the other modes DIV, XDIV, and LIST, with one exception noted (filtering).

+EXE, T=type. without P/D parameters

causes global EXE selection for all USE selected material that follows. Global selection is
allowed only in the cradle; if given right at the beginning, it causes EXE selection for the
complete ”"wanted program version”.

+EXE, (P=)pname, p2, ..., T=type, IF=...

causes the patches ”pname”, "p2”,... to be EXE selected, normally with ”EXE for self and
foreign”, unless specified otherwise by the type parameter.

+EXE, (P=)pname, D=dname, d2, ..., T=type, IF=...

causes the decks "dname”, ”d2”, ... of patch ”pname” to be EXE selected, normally with
”EXE for self and foreign”, unless specified otherwise by the type parameter.

The type-parameter may be used to qualify EXE selection (see below):

T=0NLy restrict to "EXE for self material' only;
T=Transmit extend to "EXE via USE lines" also;
T=Inhibit inhibit past and future EXE selection.

The type parameter may be used to select other processing modes at the same time:
T=Exe, Ligt, Divert, Xdivert
for example the following two lines are equivalent:

+XDIV, CONVALLARIA, T=DIV.
+DIV, CONVALLARIA, T=XDIV.

4.5. Select processing modes: +EXE, +DIVERT, +XDIV, +LIST 33

Here are examples of the different kinds of EXE selection:

+EXE, X. normal EXE, self and foreign material of patch X;
+EXE, X, T=0NLY. self material of X only;
+EXE, X, T=TRANS. transmit EXE also via USE lines;

+EXE, X, T=INHIBIT. EXE of X totally inhibited.

Normal EXE selection of patch X attaches EXE mode to all the decks of patch X, and also
to the self material of all decks elsewhere which depend on X, either because they receive
foreign material from X, or because they refer to X with the IF parameters of some of their
control lines.

By giving the T=0NLY parameter one can limit the EXE mode to the self material of patch X
only, without propagation to decks outside X; for example:

+LIST, QCDE, T=0NLY.

will cause listing of the patch QCDE (supposed to contain a set of sequence definitions),
without triggering LIST mode of all the decks which call these sequences.

By giving the T=TRANSMIT parameter one can eztend the EXE mode propagation such that
everything USE selected from X, directly or indirectly through all levels, is also selected for
EXE. This is of interest only in very special situations, namely when the part selected by
some sub-pilot should be handled separately from the main stream; an example using this
can be found in para. 5.3.

Mode filter

A special, non-obvious feature is filtering of processing-mode activation: EXE selection (and
EXE inhibition) by a line +EXE, ... is effective only if this line is

a) either in the cradle,

b) or in a deck on the PAM file which is itself EXE selected for ”self and foreign”.

Here is the exception: this filter does not operate for control lines +DIVERT given on the PAM
file, that is: a control line +DIV on a PAM file is always honoured (if it occurs in a USE selected
deck, of course). But note that lines +EXE, +XDIV, +LIST should anyway not be present on
PAM files.

About the LIST mode

Processing a deck in LIST mode will show how the deck has been assembled, by listing its
self material plus any foreign material coming into it, along with identification tags showing
its origin.

Material which has been deleted under a +REPLACE or +DELETE action is not displayed, unless

the T=DISPLAY option is taken on the current +PAM control line, see para. 4.7 (this is new
with version 5.03/8).

If listing mode is FULL the control-line content and foreign material going out from this
deck is also shown. Whether listing is full or short is a general operating option, by default
+0PTION,FULL. is assumed.

34 Chapter /. Control lines to steer Nypatchy

.Modes for the cradle

The very beginning of the cradle, the blank deck of P=CRA*, is initialized to ignore self
material, in order not to write on the ASM files before they are established. No processing
modes are pre-selected for the blank deck, except straight listing corresponding to

+0PTION, FULL, COMPACT.
+LIST, P=CRA*, D=, T=0NLY.
+USE, P=CRA*, T=REPEAT.

This deck is the only deck which can change its own processing mode, as shown by the
following example:

+USE, P=+*ROSACEAE. select program version
+ADD, P=RUBUS, D=IDAEUS, C=96. without EXE activation
+EXE, P=CRA*, D=. "EXE on foreign"

+REPLACE, P=ROSA, D=ALPINA, C=24-32. with EXE activation

+EXE, P=CRA*, D=, T=INHIB. "EXE inhibit"
+DEL, P=CYDONIA, D=0BLONGA, C=44. without EXE activation

The cradle patch P=CRA* has no processing modes pre-selected. To do so, one has to specify
in the blank deck what is wanted, like:

+LIST. list selection for everything.

+LIST, CRA*, T=0NLY. simple list selection without propagation.
+LIST, CRAx*. list P=CRA* and everything modified from it.
+EXE, CRA*, T=DIV. select for EXE and DIVERT all decks of

P=CRA* and any deck modified from it.

The decks D=CRA* of P=CRA*, that is the lines after any +PAM, ..., are pre-set like the blank
deck: self material ignored, simple listing pre-selected plus whatever has been selected for
P=CRA* as a whole. The contents are not addressable, as there may be many such decks,
Nypatchy simply ignores a line like +REPLACE,CRA*,CRA*,27.

.Notes:

Note that +DIVERT and +XDIV only select diversion; for any deck to actually appear on the
ASH files it has to have been given EXE mode also.

Control lines to select processing modes should not be present on a PAH file, except for lines
+DIVERT which are used to indicate which routines have to be compiled with down-graded
optimization under which circumstances.

The processing mode MIX of Patchy version 4 is no longer available.

Self material is always ignored in the blank deck of P=CRA*, and also in all decks D=CRA* of
P=CRA*, which are any lines just after a line +PAM until either +PATCH or +DECK. One can use
this fact for easy comments.

4.6. Forcing processing modes: +FORCE, +SUSPEND 35

4.6 Forcing processing modes: +FORCE, +SUSPEND

With the lines +EXE, +DIV, +LIST, described in the previous paragraph, processing modes
may be activated for individual patches and individual decks, with and without transmission
to other decks or patches affected by foreign material or by USE lines. Processing modes can
be inhibited, again for individual patches and decks, with the type parameter T=INHIBIT.
Inhibition is final and cannot be overruled again.

Sometimes it is convenient to be able to switch on a processing mode, not for individual
patches but for a whole section of the cradle / PAM input stream. This can be done, for
example for the EXE mode, with

+FORCE, (T=)EXE.

This forces "EXE for self' for every deck that comes along, provided the deck is part of
the wanted program version or unless the deck is EXE inhibited, until forcing is taken off
again with

+FORCE, (T=)EXE,OFF.

Forcing can be switched on and off any number of times.

Similarly, it is sometimes convenient to be able to cancel a processing mode for a whole
section of the cradle / PAM input stream. This can be done, for example for the EXE mode,
with

+SUSPEND, (T=)EXE.

This cancels "EXE for self" for every deck that comes along until suspending is taken off
again with

+SUSPEND, (T=)EXE,OFF.

Suspending can be switched on and off any number of times.

Lines +FORCE and +SUSPEND are allowed only in the cradle; if found on a PAN file they are
signalled as faulty control-lines.

+SUSPEND, LIST, OFF.
+PAM, T=RESUME.
+QUIT.

+FORCE, LIST.
+PAM, T=RESUME.
+QUIT.

Examples:
+LIST.
+USE, ... |
e | +USE, ...

+SUSPEND,LIST. | A

+PAM, T=ATTACH .hycde | +PAM, T=ATTACH .hycde

+PAM, T=ATT,HOLD, R=GEOCDE .hygeom | +PAM, T=ATT,HOLD, R=GEOCDE .hygeom
I
I
I

Both examples give a listing of the complete wanted program version, except that material
coming from the PAM file HYCDE and from the beginning of the PAM file HYGEOHM is not listed.
Another example is found at the end of para. 6.3.

36 Chapter /. Control lines to steer Nypatchy

4.7 Invoking Pam file input: +PAM

A line +PAM read by Nypatchy on the cradle terminates the current deck and patch, and
directs Nypatchy to continue input from the indicated PAM file, provided the IF result is
”true”. Lines +PAM are allowed only in the cradle, not on a PAM file.

The name of the PAM file to be read can be given as the first parameter on the program-call
statement "nypatchy pam asm ...", and then reading can be initiated by the control line

+PAM. (without parameters)

If one has more than just one file to read, one gives several lines +PAM, with the name of
each file on the comment field, having selected the ATTACH option, for example:

+PAM, T=ATTACH ./cern/pro/src/car/wylbur
where the default file-name extension ”.car” is assumed, if none given.
One can also use the LABEL parameter to select a file for re-read, as explained further down.

Options for processing a PAM file may be taken with:

+PAM, (LABEL=)n, N=xx, T=opt, RETURN=pname, IF=... .file-name

with these parameters:

Label=n a small integer to identify the file,
this is only needed for stop-go reading, see below.

N=ndo number of PAM files to be processed on this file; default: ndo=999
N=nsk,ndo ignore nsk PAM files and then process ndo PAHM files on this file.
T=Attach open the file whose name is given in the comment field and process it.
T=Cards is accepted and ignored for back-compatibility.
T=Hold no rewind of the file after processing, default: rewind after.
T=Resume no rewind of the file before processing, default: rewind before.
T=Update process the file in UPDATE mode, see para. 4.10, 6.3.

T=MERge accept all actions, even if clashing, see para. 4.11;
normally used only in UPDATE mode; new with version 5.03/8 !

T=DISplay display deleted material, see para. 4.5; new with version 5.03/8 !

R=pname stop processing the file when the processing of patch ”pname” is
complete and revert to the cradle.

IF=... if the IF result is ”false” the file is not actually read,
input continues from the cradle.

The ’compact binary’ format for PAM files of Patchy version 4 is no longer available.

After processing of the file is complete, Nypatchy reverts to taking lines from the cradle.
These are initially assumed to belong to P=CRA*, D=CRA* until the next +PATCH or +DECK
arrives, if any. As for the blank deck of P=CRA*, self material in D=CRA* is ignored, lines in
this deck cannot be addressed.

4.8. Defining physical output streams, concepts 37

.Re-reading files

Suppose one has the following problem: from a set of 3 PAM files, whose names are given in
the 3 environment variables PAMA, PAMB, PAMC, the beginnings have to be read first to collect
the declaratives, before reading the bulk of the code. Using the LABEL parameter we can
write:

+PAM, 11, N=1, T=HOLD, ATTACH .${PAMA}
+PAM, 12, N=1, T=HOLD, ATTACH .${PAMB}
+PAM, 13, N=1, T=HOLD, ATTACH .${PAMC}
+PAM, 11, T=RESUME.
+PAM, 12, T=RESUME.
+PAM, 13, T=RESUME.

For each file, the first +PAM attaches the file, assigns a label to it, reads the first PAM from the
file, and leaves the file positioned just before the second. The second control line +PAM for
the same file requests to go back to the file designated by its label, to continue reading it.
The parameters T=HOLD and T=RESUME are needed to keep the file positioned. This example
is fine if each file is subdivided into at least two PAM files, with the first containing the
declaratives. If this is not the case one has to resort to specifying the patch name up to
which the first read should go, this can be done with the RETURN=pname parameter.

4.8 Defining physical output streams, concepts

The assembly result of any deck processed in EXE mode is written onto an ASM file as line
images ready to be used as input to the compiler, or to the assembler, or any other purpose.
Nypatchy tries to give the user full control to steer the output onto maybe many different
files, in the simplest possible way. This can be done with +ASM lines given at the beginning
of the cradle.

.Logical streams

The data type of the deck (cf. para. 2.2) combined with the processing modes DIVERT and
XDIV determine the ”logical stream” through which the result is written. The name of the
data type and a numeric suffix identify the logical streams, for example:

LATEX:1 normal/normal
LATEX:2 normal/diverted
LATEX:3 extra/normal
LATEX:4 extra/diverted

are the 4 possible logical streams for the user data type LATEX. The generic logical stream
LATEX (or LATEX:0) designates all logical streams of this data types.

.Physical streams for output

A logical stream can be made physical by giving output instructions for it (using stream
LATEX:0 as an example):

+ASM, LATEX, T=ATTACH .file name
+ASM, LATEX, T=SPLIT

+ASM, LATEX, T=MODIFY

+ASM, LATEX, T=BYPASS.

These are the 4 possible ways of establishing the physical stream LATEX. In the first case all
material coming through this stream shall be written to the file whose name is given. In
the second and third case each deck is to be written to a separate file whose name is to be
constructed from the deck name plus the file-name extension suffix proper to the data type
of the deck (and possibly a directory prefix). In the last case all material coming to this
stream is flushed.

38 Chapter /. Control lines to steer Nypatchy

For some of the standard data types some of the streams can be made physical merely by
giving file names on the nypatchy program-call statement (cf. para. 4.1). This is true for
the generic logical streams FORT, CC, AS, DATA, and for the diverted streams FORT:2, CC:2,
AS:2, DATA:2. Unless over-ruled with an ASM line, T=ATTACH is assumed for a stream made
physical in this way.

.Binding of logical streams

”Binding” of a given logical stream to some other logical stream means that the output of this
stream goes to the same file as the output from the stream it is bound to. Initially all logical
streams for the standard data types are set up bound directly or indirectly to the generic
stream FORT:0. User data types can be declared with, for example: +ASM,LATEX,T=USED.,
which causes the creation of the logical streams for LATEX bound into the streams for the
standard data types. If a logical stream is made physical it retains the bonds of other logical
streams bound to it, but it itself is no longer bound to some other stream.

Default binding is initialized such that the wanted set-up can be specified with minimal
instructions, this default is:

a) the generic logical streams CC, AS, SHELL, CRAD, DATA are bound to stream FORT;
b) the generic logical stream INCL is bound to the generic stream CC;
c) the generic streams of all user data types are bound to the generic stream DATA;

d) all logical streams X:i of data type X are bound to the generic stream X:0;
if this is itself bound to the generic stream Y:0, then the logical streams X:i are bound
to the corresponding streams Y:1i;

e) if the logical stream X:1 is made physical all logical streams X:i are bound to it,
provided they have not been bound explicitly to somewhere else; similarly if the logical
stream X:3 is made physical, the logical stream X:4 is bound to X:3.

If no +ASH lines are given in the cradle the result depends entirely on the file-names given
on the Nypatchy program-call:

nypatchy pam fort cradle print cc as data fort:2 cc:2 as:2 data:2
1) if a file name is given only for the 2nd parameter ”fort” all the output will go to this file;

2) if a file name is given also for the 8th parameter ”fort:2” all the diverted material of all
data types will go to this file, whilst all the normal material will go to the first file;

3) file names given for other parameters will capture the corresponding material.

Alternatively one can have the same effect by giving the following +ASM lines instead of the
file names on the program-call:

+ASM, FORT, T=ATTACH .file-name_1 case 1)
+ASM, FORT:2, T=ATTACH .file-name_2 case 2)
+ASM, CC, T=ATTACH .file-name_3 case 3)

Explicite binding can be done with, for example:

+ASM, AS, MACRO, T=BIND.
or +ASM, AS, MACRO, T=ATTACH .file-name

In both cases the user data type MACRO is declared and bound to the generic logical stream
AS, which in the second case is also established as physical.

The summary printed at the end of each Nypatchy run will show the data flow through all
active logical streams, and the file-names associated with the active physical streams. If this
is not enough, and if there is something one does not understand, one can give the control
line +SHOW,ASM. at the end of the cradle. This produces rather a lot of printed output.

4.8. Defining physical output streams, concepts 39

.Split mode

One may request that Nypatchy writes each deck coming to a given physical stream to
a separate file, whose name is derived from the deck-name with an extension added. For
example:

+ASM, FORT, T=SPLIT.
or +ASM, FORT, T=MODIFY.

requests splitting of all decks arriving on the physical stream FORT, that is the decks of all
logical streams bound to this physical stream.

Giving T=MODIFY instead of T=SPLIT will cause Nypatchy to compare the text of each deck
against the corresponding file, if it pre-exists, and to suppress the output if the two are
identical. Thus the date of the existing and unchanged file is not disturbed.

Nypatchy knows the extensions needed for the standard data types FORT, CC, INCL, and AS,
on the machine one is running on, on most machines they are .f, .c, .h, and .s. For data type
CRAD the extension used is .cra; for SHELL .sh is used on UNIX, .com on VAX. For data type
DATA .dat is used on the VAX, and nothing on UNIX.

One may want to change the extensions used, or for the user data types one may want to
set the extension; this can be done with, for example:

+ASM, LATEX, T=EXT . tex

The directory into which the files are written is the current working directory by default;
this can be changed by adding a common prefix to all file names, with for example:

+ASM, FORT, T=SPLIT, PREFIX .dir/

One may request that a record of the files created be written to a file to be digested by the
Patchy Auxiliary Nyshell, with for example:

+ASM, FORT, T=SPLIT, LOG .file-name
The last two examples can be combined if the prefix is a pure directory, for example:
+ASM, FORT, T=SPLIT, PREFIX, LOG .dir/file-name

The resulting log file will contain one line for each deck written, giving its logical stream
name and its file name, as for example:

fort:1 chdirf.f

cc:1 chdiri.c
fort:1 getenvf.f same
cc:1 geteni.c same
cc:1 getpidf.c
fort:2 getwdf.f
cc:2 getwdi.c same

If the ”same” flag is present the file has not actually been written because it is unchanged.
This can only happen in MODIFY mode.

40 Chapter /. Control lines to steer Nypatchy

4.9 Defining physical output streams: +ASM

Context information about the ASM output streaming has been given in the previous para-
graph. Here comes a more formal description of the forms which +ASM control lines can
take. As always, a control line +ASM can be made conditional by adding IF= parameters; for
simplicity they are not shown here.

.Non-split mode

To establish a physical stream:

+ASM, phys, logl, ..., T=Attach .file-name

+ASM, logl, log2, ..., T=BYpass.
In the first case logical streams log1,..., if any, are bound to stream phys, and all output
goes to the file whose name is given. In the second case output for all streams log1,... is

suppressed.

.Split mode

To establish a physical stream:

+ASM, phys, logl, ..., T=SPLit [,PREfix] [,L0G]
or +ASM, phys, logl, ..., T=MODify [,PREfix] [,LO0G]

Streams logl,..., if any, are bound to stream phys, and all output coming here is processed
in SPLIT or MODIFY mode. The prefix and/or the name of the log file can be given right
away, or separately:

+ASM, phys, T=PREfix .prefix
+ASM, phys, T=LOG .file-name
+ASM, phys, T=PREfix, LOG .dir/file-name

The file-name extension to be used can be set with

+ASM, logl, ..., T=EXT. extension

Be careful to give the ".'" which starts the comment field as well as the "." which normally
belongs to the extension.

.Binding only, Aliasing

+ASM, here, logl, ..., T=BINd.
+ASM, here, typl, ..., T=ALIas.

The first binds logical streams log7,... to stream here.

The second declares that {ypi,... are just other names for here. Neither here nor typ: may
contain a ":'" in this case.

In the first case the logical stream keeps its identity; in the second case it looses it: in SPLIT
mode it will appear under the here name on the log-file.

4.9. Defining physical output streams: +ASM 41

.User type confirmation

All user data types whose material on the PAM files is selected with +USE should have been
declared on some +ASHM line in the blank deck of the cradle. If no +ASHM line for such a user
data type is needed for any purpose, it should be declared with:

+ASM, typl, ..., T=USEd.

If Nypatchy finds a non-declared data type when processing USE-selected material on the
Pam file, it prints a warning and opens a generic stream for this data type, which it then
binds to the stream DATA.

.Control-character substitution

This can be requested with:

+ASM, logl, ..., T=CCHsubs .mask

The data types SHELL and CRAD are initialized as with:
+ASM, CRAD, T=CCHSUB .&+

to make cradles contained on a PAM file ready for use with a second run of Nypatchy. This
could be changed, for example with:

+ASM, CRAD, T=CCHSUB .&+!'+

This example causes changing the control-character "&" or "!" in column 1 on any line of
the output written to the ASM file for all logical streams of type CRAD into a "+" if the key
of the line is that of a Patchy control line.

This could be switched off by giving an empty mask.

.Routine-header lines

Arbitrary routine header lines can be defined for a given data type either for the generic or
for a particular stream with:

+ASM, log, T=RHead .mask

In the comment field of the control line one gives the mask for generating the routine header
line; the very first character is the escape character used to indicate the place where the
routine name has to be inserted.

On the machines where this useful, routine header lines are pre-initialized as needed by
FCAsplit on the machine where one is running on to something like:

+ASM, FORT, T=RH .!CDECK 1ID>, !
+ASM, CC, T=RH .1/*DECK ID>, ! . #/
+ASM, AS, T=RH .V|DECK 1ID>, !

This can be switched off, for example with:
+ASM, AS, T=RH.
with an empty comment field.

Routine header lines are not generated in SPLIT mode.

42 Chapter /. Control lines to steer Nypatchy

4.10 Updating a PAM file: +UPDATE

The purpose of a run of Nypatchy in Update mode is to deliver again a PAM file with actions
like +ADD applied (and not to deliver compilable material in the normal fashion).

Although one could make corrections with +ADD, +REPLACE, etc. by hand, this is now rarely
used. Instead one changes the PAM file directly with a text editor, and if needed one gets
the corrections by taking differences between the changed and the original file using the
auxiliary Nydiff, as explained in para. 6.3.

To use this one has to do two things: one has to signal Update mode by giving the line

+UPDATE.

right at the beginning of the cradle, and one has to give the parameter T=UPDATE on the
+PAM call for the file which is to be updated.

.Example:
Look at this example taken from para. 6.3:

nypatchy - mumerge.car - mumerge.lis .go <</

+UPDATE.

+USE, T=EXE.

+LIST, MUOSLO, MULUND.

+PAM, T=ATT .muoslo.ucra
+PAM, T=ATT .mulund.ucra
+PAM, T=ATT, UPDATE .muorg.car
+QUIT.

/

The PAM file "muorg.car" is updated to give file "mumerge.car";
the corrections are supposed to be contained in the two patches P=MUOSLO and P=MULUND,
on the 2 files "muoslo.ucra" and "mulund.ucra'.

(If one is using Patchy version 5.03/8 or higher one can give
+PAM, T=ATT, UPDATE, MERGE, DISPLAY .muorg.car

see para. 6.3 for details.)

4.11. Handling of clashing actions 43

4.11 Handling of clashing actions

With the original philosophy of using Patchy, one would never for a long time change the
content of patches on a PAM file directly, but rather do the necessary changes by sets of
corrections with actions +ADD, etc. Once a given development was finished, one would add
the corrections as a correction patch right at the beginning of the PAM file, which itself would
then no longer change. This cumulation of correction patches required a defined behaviour
for apparently conflicting actions. For example: an action

+REPL, MQ, MQLIFT, 72-79.
in some (younger) correction patch, followed by an action

+ADD, MQ, MQLIFT, 76.
in an (older) correction patch somewhere further down on the PAM file, was, and is, a correct
operation, replacing a piece of code including the (older) correction.

These two actions are said to be ”clashing at level 17, and do not cause a warning printed,
unless asked for with

+PARAM, CLASH, N=1.

If however the order of these two actions on the PAM file were reversed, this would most likely
be a mistake, trying to add to material already deleted; this would be signalled as a ”clash
of level 2”.

Two actions +ADD (or +ADB) addressing the same target line are considered to be clashing at
level 1, and both actions are accepted, the upstream material being taken first.

Of two actions +REPL or +DEL with overlapping target ranges only the action with the lower
target edge is taken, the other is considered over-ruled, except that the delete ranges are
merged.

Note that the following are not at all clashing with the above +REPL action:

+ADB, MQ, MQLIFT, 72.
or +ADD, MQ, MQLIFT, 79.

because they add just before or just after the delete range 72-79.

.Version 5

To be back-compatible, the "normal” clash handling of Patchy version 5 is the same as that
of version 4, and this is what has been described above.

In the context of parallel developments starting from the same PAM file, managed by the new
auxiliary Nydiff and described in para. 6.3, we need a different clash handling:

When merging two correction cradles operating on the original PAM file, it would not be
correct to skip one of two actions with overlapping line ranges. Thus Nypatchy has to
accept all actions on the same footing, leaving it to some responsible person to sort out
the problem. All it can do is to provide clash warnings, and context listing. The concepts
”older” and ”younger” do not apply, hence all actions with colliding line ranges are signalled
as of level 2.

This (new) behaviour is selected by giving the T=MERGE parameter on the control line +PAM
calling for the the PAM file to be processed in this mode, for example (from para. 6.3):

+PAM, T=ATTACH, UPDATE, MERGE, DISPLAY .muorg.car

(The DISPLAY parameter demands that deleted material should also be displayed in the
listings from Nypatchy, see para. 4.5.)

Please note that the parameters MERGE and DISPLAY are new with version 5.03/8, which is
presently in the NEW area.

Chapter 5: Example jobs using Nypatchy

In this chapter we will give a number of examples showing the use of Nypatchy, and for the
first few, its collaboration with Nyshell.

5.1 Ex1: Create the Patchy modules from the PAN file

As the first example we take the jobs used to make a new version of Patchy from its PAM
file, as used on Unix, DEC VMS, and IBM/VM, (taken from P=INSTAL of the Patchy PAM file).

This is the classical example of how to handle most conveniently complete programs or
packages. One can edit the PAM file to bring it into the shape wanted, and then one runs a
job, like the one shown here, to make the library for the package, and maybe one or even
several executable modules. Nyshell will look after re-compiling just the routines which have
been changed. This is how the job works:

A directory, called wk_patchy in this example, is reserved to contain the source and object
files of this package only. Nypatchy is made to operate in MODIFY mode, to deliver all
routines one-by-one onto separate source files, but without actually writing a particular
source file if it exists already and if its content is what it should be, thereby keeping the
time-stamp intact. Apart from the source files themselves, Nypatchy delivers their names
and dependencies on the log file, here its name is source.log, to be used by Nyshell.

To make sure that all and only those routines which need to be, are re-compiled, Nyshell
will compare for each routine the date of its .o file, of its source file, and of any include file
used, and whether the routine is to be compiled in the same way as last time. It will also
check all .o files present in the directory, and delete any trailing .o file if its name no longer
appears on the log file. The output from Nyshell is a shell-script, called source.shfca in this
example, to compile the routines which need to be compiled. A more complete description
of Nyshell is found in Chapter 6.

The compilations are then performed by running this resulting shell-script, the libary is built
by collecting all .o files.

In our example the executable modules are linked using the new library.

Note that it is very important to test the return status of Nypatchy, because it stops deliv-
ering ASM material as soon as it detects an error, thereby cutting the log file short, although
it continues to idle through the entire run to see whether there are more errors.

Status return codes from Nypatchy and the Auxiliary programs are:

UNIX VAX IBM
$? or $status = 0 $STATUS = 1 rc = 0 normal
1 9 1 no-op from Nyshell
2 4 8 error

Note however that Nyshell is not available on IBM/VH.

44

5.1. Ezl: Create the Patchy modules from the PAM file

This is the Unix job to run on SUN:

#!/bin/csh -f -v
Create Patchy 5 modules

set PRO
set PAM
set KERNLIB

= /cern/pro/bin/

set NEW = “/uty/new
set EXTRA = 7

setenv MACHINE SUN

set LOAD = ’f77 -Bstatic’
cd S$NEW
if (-d wk_patchy == 0)

cd wk_patchy

${PRO}nypatchy $PAM .go <</
+ASM, FORT, T=MODIFY, LOG
+EXE.
+USE, *PATCHY, ${MACHINE}.
+0PT, MAP.
+PAM.
/

set rc = $status

if ($rc '= 0) exit

${PRO}nyshell source u .go <</
/

set rc = $status

if ($rc !'= 0) exit

csh -f -v source.shfca

if (-f p5lib.a) rm p5lib.a

ar rc pblib.a *.o0

ranlib p5lib.a

$LOAD -o $NEW/nypatchy npatch.o

$LOAD -o $NEW/nyindex nindex.o

$LOAD -o $NEW/nylist nlist.o

$LOAD -o $NEW/nydiff ndiff.o

$LOAD -o $NEW/nyshell nshell.o

$LOAD -o $NEW/nycheck ncheck.o

$LOAD -o $NEW/nytidy ntidy.o

chmod 755 $NEW/ny*

nkdir wk_patchy

.source.log

= /cern/new/src/car/patchy.car
/cern/new/lib/libkernlib.a

| operate in the
| directory $NEW/wk_patchy
I

| run Nypatchy in MODIFY mode
| deliver all routines

| for machine MACHINE

| create file source.log to

| be read by Nyshell
|
|
|
|

stop on Nypatchy errors

| run Nyshell
| input: source.log
| output: source.shfca

I
| compile

| put all .o files onto a library
I

p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA
p5lib.a $KERNLIB $EXTRA

45

46

Chapter 5. Ezample jobs using Nypatchy

The corresponding job to run on DEC VMS:

& L P B

$!
$!
$!

$

S H L H PN H

$!

$

set verify = procedure
set verify = noimage

on error then $ goto exit
on control_y then $ goto exit

COM-file to create the Patchy 5 modules

assign [zoll.p5.dev]
assign [zoll.p5.wyl]

assign [zoll.vaxlib] LIB
assign [zoll.vaxnew] NEW

OPDIR
SRCDIR

assign lib:kernlib KERNLIB
assign lib:p5lib PSLIB
uselib :== KERNLIB/LIB,SYS$LIBRARY:VAXCRTL/LIB

set default OPDIR

$ set default [.wk_patchyl]
$ nypatchy SRCDIR:patchy.car

+ASM, FORT, T=MODIFY, LOG

+EXE.

+USE, *PATCHY, VAX.
+0PTION, MAPASM.
+PAM.

+QUIT.

if $status .ne. 1 then goto exit

$
$
$
$
$
$
$
$
$
$
$
$
$

nyshell source.log u eof

.go

.go

.source.log

if $status .ne. 1 then goto exit

O@source.shfca

purge/nolog/noconfirm

lib/create PSLIB *.

link/nomap/exe=NEW:
link/nomap/exe=NEW:
link/nomap/exe=NEW:
link/nomap/exe=NEW:
link/nomap/exe=NEW:
link/nomap/exe=NEW:
link/nomap/exe=NEW:

Sexit:

$
$
$

set default OPDIR
set noverify
exit

obj
nypatchy
nyindex
nylist
nydiff
nyshell
nycheck
nytidy

PSLIB/INC=npatch/LIB, uselib
P5LIB/INC=nindex/LIB, ’uselib
PSLIB/INC=nlist/LIB, ’uselib
P5LIB/INC=ndiff/LIB, ’uselib
P5LIB/INC=nshell/LIB, ’uselib
PS5LIB/INC=ncheck/LIB, ’uselib
P5LIB/INC=ntidy/LIB, ’uselib

5.1. Ezl: Create the Patchy modules from the PAM file 47

Although Nyshell is not available on IBM VM/CMS, for completeness we still show the installation of
Patchy on this machine:
/*BATCH TIME 9:00 */

/*BATCH PUNCH 100K */
/*BATCH PRINT 100K */

/*BATCH STORAGE 48H */

/*BATCH NORETURN "LOAD MAP" */

Trace C

fortlev = 4 /* accepted error level*/
FORTMOD = ’FORTVS2’ /* Fortran Compiler */
FORTLIBS = ’CMSLIB VSF2LINK VSF2FORT’ /* Fortran Libraries */
MACLIBS = ’CMSLIB DMSSP’ /* Macro Libraries */

/®% run NYPATCHY to make the compilable file *%/
‘nypatchy a/patchy a/pbasm a/pbcra .go’
if RC /= 0 then Exit 9

/** compile to make P5ASM TEXT **/
’EXEC VFORT P5ASM (WOLIST’

/%% run EDITLIB + TXTLIB to make PS5LIB TEXTLIB *k/
FILEDEF FTO6FO01 DISK PS5WK LISTING A’

EDITLIB PS5ASM’

>TXTLIB GEN PSLIB PS5ASHM’

/* create a dummy routine ENDMODU to be used to mark the end */
line.1=" BLOCK DATA ENDMODU"

line.2=" END"

line.3=""

’EXECIO * DISKW ENDMODU FORTRAN A (STEM LINE. FINIS’
fortmod ’ENDMODU (NOPRINT’

/®% create the modules of Patchy 5 *k [
’GLOBAL TXTLIB PS5LIB KERNLIB ’FORTLIBS

’LOAD NPATCH (CLEAR NOAUTD’ ; ’>INCLUDE ENDMODU’
’GENMOD NYPATCHY MODULE A (FROM NPATCH TO ENDMODU’
say ’GENMOD creation of NYPATCHY returned RC=’RC

’LOAD NINDEX (CLEAR NOAUTO’ ; ’INCLUDE ENDMODU’
>GENMOD NYINDEX MODULE A (FROM NINDEX TO ENDMODU’
say ’GENMOD creation of NYINDEX returned RC=’RC

’LOAD NLIST (CLEAR NOAUTO’ ; >INCLUDE ENDMODU’
’GENMOD NYLIST MODULE A (FROM NLIST TO ENDMODU’
say ’GENMOD creation of NYLIST returned RC=’RC

’LOAD NDIFF (CLEAR NOAUTO’ ; ’INCLUDE ENDMODU’
>GENMOD NYDIFF MODULE 4 (FROM NDIFF TO ENDMODU’
say ’GENMOD creation of NYDIFF returned RC=’RC

’LOAD NCHECK (CLEAR NOAUTD’ ; ’>INCLUDE ENDMODU’
’GENMOD NYCHECK MODULE A (FROM NCHECK TO ENDMODU’
say ’GENMOD creation of NYCHECK returned RC=’RC

’LOAD NTIDY (CLEAR NOAUTO’ ; ’INCLUDE ENDMODU’
’GENMOD NYTIDY MODULE A (FROM NTIDY TO ENDMODU’
say ’GENMOD creation of NYTIDY returned RC=’RC

/*BEGIN P5CRA CRADLE RECFM F LRECL 80 -——=———-———————- */
+EXE.

+USE, *PATCHY, IBMVM.

+PAM.

+QUIT.

48 Chapter 5. Ezample jobs using Nypatchy

5.2 Ex2: Make test versions of Kernlib

This example makes test versions of the KERNLIB library for the Apollo. The approach is the same
as in example 1, but note the differences: We are reading 2 PAM files, kernapo and kernfor. Their
names are given as environment variables, because only those Nypatchy can substitute, it does not
recognize shell variables (although as written here the substitution is actually done by the shell).

Furthermore we are using the same source files to make 2 libraries, a normal one and a library to
be used with the debugger. The debug options are selected as parameters to Nyshell: ”-dbs” for
Fortran and ”-g” for CC, which are to be added to the normal compiler options.

#!/bin/csh -f -v
Shell script to create short KERN libraries on Apollo

setenv KERNMACH /cern/new/src/car/kernapo.car
setenv KERNFOR /cern/new/src/car/kernfor.car
set KERNLIB = “/kern/inst/libkernsh.a

set KERNLIBDB = “/kern/inst/libkerndbg.a

cd ~“/kern/inst
if (-d wk_kern == 0) mkdir wk_kern
cd wk_kern

nypatchy .go <</

+ASM, FORT, T=MODIFY, LOG .source.log
+EXE.

+USE, *KAPO.

+PAM, T=ATTACH .${KERNMACH}

+PAM, T=ATTACH .${KERNFOR}

+QUIT.

/
if ($status !'= 0) exit

B oo compile debug library
if (-d wk_dbg == 0) mkdir wk_dbg | ¢d is “/kern/inst/wk_kern/wk_dbg
cd wk_dbg

nyshell ../source u .go <</ take the source from ../

I
+fopt -dbs | and re-compile the changes
+copt -g | into ./
/ I
if ($status != 0) exit
csh -f -v source.shfca
if (-f $KERNLIBDB) rm $KERNLIBDB
ar rc $KERNLIBDB *.o
cd ../
e compile normal library

cd is “/kern/inst/wk_kern
take the source from here

nyshell source uq eof .go |
I
| and re-compile the changes
|
I

if ($status !'= 0) exit
csh -f -v source.shfca into here

if (-f $KERNLIB) rm $KERNLIB
ar rc $KERNLIB *.o

5.3. Ez3: Make a test version of the Zebra library 49

5.3 Ex3: Make a test version of the Zebra library

This example makes a test version of the Zebra library, and at the same time a library containing
some routines needed only for the standard verification runs, which check the correct operation of
Zebra. On the PAM file, the pilot patch *ZEBRA selects all the normal routines, the others are USE
selected from the sub-pilot P=QTESTLIB.

To separate the 2 categories we drive the normal routines into the directory wk_1ib with the first
+ASHM line, and with the second +ASM line, for stream FORT:3, we send the verification routines into
the directory wk_test. To identify them we attach the processing mode XDIV to all the material
which is USE selected starting from QTESTLIB through all levels: T=TRANS.

#!'/bin/csh -f -v
Shell script to create the ZEBRA libraries

set ZPAN ~/zebra/pro/zebraq.car
set ZLIB “/zebra/pro/zebra.a
set ZLIBTE = “/zebra/pro/zebrate.a

cd “/zebra/pro
if (-d wk_1ib == 0) mkdir wk_1lib
if (-d wk_test == 0) mkdir wk_test

nypatchy $ZPAM .go <<\

+ASM, FORT, T=MODIFY, PREFIX, LOG .wk_lib/source.log
+ASM, FORT:3, T=MODIFY, PREFIX, LOG .wk_test/source.log
+EXE.

+USE, QTESTLIB, T=XDIV, TRANS.

+USE, *ZEBRA, APOLLO.

+0PTION, ALL, MAP.

+PAM.
+QUIT.

\\

if ($status '= 0) exit
e Compile for library zebra.a
cd wk_1ib

if (-f $ZLIB) ar xo $ZLIB | restore the .o files

nyshell source u eof .go

set rc = $status |

if ($rc == 1) goto libok | status 1: no new compilations
if ($rc '= 0) exit | 2: error

csh -f -v source.shfca

if (-f $ZLIB) rm $ZLIB

ar rc¢ $ZLIB *.o
libok:

rm *.0 | delete the .o files

I Compile for library zebrate.a
cd ../wk_test

nyshell source u eof .go
if ($status '= 0) exit

csh -f -v source.shfca
if (-f $ZLIBTE) rm $ZLIBTE
ar rc¢ $ZLIBTE *.o

It is somehow a pity to keep all the .o files twice, once as individual files and again their copies on
the library. In this example we remove the .o files, and regenerate them from the library on the
next run, so that Nyshell can look at their dates, this is done with the ”x0” parameter to ar on
some systems, on others the "x" alone is enough to preserve the date. This procedure saves disk

space but costs time.

50 Chapter 5. Ezample jobs using Nypatchy

5.4 Ex4: Develop a new part of Zebra

Suppose one has the PAM file and the library of the previous example, and that one wants to develop
a new part to be added to the Zebra package, without modification to the existing material. Suppose
also that there are only a few routines, the time to recompile them for each shot is negligeable.
Suppose further that patch P=NEW on file zenew.car contains all the new material, all the new

routines and also any code to test them, including the Main program.

#!/bin/csh -f -v
Shell script to develop a new part of ZEBRA

set ZPAM = “/zebra/pro/zebraq.car
set ZLIB = “/zebra/pro/zebra.a
set ZLIBTE = "/zebra/pro/zebrate.a

set KERNLIB = /cern/pro/lib/libkernlib.a

nypatchy $ZPAM zetestxf.f -- zetestxc.c .go <<\\
+ASM, INCL, T=SPLIT. (only if C include files in the new stuff)
+USE, NEW, T=EXE.
+USE, *ZEBRA, SUN.
+0PTION, MAP.
+PAM.
+PAM, T=ATTACH .zZenew.car
+QUIT.
\\

if ($status !'= 0) exit

cc -g —c zetestxc.c
£77 -g -0 zetest zetestxf.f zetestxc.o $ZLIBTE $ZLIB $KERNLIB
zetest

5.5. Ez5: Using Nypatchy without a PAM file 51

5.5 Ex5: Using Nypatchy without a PAM file

This is a shell-script to create an executable module from the source code given as a here-document
to Nypatchy in the script itself. This gives easy propagation of the COMMON declaration, and easy
editing with Wylbur because the source is structured into decks.

#!'/bin/csh -f -v
totex.sh: script to make the module totex

set KERNLIB = /cern/pro/lib/libkernlib.a

nypatchy - totexxf .go <<’EQF’
+EXE.
+USE, TOTEX.
+PATCH, TOTEX.
+KEEP, ME.
CHARACTER CHIN*256, CHEX*256, COL(132)*1, COLE(256)%*1
COMMON /ME/ NBLK, WBLN, NCHIN, NCHTK, NCHEX, CHIN, CHEX
EQUIVALENCE (COL,CHIN), (COLE,CHEX)
COMHON /SLATE/ HNDSLAT, NESLAT, NFSLAT, NGSLAT, NNSLAT(36)
+DECK, MAIN, T=JOIN.
PROGRAM TOTEX

C- Translate flat text to Latex
+SEQ, ME.
END

+DECK, ARRIVE.
SUBROUTINE ARRIVE

C- Read next line, store it into CHIN, length NCHIN
C- skip and count blank lines in NBLN
+SEQ, ME.

END

+DECK, DEPART.
SUBROUTINE DEPART (JLEV)

+DECK, VERBATIM.
SUBROUTINE VERBATIM

+DECK, NOSUB.
SUBROUTINE HOSUB

+DECK, BOLD.
SUBROUTINE BOLD

+DECK, DOLINE.
SUBROUTINE DOLINE

+DECK, SCAN.
SUBROUTINE SCAN (JLOOK, JFIND, LENWD)

+DECK, COPST.
SUBROUTINE COPST (JF,H)

+QUIT.

>EQOF?

if ($status '= 0) exit

f77 -0 totex totexxf.f $KERNLIB
rm totexx*

Chapter 6: Auxiliary programs

To get help for the auxiliaries one can type on the computer for example:

nylist help .no
or nylist - h

The first will give details on how the parameters, file names and options, are to be specified;
with the second the H option is given which will cause the particular program to print a
short description of itself.

For the "option” parameter one gives one letter for each option selected (case insensitive),
for example:

nyindex mypam z mylist .go
nylist mypam es +mylist .go

selects the Z option for Nyindex, and the E and S options for Nylist.

On the VAX or Alpha with system VMS, a file name may be given directly in Unix style; if
given in VAX style Patchy will convert it for internal handling and analysis to Unix style, the
correspondence is for example:

/cern/new/src/car/patchy.car;4
cern: [new.src.car]lpatchy.car;4

Here are some more VAX equivalents:

//node/log/a/b/f.e; 17 “/a/b/f.e “/f.e
node::log:[a.blf.e;17 disk:[name.a.b]f.e disk:[name]f.e
a/b/f.e ../a/b/f.e .. /f.e /(a.b/f.e
[.a.b]f.e [-.a.blf.e [-1f.e [a.p]lf.e
On the IBM with VIMM/CUS, file names have to be given in one of two possible ways, for example:

patchy.car.a or a/patchy.car
to mean PATCHY CAR A

The status returned is:

UNIX VAX IBM
$7 or $status = 0 $STATUS = 1 rc = 0 normal
1 9 1 warning | void operation
2 4 8 error

The meaning of the "warning” status depends a bit on the program, for Nyshell it means
that nothing needs to be re-compiled.

52

6.1. Nyindex and Nylist — to print PAM file listings 53

6.1 Nyindex and Nylist — to print PAM file listings

Nyindez will print a table of contents of the patch and deck names encountered, as well as
a sorted index of patch and deck names, and of sequences defined on the PAH file:

nyindex pam.car options print

with:
pam the name of the PAN file, .car is the default extension;

options B — bare, table-of-contents without comments,
H - print the help information only,
P — patch names only in the table-of-contents,
Q — quick, suppress the table-of-contents,
X — suppress the index of patch, deck, sequence names,
Y — suppress the index of deck and sequence names,
Z — suppress the index of sequence names,
n — page size control, as for Nylist, see below,
+ — inhibit the initial page-eject.

print printed output file, default: standard output.

Nyindex will check if there are two decks of the same name in the same patch, and if so, it
will print a "duplicate” warning and take the ”warning” exit (status =1 on Unix). (With
version 5.03/0 there was a bug: if the X option has been selected the status will be 0 always.)

When printing the table-of-contents Nyindex will normally include the comment fields found
on the +PATCH and +DECK lines; if this is not wanted one can give the B option.

Nylist will list a Pam file, with line numbering, both local to the deck and global in the file.
If the S option is given each deck will start a new page, unless the page is almost empty, or
if its +DECK line carries a T=JOIN. If the E option is given, page breaks within a deck can be
controlled with lines +SEQ,QEJECT,N=n.

nylist pam.car options print

with:
pam the name of the PAM file, .car is the default extension;

options H — print the help information only,
S — start a new deck on a new page,
E - page ejects with +SEQ,QEJECT honoured (only with S),
n — page size control, see below,
+ — inhibit the initial page-eject.

print printed output file, default: standard output.

The page size of the print medium is assumed to allow for 110 lines per page, this can be
overruled by giving options 0, 1, 2, 3, or 4, to set 58, 62, T4, 84, or 98 lines per page.

Starting with version 5.03/8, one can alternatively give the number of lines in clear as an
integer within the option parameter, for example:

xbanner 1=mylist.lis [List||mypam|Vs|1.24]|
nyindex mypam z104 +mylist .go
nylist mypam es104 +mylist .go
nycheck mypam +u999 +mylist .go

54 Chapter 6. Awuziliary programs

6.2 Nysynopt — to print synoptic PAM file listings

Nysynopt will print a line-by-line listing of PAM files in the style of Nylist, but with in-line
expansion of sequence calls, and with markers representing actions +ADD etc. at the point
where the action would operate. Thus, if one is working on a listing of a particular routine,
one has the declaractions of the COMMON variables used by this routine also displayed on
one’s listing. For optional code controlled by multiple sequence definitions one obtains thus
a synopsis of all the possibilities. (Nysynopt is available starting with version 5.03/28).

The operation of Nysynopt can be controlled in detail with control lines given in the cradle
(which is not possible with Nylist). These control lines are a sub-set of the control lines for
Nypatchy, as explained later.

.Program call statement

nysynopt pam.car options cradle print

with:

pam the name of the PAN file, .car is the default extension;
PAM files may also be attached with lines +PAM given in the cradle, as for Nypatchy.

options H — print the help information only,
S — start a new deck on a new page,
E — page ejects with +SEQ,QEJECT honoured (only with S),
M - missing sequences to be signalled,
I — line numbers for individual PAM files each start at zero,
X — do not signal actions,
Y - do not expand sequences called by +CDE,
Z — do not expand sequences called by +SEQ,
n — page size control as for Nylist, see above,
+ — inhibit the initial page-eject.
cradle the file name of the cradle, default: standard input;
one may give the 3 characters EOF in this position to indicate that there is no
cradle, in which case Nysynopt will simply list the complete PAM file given.

print printed output file, default: standard output.

.Control lines in the cradle

Nysynopt will act on a certain set of control lines given in the cradle, but, unlike Nypatchy,
not on control lines occurring on the PAM files to be listed, with the exception of sequence
definitions and calls, and of the actions +ADD etc.

These cradle control lines are:

+LIST.
+LIST, (P=)pname,...
+LIST, (P=)pname, D=dname,...

The material to be listed has to be indicated, either everything or selected pieces. Control
lines +FORCE and +SUSPEND are also available. Alternatively one may give the parameter
T=LIST on the control line +PAM to list everything on the particular PAM file.

6.2. Nysynopt — to print synoptic PAM file listings 55

+USE, (P=)pname, [D=dname,] ..., T=INHIBIT.

Nysynopt is initially set up to accept everything, corresponding to +USE. without parameters.
If one wanted to exclude a patch or a deck, so as to prevent the sequences or actions defined
in there to appear in the listing of the other material, one can inhibit its use.

+PAM, (LABEL=)n, N=xx, T=opt, RETURN=pname .file-name

is used to call up a PAM file for processing. The syntax is the same as for Nypatchy, except that
the parameters T=UPDATE, T=MERGE, T=DISPLAY, and the IF= parameters are meaningless.
Special to Nysynopt are the parameters T=LIST and T=INDIVIDUAL, here is the summary:

Label=n a small integer to identify the file,

this is only needed for stop-go reading, as for Nypatchy.
N=ndo number of PAM files to be processed on this file; default: ndo=999
N=nsk,ndo ignore nsk PAM files and then process ndo PAHM files on this file.
T=Attach open the file whose name is given in the comment field and process it.
T=Hold no rewind of the file after processing, default: rewind after.
T=Resume no rewind of the file before processing, default: rewind before.
T=LISt do list all the material on this file.

T=INDiv if there are several PAM files on this file, start line numbers from zero for each
individual PAM file.

R=pname stop processing the file when the processing of patch ”pname” is
complete and revert to the cradle.

+KEEP, sname.
+KEEP, sname, T=SINGLE.

Many programs use sequence definitions for simple functions which are slightly different on
different machines, and it might be a nuisance to see all of them expanded in every routine.
By using the first form one may completely suppress expansions of the particular sequence;
using the second form will suppress showing further definitions beyond the first. Note well
that this is for +KEEP given in the cradle.

Other Nypatchy control lines available in the cradle for Nysynopt are:

+0PTION, COMPACT, EJECT (,Q0FF)
+PARAM, LINes, N=n.
+PARAM, COLumng, N=n

56 Chapter 6. Awuziliary programs

.Usage of Nysynopt, example 1
Straighforward listing of the PAM file micky.car:

#!/bin/csh -f
script to list PAM file micky
set verbose

set TIME = "july 95"
set NAME = micky
set PAM = “/kern/wyl/$NAME

set LIST = $NAME.lis

if (-f $LIST) rm $LIST
xbanner 1=$LIST KERN SYNOPT "$TIME" // $NAME .car

nyindex $PAM - +$LIST .go
nysynopt $PAM - EOF +$LIST .go
In this example everything is listed because there is no cradle; listing is compact because
the S option is not given.
.Usage of Nysynopt, example 2
This shell script might be used to list the PAM file patchy.car:
#!/bin/csh -f

set verbose

set VS = "5.,03/28"
set PAM /cern/new/src/car/patchy.car
set LIST = synoptk.lis

if (-f $LIST) rm $LIST
xbanner 1=$LIST " |PATCHY 5|LIST|patchyl [$VS||SYNOPT|"

nyindex $PAM - +$LIST .go

nysynopt $PAM ES - +$LIST .go <</

+LIST. list everything

+KEEP, Q_AND. do not expand these sequence calls
+KEEP, Q_OR.

+KEEP, Q_SHIFTL.

+KEEP, Q_SHIFTR.

+KEEP, Q_JBIT.

+KEEP, Q_JBYT.

+KEEP, QCARDL.

+KEEP, NEWLINE, T=SINGLE. show only the first definition
+PAM. go

/

xprint -d 4050 -f P1RM -cc -r X8 $LIST
rm $LIST

In this example everything is listed because of the line +LIST.; there is only one PAN file, its
name is given in the program-call, and it is called for processing with the line +PAM.

6.2. Nysynopt — to print synoptic PAM file listings 57

.Usage of Nysynopt, example 3

The master source of Zebra is held on a number of separate files for ease of handling, listing
in particular. The COMMON declarations for all packages are on file zecde.car. The various
packages are on files zemgq.car, zefq.car, zejz91.car, etc. (These files are concatenated for
release delivery to zebra.car).

To list one of these file, the file-I/O package for example, one calls a shell script with
synzeb zefq
where the script synzeb is:

#!/bin/csh -f -e
unset verbose

set NAME = "$1"

if ($NAME == ’’) then
echo " Usage: synzeb name :> print zebra/wyl/name.car"
exit

endif

set verbose

set VERS = "3.76"
set DATE = "Oct 95"
set LIST = zebk.lis

setenv CDE ~/zebra/wyl/zecde.car
setenv PAM ~/zebra/wyl/$NAME.car

if (-f $LIST) rm $LIST
xbanner 1=$LIST " |ZEBRA|LIST||$VERS|$DATE| |$NAME|"

nyindex $PAM - +$LIST
nysynopt - ES - +$LIST <<’stop’
+KEEP, QCARDL.

+KEEP, Q$ANDOR.

+KEEP, Q$SHIFT.

+KEEP, Q$JBIT.

+KEEP, Q$SBIT.

+KEEP, Q$SBYT.

+KEEP, Q$CBYT.

+KEEP, Q$JBYTET.

+KEEP, MZBITS, T=SINGLE.

+KEEP, MZCA, T=SINGLE.
+KEEP, ZMACHFIX, T=SINGLE.
+KEEP, ZCETA, T=SINGLE.

+KEEP, QTRACE, T=SINGLE.
+KEEP, QTRACEQ, T=SINGLE.
+KEEP, QTRACE99, T=SINGLE.
+KEEP, QTOFATAL, T=SINGLE.

+PAM, T=ATTACH .${CDE}
+PAM, T=ATT, LIST .${PAM}
’stop’

xprint -d 4050 -f P1RM -cc -r X8 $LIST
rm $LIST

In this example there are two PAM files, the first is not listed, it only supplies sequence
definitions; the second is listed because of the T=LIST parameter.

58 Chapter 6. Awuziliary programs

6.3 Nycheck and Nytidy — to clean PAl files

Nycheck will check all the control lines on a Pam file, reporting syntax errors. This is more
thorough than Nypatchy itself, which tolerates syntax errors on IF de-selected control lines,
and which does not look at the contents of patches or decks which have not been USE selected.

nycheck pam.car options print

with:
pam the name of the PAN file, .car is the default extension;

options H — print the help information only,
U — presence of user data types to cause a warning,
n — page size control, as for Nylist, see above,
+ — inhibit the initial page-eject.

print printed output file, default: standard output.

The error exit is taken if errors have occurred, similarly for warnings.

Nytidy will make a cleaned-up copy of a Pam file:

nytidy org.car mnew.car options print

with:
org the name of the original PAM file, .car is the default extension;
new the name of the new PAM file,

if this is not given the result will replace the original;

options C — the original is a CMZ output file,
H — print the help information only,
V — verbose, print each change,
+ — inhibit the initial page-eject.

print printed output file, default: standard output.

Nytidy will remove trailing blanks on all lines. In decks of type FORT trailing comment lines
will be removed, starting with version 5.03/8 leading comment lines are also removed. It
will replace old forms of some built-in sequences by their new forms; it will remove lines
+DECK ,BLANKDEK. coming from CMZ.

If ”new” is a pure directory, the file-name part will be inherited from ”org” (starting with
version 5.03/12).

6.4. Nydiff — to compare two PAM files for differences

59

6.4 Nydiff — to compare two PAl files for differences

Nydiff compares two different evolutionary stages of the same PAM file and delivers the
differences found as a correction patch, which when applied with Nypatchy to the file of
the earlier stage will upgrade it to the later stage. Re-ordering of patches or decks cannot
conveniently be done with Nypatchy, therefore such operations are to be done with Wylbur,
for which Nydiff delivers an exec file. The program call is:

nydiff org.car new.car name

options print

with the parameters:

org the name of the original, the reference PAM file;
new the name of the derived PAM file, .car are the default extensions.
name the name to be used for the correction files to be created:
name.ucra: the correction patch for Nypatchy,
name.uexe: the re-ordering instructions for Wylbur.
options A — anyway, by-pass the first test on sufficient matching,
F — force, by-pass the second test on sufficient matching,
H - print the help information only.
print printed output file, default: standard output.

When deriving the corrections, it is recommended to check back immediately in the same

Job that everything is well, as for example with:

#!/bin/csh -f -v

Make the Muon correction cradles
gset ORGF = muorg

set NEWF = munew

set CRAD = muoslo
get the correction files

nydiff $O0RGF $NEWF $CRAD .go
if ($status > 1) exit
apply .ucra

nypatchy - temp.car .go <</
+UPDATE.
+USE, T=EXE.

+PAM, T=ATT .${CRAD}.ucra
+PAM, T=ATT, UPDATE .${ORGF}

/

if ($status '= 0) exit

apply .uexe
use temp.car <</
Q$CRAD.uexe

save —unn -rep
quit

/

check for identity

diff temp.car S$NEWF.car
if ($status '= 0) exit
echo " Success."

rm temp.car

status returned by Nydiff:
=0 fine
1 warning
2 error

60 Chapter 6. Awuziliary programs

Nydiff is provided to help in the coordination of parallel developments: two people working
independently on the same piece of code, starting from the same PAM file, each one will have
taken his private copy and change it with a text editor until his PAM file is in the wanted
shape.

To merge the resulting two PAM files, one uses Nydiff to get the two correction patches, which
are then applied together to the original file in one run of Nypatchy in update mode.

The real problem, however, is not so much the mechanics of merging the code of the parallel
developments, but to verify their compatibility, a task which can only be done by a person
who understands the code. All that Patchy can do to help here is to give ”clash warnings” if
two corrections address the same lines, and, very important, to provide an in-context listing
of all the corrections done.

To be useful, the correction patch produced by Nydiff has to be minimal, for example: if a
deck has changed its position in its patch, it would be useless to merely delete the old deck
and add the new one in the new position, because changes from different people to this same
deck could not then be collated.

For this reason, Nydiff makes a big effort to first find out who is who, before actually making
the differencing between a deck on "new” and its corresponding deck on ”org”. It might be
helpful to visualize this matching process:

1) matching by name assumes that patches of the same name on the two files are related,
and also decks of the same name in related patches. Thus if one must change patch or
deck names, never exchange them, but use new names. At the end of this process there
is a test (which can be bypassed with the A option) to check that at least half of all
decks or patches have been matched.

2) matching of patches by content compares all as-yet unmatched patches on ”org” against
all unmatched patches on ”new”: if either 3/4 of the deck names or 80 per-cent of the
content are the same, the two patches are assumed to be related. Thus if one must
change the name of a patch, try not also to change its deck names.

3) matching of decks by content compares all as-yet unmatched decks of related patches:
if the content of a pair of decks is the same to the 80 per-cent level, they are assumed
to be related.

4) a check is made to see whether an old patch has been split by inserting a new line
+PATCH. After this there is a test (which can be bypassed with the F option) to check
that at least 3/4 of all decks have been matched.

5) To find ”lost” decks, decks which may have been transferred from one patch to another
one, Nydiff takes each unmatched deck on ”org” (of any patch which survives) and
scans all patches on "new” to find an as-yet unmatched deck of the same name and
with the same content to the 80 per-cent level.

On the result of the matching process the correction patch is built: unmatched patches
or decks on "org” are deleted with +USE,T=INHIBIT. For matched decks the differences of
content are recorded headed with +ADD, +REPLACE, +DELETE lines. Unmatched patches or
decks on "new” are added, headed with +ADD. Instructions to re-order the PAM file resulting
from the corrections are delivered as an Exec file for the Wylbur editor.

Obviously, as long as parallel developments of a PAM file are under way one should avoid
cosmetic changes completely; rationalizing variable names, routine names, or statement
numbers, tidying up the lay-out, re-ordering patches or decks, should be left to the person
in charge of the PAM file, to be done after all developments have been merged. Although
painful, this gives one a chance not to loose control over the evolution of a piece of software.

6.4. Nydiff — to compare two PAM files for differences 61

.Errors and warnings

Nydiff will give a ”duplicate” informative message if it finds two decks with the same name
in the same patch. A warning is given if a correction needs to be constructed for the first of
a set of duplicate decks. A correction for any deck of a set of duplicates other than the first
is an error, because Nypatchy would apply it to the first.

The error exit is taken if errors occured, similarly for warnings.

.Example:

Suppose two people in Oslo and Lund have worked starting from the same file muorg.car.
When finished they deliver the corrections muoslo.ucra and mulund.ucra, obtained as shown
in the first example of this paragraph. To merge the developments and to get a listing
collating the changes one has to do this:

1) change the patch names to identify the origin of each correction. One can do this by hand
of course, using Wylbur one would do this:

use muoslo.ucra <</

change 5/1 to ’, muoslo.’ in ’+PAT’1 xqt 1
save -unn -rep

use mulund.ucra

change 5/1 to ’, mulund.’ in ’+PAT’1 xqt 1
save -unn -rep

quit

/

(This is needed at the moment; starting with version 5.03/8 Nydiff uses the file name also
as name for the patch.)

2) run Nypatchy in Update mode:

nypatchy - mumerge.car - mumerge.lis .go <</
+UPDATE.

+USE, T=EXE.

+LIST, MUOSLO, MULUND.

+PARAM, CLASH, LEV=1.

+suspend, list.

+PAM, T=ATT .muoslo.ucra
+PAM, T=ATT .mulund.ucra
+suspend, off, list.

+PAM, T=ATT, UPDATE .muorg.car
+QUIT.

/

Apart from delivering the updated PAM file on mumerge.car, it will list on file mumerge.lis
all routines which have been changed, each correction being labelled with its origin. If one
does not want to see the initial listing of the patches MUOSLO and MULUND one could suppress
it with the control lines +SUSPEND as indicated.

Starting with version 5.03/8 one will probably want to give instead
+PAM, T=ATT, UPDATE, MERGE, DISPLAY .muorg.car

The MERGE option tells Nypatchy to take all corrections, even if they have overlapping line
ranges (cf. para. 4.11), and the DISPLAY option asks for deleted material also to be listed.

62 Chapter 6. Awuziliary programs

6.5 Nymerge — to ready PAM files for release

Nymerge is intended to help in the preparation of a new release of some piece of software.
It copies the ”old” PAH file to the "new” file, with:

a) optionally updating the version number and the date/time field on the PAM file title(s),

b) replacing decks for which there is a new version presented on the ”"merge” file, if
any. The order of the decks on the "merge” file has to be the same as that of the
corresponding decks on the ”old” file.

The program call statement is:

nymerge merge.car old.car new.car options print

with:
merge the name of the file containing the replacement decks, give "-" if none;
old the name of the PAM file to be updated;
new the name of the resulting PAM file, .car are the default extensions.

options H — print the help information only,
U — update version/date/time on all PAHM titles found on the file,
F — update only the first PAM file title,
P — ponly: log only the patch names, not the decks,
Q — quick: no log printing of patch/deck names,
+ — inhibit the initial page-eject.

print printed output file, default: standard output.

.Example
The shell script on the next page is used to prepare the release of the file kernfor.car:

The current release is PUBPAM; the master source is ORGPAM, the file on which all the changes
have been done with a text-editor. The job steps to create the file NEWPAM for release are:

1) print the banner page to LIST identfying the output.

2) Nypatchy in UPDATE mode is used to extract all the routines which have changed. Note
that the blank decks of the patches concerned are also pulled out, to safeguard against
duplicate deck names in different patches.

3+4) Wylbur is used to place the version stamp into all the new routines, which are then
listed with Nylist.

5) Nymerge is used to merge the new decks into ORGPAY, also updating the PAM file title.

6) Wylbur is used to compare the new file against the current release, showing all differences
and where they occur. In an extra step the output is copied to the print file LIST, left-shifted
by inserting one blank at column 1.

7) Send the output LIST to print.

6.5. Nymerge — to ready PAM files for release 63

1)

2)

3)

4)

5)

6)

6b)

7

#!/bin/csh -f -v -e
script to prepare kernfor.car for the next release
set verbose

set OLD = "441"
set TIME = "sept 95"
setenv STAMP ’ .VERSION KERNFOR 4.42 951011’

set PUBPAM = /cern/pro/src/car/kernfor.car # the current release file

set ORGPAM = ~/kern/wyl/kernfor.car # the master source file

set NEWPAM = “/kern/new/kernfor.car # the file for the next release
set LIST = upfor.lis

set xwork = “/work/upfor # temporary working files:

set newmat = ${xwork}x2k # the new or changed routines

set wylog = ${xwork}.wyllog * the Wylbur diff result

xbanner 1=$LIST KERN UPDATE "$TIME" /// '"old $0LD" kernfor

oo oo oo oo extract the new material
nypatchy $ORGPAM $newmat.car - +$LIST .go <<\\

+UPDATE.

+USE.

+EXE, KERNFOR, D=, UPDATE.

+EXE, UTYGEN, D=, FCASPLIT.
+EXE, CCGEN, D=, VXINVB, VXINVC.
+EXE, CCGEN, D=SIGUNBL, SIGPRNT.
+EXE, TCGEN, D=, CCOSUB, CENVIR.
+0PT, MAPASH.

+PAM, T=UPDATE.

A\

¥ - Wylbur, version stamps
use -u $newmat.car <</

change 38/1 to ’ cenv:STAMP’ in 'LIB#’ & ’.VERSION KERN’38> sh \pd
sur

quit

/

ettt list the new material
nylist $newmat - +$LIST .go

- e make the new PAM file

nymerge $newmat $ORGPAM $NEWPAM u +$LIST .go
rm $newmat.car

¥ - compare to last release
use -u $NEWPAM >$uylog <</

load -u $PUBPAM

diff el show \pd

quit
/

copy result from previous step to the printed
use -u $LIST <</ # output shifted with blank inserted at col. 1
end 1 -—---———--—————- compare to last release
end

set val will *
collect from $wylog -nol

change 1 to ’ ? in :w11+/1 -nol
sur

/

rm $wylog

xprint -d 4050 -f P1RM -cc -r X8 $LIST

64 Chapter 6. Awuziliary programs

6.6 Nyshell — to construct the commands to compile

The purpose of Nyshell is to help in the making of load libraries containing the routines of
complete software packages, in the following context:

The facilities of Unix being what they are, one has to have on a separate file the source of
each routine which is to appear on the library as an individual object. Using the compilers,
Fortran, C, or Assembler, depending on the nature of each source file, one compiles it to
create the corresponding .o object file. Finally the wanted object files are to be collected
together onto the library file, using the ”ar” utility.

Thus the single concept ”package X”, whose source is one file ”PAH file X”, and whose object
is again one file "library for X”, has to be represented during the transition from the source
to the object by a multitude of maybe very many .f, .c, .s, .o files. Fortunately the creation
and deletion of directories is really easy with Unix. This allows a trick to represent all the
intermediate files as one single entity: the ”directory for X” containing this multitude of
files, and only those files. Thus all the .o files in this directory represent the wanted library.

In practice, then, we proceed as can be seen from the first 3 examples in Chapter 5:
1) create the directory for package X if it does not yet exist;

2) run Nypatchy in MODIFY mode, sending the source of each routine as a separate file into
this directory, and recording on the log file the nature and the name of each routine;

3) run Nyshell to read the log file, to decide which routines need to be (re)compiled, and
to deliver a shell-script containing the commands to compile;

4) run this script to do the compilations;

5) run the ar utility to make the library.

To do what it is supposed to do, Nyshell needs several pieces of information:

a) the names and properties of all the routines, this is provided by the log file coming from
Nypatchy, for example (Apollo):

fort:1 wylmain.ftn same

fort:1 wyldo.ftn same

fort:1 wwr_save.ftn same

fort:1 wws_apo.ftn

fort:1 wws_stat.ftn

fort:2 wus_del.ftn

fort:1 wws_rolc.ftn same

fort:1 wws_rolx.ftn same

fort:1 wws_save.ftn same

fort:1 wus_pseu.ftn

fort:1 wwx_stat.ftn same

fort:1 wux_del.ftn same

fort:1 wux_rolc.ftn same

cc:1 wwx_fork.c ww_incl.h
cc:1 wwx_poll.c same ww_incl.h
cc:1 wwx_chk.c same ww_incl.h
cc:1 wWx_ewait.c ww_incl.h
fort:1 wux_init.ftn same

fort:1 wux_fisc.ftn same

cc:1 wux_ficc.c wwW_incl.h

The first column gives the property and the second column gives the name of the source
file; the same flag signals that Nypatchy did not actually write the source file because its
content was unchanged; names of include files used, if any, are given at the end.

Note that the ”property” is described by the name of the logical stream through which
the routine was sent (cf. para. 4.8), thus it gives the data type and the diversion mode.
In the example there is one routine which came through fort:2, to be compiled without
optimization. For each data type there are 4 streams available, corresponding to the 4
diversion states.

6.6. Nyshell — to construct the commands to compile 65

b) are also needed the compiler options and the shape of the command to call the compiler
for each logical stream, as well as the name of the compiler for each data type. Nyshell has
built-in defaults for the machine it is running on; this can be replaced or modified with data
lines given in the cradle to Nyshell.

c) finally, the state of affairs at the previous run of Nyshell is needed, to detect a change in
the compiler options used, or a change in the diversion status of a particular routine. Each
run of Nyshell records this on the ”.xqtlog” file to be used with the next run, for example
(Apollo):

>.xqtlog

>fort:1 -bounds_violation -info 1 -indexl -cpu mathlib_sr10 -dbs -opt 3

>fort:2 -bounds_violation -info 1 -indexl -cpu mathlib_sr10 -dbs -opt O

>cc:1 -c -g -0

fort:1 wylmain

fort:1 wyldo

fort:1 initapo

cc:1 wwx_chk
cc:1 wWx_ewait
fort:1 wwx_init
fort:1 wwx_fisc
cc:1 wux_Ticc

This information is the basis for the decisions taken by Nyshell, when it is invoked with
the U (up-to-date) option. A particular routine does not need to be recompiled if all of the
following conditions are satisfied:

1) Nypatchy sends the same flag;
2) the compiler options for this routine are unchanged;
3) the ”last modified” time stamps indicate that the .o file exists and is more recent than

the source file, or any .h file used.

Moreover Nyshell has to check all the .o files present in the directory, to remove any file
for which there is no source file indicated in the log. This is necessary to safeguard against
name changes or deletions in the source.

This whole procedure is perfectly safe, one can kill a job whilst Nypatchy or Nyshell are
running, and restart. One will never loose a needed compilation.

The shell-script delivered by Nyshell might be for example:

#'/bin/csh -f
Script from nyshell for file source.log

set FILE = source

set s ="n"

set FO_1 = "-bounds_violation -info 1 -indexl -cpu mathlib_sr10 -dbs -opt 3"
set FO_2 = "-bounds_violation -info 1 -indexl -cpu mathlib_sr10 -dbs -opt O"
set FC = "/com/ftn"

set CO_1 = "-c -g -0"

set CC = "cc"

${FC} ${s}wws_apo.ftn ${FO_1}; mv wws_apo.bin wws_apo.o
${FC} ${s}wws_stat.ftn ${F0_1}; mv wws_stat.bin wws_stat.o
${FC} ${s}wws_del.ftn ${FD_2}; mv wws_del.bin wws_del.o
${FC} ${s}wws_pseu.ftn ${FO_1}; mv wws_pseu.bin wus_pseu.o
${cc} ${co_1} ${s}wwx_fork.c

${cC} ${Cc0_1} ${s}wwx_ewait.c

${CC} ${C0_1} ${s}wwx_ficc.c

End of the shell script

With Unix one relies on the shell to do the parameter substitution; on DEC machines with
VMS the substitution is actually done by Nyshell itself.

66 Chapter 6. Awuziliary programs

The program call to Nyshell (not available on IBM VM) is:

nyshell name.log options cradle print

with the parameters:

name the name of the log file coming from Nypatchy, .log is the default extension;
the output files delivered will be:
name.shfca: the shell-script to be run for compilation,
name.xqtlog: the file remembering the present state.

options A — force recompilation of all routines,
B — bypass the tests based on the .xqtlog file,
E — bypass the tests based on the .xqtlog file if the file is empty,
H — print the help information only,
Q — quick, do not print the set-up,
S — print the setup only, only together with H,
U — up-to-date, check that all .o files are ready to go to the library,
V — verbose, print the complete set-up.

cradle name of the file with the user set-up commands, if the file does not exist this is
not an error but a signal to use the set-up as is,
one may also give EOF to use the default set-up as is,
default: standard input.

print printed output file, default: standard output.

Nyshell and the resulting script name.shfca have to be run in the directory where the .o files
are, or are to be. The source files, however, can be together with the log file in some other
directory, example 2 of Chapter 5 uses this.

In the cradle one may give on data lines instructions on how the compilation commands are
to be constructed. On each machine, Nyshell has a default set-up, which may be looked at
as indicated on the next page. This response from Nyshell has been formatted to print valid
lines as they would be given in the cradle (apart the annotations added by hand in the left
margin).

The first word on each line is a tag identifying the information given on the right. Thus
”fc”, ”cc”, and ”as”, specify the command verbs to be used to call the compiler for Fortran,
C, and assembler, respectively.

”fopt” gives the compiler options to be used for all logical streams of Fortran, and ”fo:1”
gives the extra options to be added to the common options for stream FORT:1i.

”fort:i” specifies the complete command to be given to the shell to compile one routine, the
escape $* indicating the place(s) where the routine name has to be inserted.

The default set-up assumes that routines coming to streams :1 and :3 are to be compiled
normally, and that routines coming to streams :2 and :4 have problems and should be
compiled without optimisation.

One could over-rule the default with a line like:
fopt -bounds_violation —-info 1 -indexl -cpu mathlib_sr10 -dbs
or one may add to the default with a line like:
+fopt —-dbs

From the set-up Nyshell constructs shell parameter definitions followed by the shell com-
mands to compile, as can be seen from the example shown earlier which is the result of the
following call (adding the debug options for Fortran and C on Apollo):

nyshell source.log u .go <</
+fopt -dbs
+copt -g

/

6.6. Nyshell — to construct the commands to compile 67

The default set-up on any machine can be seen by typing on that machine the command nyshell

asking for help like (on Apollo):

Apo.1: nyshell ../xyz hs

Hyshell 5.02 /7 executing

Options : Al1l, By, Empty, Help, Quick, HSetup, Uptodate, Verbose
Default ext. : .log .cra .lis
Stream names : LOG opt read print
1 LOG ../xyz.log
opt HS
Input file: ../xyz.log

Shell script: xyz.shfca
Log file: xyz.xqtlog

Actual set-up used:

Prelude start: # Script from nyshell for file ../xyz.log
Compiler options
specific fo:l -opt 3
fo:2 -opt O
fo:3 =:1
fo:4 =:2
common fopt -bounds_violation -info 1 -indexl -cpu mathlib_sr10
Compiler name fc /com/ftn
Commands fort:1 ${FC} ${s}$*.ftn ${FO_1}; mv $*.bin $*.0
fort:2 ${FC} ${s}$*.ftn ${FO_2}; mv $*.bin $*.0
fort:3 =:1
fort:4 =:2
Compiler options
specific co:1 -0
co:2
co:3 =:1
co:4 =:2
common copt -c
Compiler name cc cc
Commands cc:1 ${cc} ${co_1} ${s}$*.c
cc:2 ${cc} ${co_2} ${s}$*.c
cc:3 =:1
cc:4 =:2
ao:1
ao:2 =:1
ao:3 =:1
ao:4 =:2
aopt
Assembler name as as
as:1 ${AS} ${AD_1} ${s}$*.s
as:2 =:1
as:3 =:1
as:4 =:2
Apreslude end: # End of the shell script
Source
directory sdir .
The special operator =: means ”same as”, thus the line fo:3 =:1 means: use for stream fort:3

the same specific compiler options as for stream fort:1.

The source files are assumed to be in the same directory as the log file, therefore the parameter
?sdir” is pre-set to the prefix given for the log file. This will be passed through the shell variable
${s}.

The names of the shell variables used, like FC, s, FO_1, are fixed by convention and cannot be
changed. The special escape $# indicates the places where the name of the routine has to be
substituted.

68

Chapter 6. Awuziliary programs

For more ample illustration we give here the result of this call for help also on a SUN and, on the

next page, for a VAX:

sun.3: nyshell ../abc hs

Nyshell executing with files / options

1 LOG ../abc.log
opt HS
3 read -

4 print tty
Version: PATCHY 5.02 /7 1995/02/23 17.40
Input file: ../abc.log
Shell script: abc.shfca
Log file: abc.xqtlog

Actual set-up used:

start: # Script from nyshell for file ../abc.log

fo:1 -0

fo:2

fo:3 =:1

fo:4 =:2

fopt -c -u66

fc £77

fort:1 ${FC} ${FO_1} ${s}$*.f
fort:2 ${FC} ${F0_2} ${s}$*.f
fort:3 =:1

fort:4 =:2

co:1 -0

co:2

co:3 =:1

co:4 =:2

copt -c

cc cc

cc:1 ${cC} ${C0_1} ${s}$*.c
cc:2 ${cc} ${co_2} ${s}$*.c
cc:3 =:1

cc:4 =:2

ao:1

ao:2 =:1

ao:3 =:1

ao:4 =:2

aopt

as as

as:1 ${AS} -0 $*.0 ${s}$*.s
as:2 =:1

as:3 =:1

as:4 =:2

end: # End of the shell script

sdir o

6.6. Nyshell — to construct the commands to compile

And for the VAX:

AxCrnC$ nyshell ../rst hs

Nyshell executing with files / options

1

3
4

LOG
opt

../RST.log
HS

read -
print tty

Version: PATCHY 5.02 /7 1995/02/23 17.40

Input file: ../RST.log
Shell script: RST.shfca
Log file: RST.xqtlog

Actual set-up used:

start:

end:
sdir

WD e

$! shfca:

$ proc_ver = f$environment("verify_procedure")
$ imag_ver = f$environment("verify_image')

$ set verify=(procedure,noimage)

/opt

=:1

=:2

/nolist/check=noover
fortran

$ ${FC} ${F0_1} ${s}$*.for
$ ${FC} ${F0_2} ${s}$*.for
=:1

12

=:1

=:2

/warn=noinfo

cc

$ ${ccr ${co_1} ${s}$*.c
$ ${ccr ${co_2} ${s}$*.c
=:1

12

=:1

=:1

=:2
/nolist
macro

$ ${as} ${A0_1} ${s}$*.mar

$ temp=f$verify(proc_ver,imag_ver)

.

69

Note that Patchy operates internally with Unix-style file names even under VMS, they are converted

to VMS style just before being used.

Chapter 7: Index

actions
concept introduced, 3
header lines +ADD, +ADB, +REPL, +DEL, 17
report clashing actions, 31
clashing, 43
ambiguities
resolving, 5, 13
actions, see clash
ASM
Assembled Material output files introduced, 4
print map of ASM contents, 30
output streams of Nypatchy, 37f.
output in split mode, 39
output in modify mode, 39
+ASHM to control output from Nypatchy, 40f.
auxiliary programs
summary of the Patchy programs, 5
described, 52f.
completion status, 52

back-compatible

operation of Nypatchy, 30
blank deck

of a patch, 3, 10

of P=CRA%, 4, 27, 34

+CDE
sequence call, 12
clash
report clashing actions, 31
handling clashing actions, 43
comment
comment field of a control line, 7
comment lines +NIL, 22
completion status
returned by Nypatchy, 26
returned by the auxiliaries, 52
conditional
control lines introduced, 3
control lines with IF= parameters, 9
sequence definition, 13
self material controlled by +SELF, 20
material controlled by +IF, 21
control-character substitution
for delayed control lines, 17
requested with +ASM, 41
control line
format and syntax, 7f.
hard and soft, 12, 17
delayed, 17
cradle
the initial input to Nypatchy, 3
CRA* is the default cradle patch, 3
things which must be done to run Nypatchy, 27
continued with +MORE, 28

70

INDEX

CRA* processing modes, 34

data types
declaring the contents of patches and decks, 11
defaults, 11
used to select output streams, 37
date and time
built-in sequences, 15
deck
concept introduced, 3
contents, 4
+DECK, deck header line, 10
names must be unique, 10, 61
print map of the decks written to the ASM files, 30
default
data types, 11
default self material, 20
delayed control lines, 17
+DELETE
action header line, 17
DIVERT
processing mode introduced, 4
+DIVERT to attach DIVERT mode, 32f.
downstream
later material in the cradle-PAM input stream, 5

environment variable substitution

on cradle control lines, 7

with the built-in sequence QENVIR, 15
error code, see completion status
EXE

processing mode introduced, 4

+EXE to attach EXE mode, 32f.

file name formats for VAX and IBM/VM, 26, 52

file names for Nypatchy
specified with the program call statement, 26
specified with +PAM, 36
ASH files specified with the program-call statement, 38
ASM files specified with +ASHM, 40

+FORCE
forcing processing modes, 35

foreign
foreign material defined, 4

gap
the gap is the memory free at start-of-deck, 29
+GAP to control the gap parameters, 29

IF
conditional control lines with IF= parameters, 9
+IF, +ELSE, +ENDIF for conditional material, 21
+IMITATE
imitate USE selection, 25
include
handling of C include files, 22
+INCLUDE control line, 22

71

72 INDEX

+KEEP
header line to define a sequence, 12
+KILL
kill an Nypatchy run for bad USE selections, 25

length
32 is the maximum significant length of P/D/Z names, 8
512 is the maximum line length, 9
listing
deck composition with Nypatchy: LIST mode, 4
new page for new deck in non-compact mode, 10
is compact or not, 30
is full or not, 30, 33
+LIST to attach LIST mode, 32f.
more about the LIST mode, 33
of deleted material, 33, 36
a PAM file with Nylist, 53
a PAM file with Nysynopt, 54

map of the decks written to the ASM files, 30
material

self and foreign material, 4, 5
memory

tuning with +NAMES or +GAP, 29

display state with +SHOW,MEMORY., 29
modify mode, see ASM
+MORE

continue the cradle from a file, 28

names
of patches, decks, sequences, 8
+NAMES to control the name-stack parameters, 29

+NIL

Patchy comment lines, 22
Nycheck

program call statement, 58
Nydiff

described, 59f.

program call statement, 59
Nyindex

program call statement, 53
Nylist

program call statement, 53
Nymerge

program call statement, 62
Nypatchy

operation described, 4f.

program call statement, 26

completion status, 26
Nyshell

example of usage, UNIX, 45, 48, 49

example of usage, VMS, 46

described, 64f.

program call statement, 66
Nysynopt

program call statement, 54
Nytidy

INDEX

program call statement, 58

+OPTION,
ALL. - print all patch names in summary, 30
BACK. - back-compatible operation, 30
COMPACT. - compact listing, 30
FULL. - full listing, 30
MAPASHM. - monitor decks written, 30
VERBOSE. - print full summary, 30

output, see ASM

page size
control in Nypatchy, 31
control in the Auxiliaries, 53
PAM file
Patchy Master file described, 3
title of, 10
+PAM control line to read a PAM file, 36
print index and table-of-contents, 53
line-by-line listing, 53, 54
ready for release with Nymerge, 62
+PARAN,
CLASH, N=1 or 2. - report clashing actions, 31
LINES, N=n. - set page length, 31
COLUMNS, N=n. - set page width, 31
patch
concept introduced, 3
+PATCH, patch header line, 10
pilot patches, 23
preset
built-in sequences, 15
P=CRA* and P=PY_VS5 are USE selected, 23
name-stack parameters, 29
gap parameters, 29
modes for the cradle, 34
processing modes
concept introduced, 4
selecting with +EXE, +LIST, +DIVERT, +XDIV, 32f.
forcing and suspending, 35
program version, see version

+QUIT
terminates the cradle, 5, 27

+REPLACE
action header line, 17
reserved
names of built-in sequences, 14
patch name PY_VS5, 23
return code, see completion status
routine
multi-routine decks, 4, 15
routine-header lines, 41

self
self material defined, 4
+SELF header line, 20
conditional self material, 20

73

74 INDEX

default self material, 20
sequences
concept introduced, 3
+SEQ and +KEEP control lines, 12f.
reserved names of built-in sequences, 14
built-in sequences, 15
+SHOW,
MEMORY. - display state of memory, 29
ASM. - display logical ASM stream parameters, 38
+SKIP
heading conditional self material, 20
split mode, see ASM
status return code, see completion status
summary
printed by Nypatchy, 30
+SUSPEND
suspending processing modes, 35

update

Nypatchy running in UPDATE mode, 5

+UPDATE to select UPDATE mode, 42
upstream

earlier material in the cradle-PAM input stream, 5
USE

USE selection introduced, 3

+USE to select program version, 23

USE selection imitated, 25

version
program version, concept introduced, 3
program version selected by +USE, 23

XDIV
processing mode introduced, 4
+XDIV to attach XDIV mode, 32f.
example of use, 49

