Constraints for a Z' boson with non-universal couplings in a supersymmetric model

Carlos Eduardo Díaz Jaramillo

UNIVERSIDAD NACIONAL DE COLOMBIA

Universidad Nacional de Colombia, Sede Bogotá - UNAL

December 2, 2019

- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model

4 Results

< 4[™] ▶

- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model

4 Results

Díaz, C. E. (UNAL)

Image: A matrix and a matrix

The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z^{ℓ} boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X$.
- Experimental data from the LHC has constrained the Z^{ℓ} boson at the TeV scale.

The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z^{ℓ} boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X$.
- Experimental data from the LHC constrain the Z^{ℓ} boson at the TeV scale.

 $p\bar{p} / Z^{\ell} / W^+ W$

The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z^{ℓ} boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X$.
- Experimental data from the LHC constrain the Z^{ℓ} boson at the TeV scale.

2 The non-supersymmetric model

3 A non universal $U(1)_X$ supersymmetric model

4 Results

5 Conlusions

The non-supersymetric model (Phys. Rev. D 95, 095037)

General Remarks

- The SM's symmetry is extended to $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X \quad \mathbb{Z}_2$.
- The $U(1)_X$ Z₂ sector was chosen non universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet $\$, that also breaks the $U(1)_X$.

Scalar bosons	X	\mathbf{Z}_2	The masse	es of ne	utral	vector	bosons are	
Higgs doublets			$M_A = 0$	M_Z	$\frac{gv}{C_w}$	M_{Z^0}	$\frac{g_X V}{3}$.	
$\phi_1=\left(rac{\phi_1^+}{rac{h_1+v_1+i\eta_1}{\sqrt{2}}} ight)$	2/3	+						
$\phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{h_2 + v_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$ Higgs singlets	1/3	-						
inggs singlets								
$\chi = rac{\xi_{\chi} + v_{\chi} + i\zeta_{\chi}}{\sqrt{2}}$	-1/3	+						
σ	-1/3	-			< E	→ → @	▶ < 콜 ▶ < 콜 ▶	E K

December 2, 2019

8 / 25

Díaz, C. E. (UNAL)

The non-supersymetric model

General Remarks

- The SM's symmetry is extended to $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X \quad \mathbb{Z}_2$.
- The $U(1)_X$ Z_2 sector was chosen as non-universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet $\$, that also breaks the $U(1)_X$.

Scalar bosons	X	\mathbf{Z}_2	The masses of neutral vector bosons are q_{X}
Higgs doublets			$M_A = 0$ $M_Z \frac{g_V}{C_W} M_{Z^0} \frac{g_{X^*}}{3}$.
$\phi_1=\left(rac{\phi_1^+}{rac{h_1+v_1+i\eta_1}{\sqrt{2}}} ight)$	2/3	+	$\begin{array}{cccccccccc} O & 1 & O \\ A & S_W & C_W & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$
$\phi_2=iggl({\phi_2^+\over rac{h_2+v_2+i\eta_2}{\sqrt{2}}}iggr)$	1/3	-	$Z^{0} = C_{W}C_{Z} \qquad S_{W}C_{Z} \qquad S_{Z}A \equiv B^{0}$ $Z^{0} \qquad C_{W}S_{Z} \qquad S_{W}S_{Z} \qquad C_{Z} \qquad B^{0}$
Higgs singlets			where, being $tan = v_1 = v_2$,
$\chi = rac{\xi_{\chi} + v_{\chi} + i\zeta_{\chi}}{\sqrt{2}}$	-1/3	+	$\sin_{Z} = (1 + \cos^{2})^{\frac{2g_{X} \cos_{W}}{3g}} \frac{M_{Z}}{M_{eq}}^{2}$
σ	-1/3	-	、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、

Díaz, C. E. (UNAL)

The non-supersymetric model

General Remarks

- The SM's symmetry is extended to $SU(3)_C \quad SU(2)_L \quad U(1)_Y \quad U(1)_X \quad \mathbb{Z}_2$.
- The $U(1)_X$ Z₂ sector was chosen non universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet $\$, that also breaks the $U(1)_X$.

Scalar bosons	X	\mathbf{Z}_2	The masses of neutral vector bosons are			
Higgs doublets			$M_A = 0$ M_Z $rac{gv}{C_w}$ M_{Z^0} $rac{g_Xv}{3}$.			
$\phi_1=\left(rac{\phi_1^+}{rac{h_1+v_1+i\eta_1}{\sqrt{2}}} ight)$	2/3	+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\phi_2=iggl({\phi_2^+\over rac{h_2+v_2+i\eta_2}{\sqrt{2}}}iggr)$	1/3	-				
Higgs singlets			The mixing between the interaction			
$\chi = rac{\xi_{\chi} + v_{\chi} + i\zeta_{\chi}}{\sqrt{2}}$	-1/3	+	eigenstates changes respect to the SM.			
σ	-1/3	-	< ㅁ > < @ > < 분 > < 분 > _ 분 _ 원			

Fermionic content

Quarks	X	\mathbf{Z}_2	Leptons	X	\mathbf{Z}_2	
SM fermionic isospin doublets						
$q_L^1 = \left(egin{matrix} U^1 \ D^1 \end{array} ight)_L$	+1/3	+	${\mathscr C}^e_L = \left({\nu^e \atop e^e} ight)_L$	0	+	
$q_L^2 = \left(\frac{U^2}{D^2} \right)_L$	0	-	${\mathscr C}^{\mu}_L = \left({{ u^{\mu}} \atop {e^{\mu}}} ight)_L$	0	+	
$q_L^3 = \left(egin{matrix} U^3 \ D^3 \end{array} ight)_L$	0	+	$\ell^{\tau}_L = \left(\begin{matrix} \nu^{\tau} \\ e^{\tau} \end{matrix} ight)_L$	-1	+	
SM fermionic i	sospin sin	glets				
$U_{R}^{1,3}$	+2/3	+	$e_R^{e, au}$	-4/3	_	
U_R^2	+2/3	_	e^{μ}_{R}	-1/3	-	
$D_{R}^{1,2,3}$	-1/3	-				
Non-SM quarks	\$		Non-SM leptons			
T_L	+1/3	_	$ u_R^{e,\mu, au}$	1/3	_	
T_R	+2/3	-	$N_R^{e,\mu, au}$	0	-	
$J_{L}^{1,2}$	0	+	E_L, \mathcal{E}_R	-1	+	
$J_{R}^{1,2}$	-1/3	+	\mathcal{E}_L, E_R	-2/3	+	

メロト メポト メモト メモト

3

2 The non-supersymmetric model

3 A non universal $U(1)_X$ supersymmetric model

4 Results

< 4[™] >

The Higgs mass in a supersymetric standard model

- Supersymmetry relates fermions and bosons: They both can be merged into the superfield.
- It protects the Higgs from divergent mass renormalization.
- A second Higgs doublet superfield [^]l must be considered in order to cancel quantum anomalies.
- For getting the right SM's bosons masses, the vacuum expectation values shall fulfill:

$$\frac{1}{v_1^2 + v_1^2} = v = 246 GeV$$

https://www.americanscientist.org/ article/going-nowhere-fast

The Higgs mass in a supersymetric standard model

For large tan = v₁⁰ = v₁, loop corrections due to stops should be as large as the tree level in order to get a 125 GeV mass. This can be seen from the approximate mass expression:

 $m_h^2 = m_Z^2 \cos^2 2 + \Delta m_h^2$

where Δm_h^2 comes from stops loop corrections.

https://www.americanscientist.org/ article/going-nowhere-fast

- < f⊒ > <

The Higgs sector in the supersymetric model

The eld content is doubled for cancelling quantum anomalies.

The VEV of the doublets are constrained by the electroweak boson masses:

$$q \frac{1}{v_1^2 + v_2^2 + v_1^{02} + v_2^{02}} = v = 246 \text{GeV}$$

The most general superpotential respecting the symmetry is given by $W = \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1$

Higgs potential: scalar elds

The scalar sector of the Higgs potential has three contributions:

F-terms. V_F terms = $\Pr_i^{P_i} F_i$, where $F_i = \frac{@W[A_1;A_2;...;A_n]}{@A_i}$. D-terms. V_D terms = $\Pr_s D_s^a D_s^a$, with $D_s^a = g_s T_{ij}^a A_i A_j$. This part ensures the gauge symmetry.

Soft-supersymmetry breaking potential:

The last terms break also the parity symmetry. If they weren't there, there would be scalar particles lighter than the Higgs boson.

- Introduction
- 2 The non-supersymmetric model
- A non universaU(1)_X supersymmetric model
- 4 Results
- 5 Conlusions

< A > <

Scalar mass spectrum

Charged bosons: There is a goldstone boson that gives mass to the W particles. Additionally, there are three masive charged scalar particles with a mass at the soft-SUSY breaking scale and also the $U(1)_X$ breaking scale.

CP-odd bosons: There are two goldstone bosons that give mass to Z and Z^0 . There are additionally 6 massive CP-odd particles, also at the soft-SUSY breaking scale and the (1)_X breaking scale.

CP-even masses: There is a scalar boson at the electroweak scale. The other 7 massive particles of this kind are on the other higher energy scales. The mass of the lightest can be written as:

$$\begin{split} m_h^2 & m_Z^2 & \cos^2 2^{\sim} + \ \frac{4}{9} \frac{g_X^2}{g^2 + g^{02}} (\cos 2_1 + \cos 2_2)^2 \\ \end{split}$$

where tarf $\sim = \ \frac{v_1^2 + v_2^2}{v_1^{02} + v_2^{02}}$, tan $_1 = \ \frac{v_1}{v_1^0}$ and tan $_2 = \ \frac{v_2}{v_2^0}$.

Higgs boson mass constraints on the new interaction

The squared Higgs mass gets a contribution proportional to the square coupling constant g_x^2 .

A Montecarlo exploration was made on the parameter $sp_{a} \beta \sigma s g_X$ and $v_2 vs g_X$ for obtaining the Higgs mass 1235 0:4 GeV at 95% con dence level.

Sincem_t v₁ and m_b v₂⁰, the domains for the exploration were [170 200]GeV and [3 7]GeV respectivelyv₂ had full freedom, [0 246]GeV_pv₁⁰ is then constrained for obtaining the right SM boson massesy₁⁰ = $v_1^2 v_1^2 v_2^2 v_2^2 v_2^2$.

Z' interaction with SM bosons and fermions

The previous results showed th**g**_k > 0:63. This gives strong implications on the lower mass bounds of th**Z**⁰.

The Z' interacts with the W bosons

$$\begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{The Z}^{0} \text{ also interacts with SM's} \\ \text{fermions} \end{array} \qquad \begin{array}{c} \text{L}_{\text{int; QB}^{0}} = \frac{9x}{3} u^{1} & P_{L}u^{1}B^{0} + \frac{29x}{3} u^{i} & P_{R}u^{i}B^{0} \\ + \frac{9x}{3} d^{1} & P_{L}d^{1}B^{0} & \frac{9x}{3} d^{i} & P_{R}d^{i}B^{0}; \end{array} \end{aligned}$$

$$\begin{array}{c} \text{where, being} \\ \text{tan } = \begin{array}{c} \text{peing} \\ \overline{v_{1}^{2} + v_{1}^{02}} = \begin{array}{c} p \\ \overline{v_{2}^{2} + v_{2}^{02}}, \\ \text{sin } _{Z} = (1 + \cos^{2}) \frac{29x}{3g} & \frac{M_{Z}}{3g} \end{array} \qquad \begin{array}{c} \frac{1}{2} \\ \frac{1}{M_{Z}0} \end{array} \qquad \begin{array}{c} \text{L}_{\text{int; eB}^{0}} = \begin{array}{c} \frac{49x}{3} e^{e} & P_{R}e^{e}B^{0} & \frac{9x}{3}e & P_{R}e^{B^{0}} \\ \frac{9x}{3}e & P_{R}e^{B^{0}} \end{array} \qquad \begin{array}{c} \text{sin } e^{e} & P_{L}e^{e}B^{0} & \frac{49x}{3}e & P_{R}e^{B^{0} \end{array} \end{array}$$

The total cross sections of the decayspp $! w^+ w$ and pp $! | l^+ l$ were calculated using MADGRAPH5 together with PHYTHIA 6 for introducing the PDF and parton shower, and Delphes 3 for detector simulation.

イロト イヨト イヨト ・

Z' constraints frompp ! w⁺w and pp ! I⁺I

Daz, C. E. (UNAL)

イロト イヨト イヨト イヨト

2

- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model

4 Results

Image: A matrix and a matrix

э

- The Higgs boson mass gets a contribution from the D-term coming from $U(1)_X$ at tree level.
- For obtaining a mass of 125 GeV Higgs boson, the coupling constant of the new symmetry is bounded from below, $g_X > 0.63$.
- Diboson production constraints the Z' mass to be $M_{Z^0} > 5$ TeV, similar with analyses from other authors. However, since $g_X > 0.63$, the dilepton production constraints were much stronger, giving approximately $M_{Z^0} > 8$ TeV.

Constraints from other authors:

- Phys. Rev. D 96, 055040
- Phys. Lett. B. 197, 68-87

The non-supersymmetric model

• Phys. Rev. D 95, 095037

The supersymmetric model

• Phys. Rev. D 100, 055037

Other $U(1)_X$ extended models

- J. High Energy Phys. 05 113
- Phys. Rev. D 89, 056008
- Phys. Rev. D 98, 015038

Constraints for a Z' boson with non-universal couplings in a supersymmetric model

Carlos Eduardo Díaz Jaramillo

UNIVERSIDAD NACIONAL DE COLOMBIA

Universidad Nacional de Colombia, Sede Bogotá - UNAL

December 2, 2019