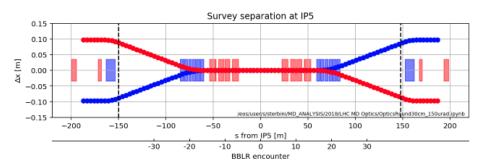


An Update on LHC Wire Compensation Simulation

A. Poyet with the incredible inputs of G. Sterbini, K. Skoufaris, S. Kostoglou, N. Karastathis, S. Fartoukh and Y. Papaphillipou

Beam-Beam and Luminosity Studies Meeting – 25th February 2019

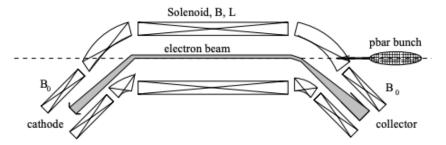
- I. An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- IV. Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)



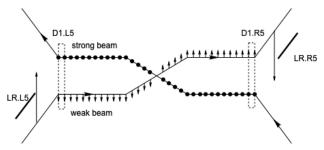
- An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- IV. Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)

Not all colliders are like LHC...

 The "after the triplet" location of D1 allows a lot of Beam-Beam Long-Range encounters



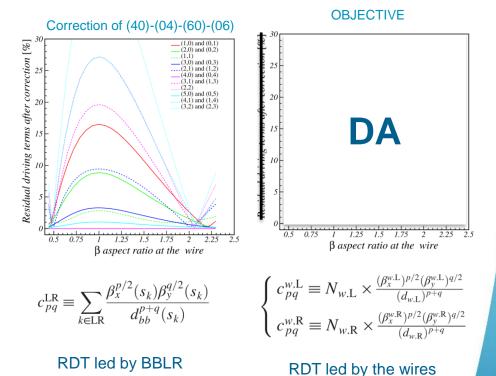
- But with all encounters (almost) in phase...
 - \rightarrow A local solution for a local issue?



From e-lens to DC wire

- While developing the e-lens in Fermi Lab, V. Shiltsev proposed as application to compress the tune footprint induced by BBLR (1997)
- In 2000, JP Koutchouk proposed instead a local compensation of the non-linear kicks induced by the BBLR interaction, using DC wires
- The approach was focused on compensating the encounters in between the triplets, installing the wires at the same beta-functions (x and y), for round optics.

V. Shiltsev and al., *Electron compression of beam-beam tune footprint in the Tevatron*, FERMILAB-TM-2008 (1997)



JP Koutchouk, *Principle of a correction of the long-range beam-beam effect in LHC using electromagnetic lenses*, LHC Project Note 223 (2000)

BBLR compensation as a path towards HL-LHC

- 15 years later, thinking about flat optics for HL-LHC, S. Fartoukh realized that the approach was not sufficient and started computing RDTs.
- But, numerically, S. Fartoukh showed that, by compensating 2 RDTs, it exists a sposition (an aspect ratio) in which the wires would minimize all RDTs.
- With ATS Optics, this compensation scheme is optics independent.
- This turned the wires into the so-called plan B for HL-LHC.
- Objective for HL-LHC: obtaining the same plot, but showing Dynamic Aperture.

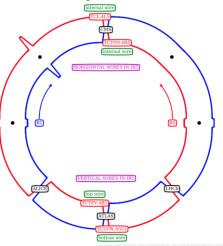
HILUMI CERN

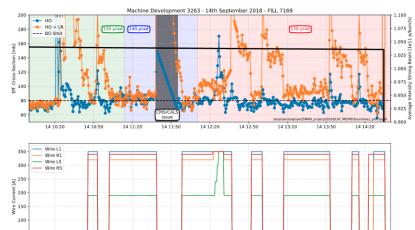
S.Fartoukh and al., *Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC*, Phys. Rev. ST Accel. Beams **18**, 121001 (2015)

A. Poyet - 02/25/19 - BB and Lumi Meeting

The need of Dynamic Aperture studies

- Being plan B, prototypes of wire compensator were built, installed in the LHC and tested during MDs in 2017/2018.
- The beneficial effect of the wires on the beam lifetime has been observed, using the settings predicted by S. Fartoukh paper.
- We were however experiencing some hiccups with simulations, not being able to observe an improvement of DA using the wire


14 10:20


14 10:50

14 11:20

14 11:50

Goal of this presentation: show you that now, we can!

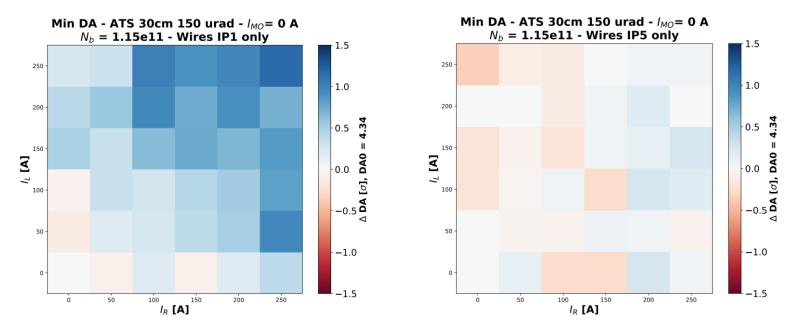
14 12:20

Local Time [dd hh:mm]

14 12:50

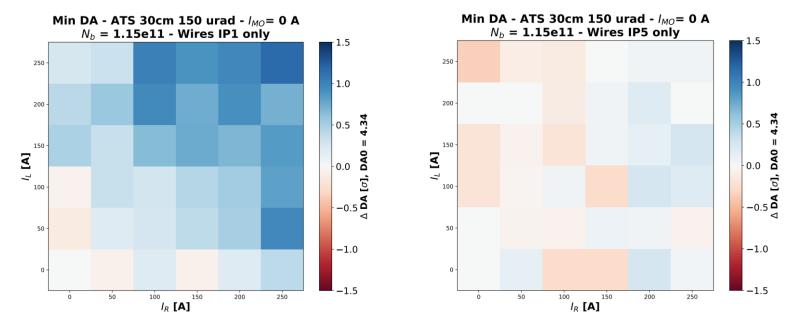
14 13:20

14 13:50


14 14-20

- I. An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- IV. Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)

Simulation Results


- Scanning each wire independently led to the following plots.
- Inconsistency with the experiment: the wires in IP1 are very efficient
- Inconsistency with the theory: the wires in IR5 do not work!

Simulation Results

- Sanity checks are needed to validate
 - Wire implementation in MAD-X
 - Interface between MAD-X and SixTrack

- I. An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- V. Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)

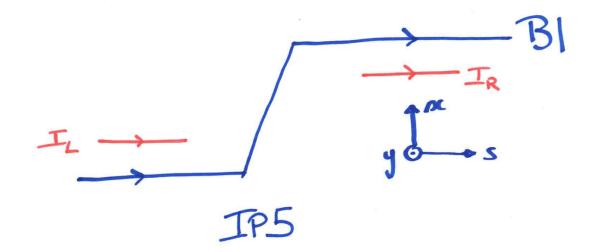
A useful tool: cpymad

- In order to have a 'step-by-step' approach, we will use the cpymad package in a SWAN notebook environment
- Link to SWAN: <u>https://swan.cern.ch</u>
- Historically: <u>https://github.com/pymad</u>
- Link to cpymad project: <u>https://github.com/hibtc/cpymad</u>
- To demonstrate the power of this tool, we will go through all the sanity checks needed for the wire, in a notebook.

			• Watch	4	🕈 Star 7	Y For	k 5
Code 🕕 Issues	1) In Pull requests (0)	Projects (0)					
		Join GitHub today to over 31 million developers wor ode, manage projects, and build				Disn	niss
		Sign up					
thon binding to MA	D-X http://hibtc.github.io/cp	oymad/					
thon binding to MA	D-X http://hibtc.github.io/cp	oymad/	起 3 contributors		da Vie	w license	
			11 3 contributors		쇼 Vie	w license	
7 1,485 commits			1 3 contributors	Find		w license ne or down	load -
⑦ 1,485 commits ranch: master ▼ Ne	13 branches					ne or down	
C 1,485 commits	13 branches				File Clo	ne or down	rs ago
1,485 commits ranch: master Ne coldfix Merge branch LICENSE	V 13 branches	€ 61 releases			File Clo	ne or down	rs ago 's ago
© 1,485 commits ranch: master • Ne coldfix Merge branch LICENSE doc	V 13 branches w pull request 'simplify-setup' Relicense as GPLv3+	€ 61 releases			File Clo	ne or down 682 14 hou 3 year	rs ago 's ago 's ago
③ 1,485 commits	V 13 branches w pull request 'simplify-setup' Relicense as GPLv3+ Merge branch 'simplify-set	C 61 releases			File Clo	ne or down 682 14 hou 3 year 14 hour	rs ago IS ago IS ago IS ago

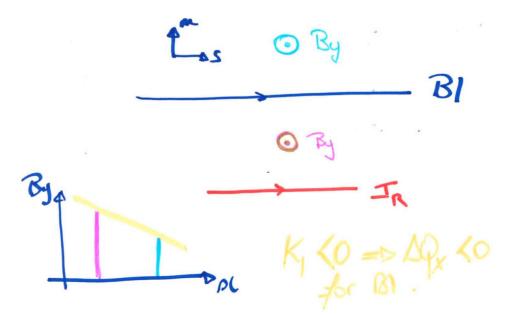
12

- I. An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- **IV.** Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)



 All the material needed from now, is available from the indico page of this fabulous event: <u>https://indico.cern.ch/event/801929/</u>

MAD-X reference system


In MAD-X, the reference system is the one of B1.

Gradient of a wire?

 Using the correct reference system, one gets that the gradient of the wire R5 on B1 has a negative gradient → negative H tune shift

16

- I. An historical introduction to the problem
- I. Simulations results: the inconsistence
- III. A useful tool: cpymad
- IV. Application: validation of the wire implementation in MAD-X
- V. Conclusions and next steps
- VI. AOB: experience sharing about job submission (HTCondor)

Conclusions

- Using cpymad in a notebook, we went step-by-step, through a whole validation of the wire implementation in MAD-X:
 - Validation of the beam-beam element meaning
 - Validation of the positioning and the polarity of the wire
 - Validation of the tune shifts and detuning with amplitude
 - Validation of the possible multipolar decomposition
- Using cpymad as an alternative of scripts saved a lot of time. We can only encourage the usage of this tool in a more systematic way (→ mask writing)
- Now: need to validate the interface MAD-X/SixTrack, reproducing the footprint using FMA (many thanks in advance to Sofia)

Thanks for your attention, but don't leave there is an AOB ©

AOB: optimize the usage and the communication around HTCondor

- Many of us are using HTCondor on a daily basis
- Many of us are experiencing issues, sometimes you don't feel confident enough to open a ticket:
 - Could we create/use an e-group (linked to ABP, ABP-CW?) to address first our doubts/issues? Ideally with a responsible that would be in charge, in case, to be in contact with the batch team.
 - Can we improve our knowledge about HTCondor? Documentation and trainings are available.
 - Can we improve the awareness of the available resources for our group? Improve the way we are sharing them?

AOB: optimize the usage and the communication around HTCondor

- Some useful links:
 - https://twiki.cern.ch/twiki/bin/view/ABPComputing/
 - Documentation: <u>http://batchdocs.web.cern.ch/batchdocs/index.html</u>
 - Tutorial:

http://batchdocs.web.cern.ch/batchdocs/tutorial/introduct ion.html

https://indico.cern.ch/event/635217/attachments/145855 1/2252370/HTCondor-Presentation.pdf

