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SLHC

CERN ISR held luminosity 
world record for >2 decades

Tevatron is present
frontier machine

factor 30

factor 10?



disclaimer
LHC upgrade plans & schedule under review at:
• LHC Machine Committee (weekly)
• special “brainstorming” meetings
• directorate retreat mid-November
• Chamonix 2010 workshop (Jan. ‘10)
• CERN MAC (1st mtg. 26 October)
• LHC “lumi up” task force (next week)

previous assumptions & schedules are likely 
to change significantly
plans, scenarios & time scales being revised…



contents of this presentation
1) parameters 
2) the original plan; LHCb & ALICE?
3) few words about phase-I
4) constraints & collision schemes
5) recent progress (CC, LPA, e-cloud)
6) example scenarios
7) luminosity leveling

8) turnaround time, β*, intensity 
9) conclusions & questions



• β* - IP beta function

• βx*/βy* - ratio of IP beta functions 

• θc – (full) crossing angle

• εN – normalized transverse emittance

• Nb – bunch intensity

• nb – number of bunches (→sb - bunch spacing)

• longitudinal bunch profile (“flat” vs “Gaussian”)

• number of collision points (IP’s)

• Tta – turn-around time

parameters



#IP’s : the original plan – “phase 0”
J.Gareyte, F. Ruggiero et al, e.g. LHC’99 workshop, LHC Project Report 626

nominal tune footprint
up to 6σ with 4 IPs & nom. 
intensity Nb=1.15x1011

tune footprint up to 6σ
with nominal intensity
and 2 IPs

tune footprint up to 6σ
with 2 IPs at ultimate
intensity Nb=1.7x1011

L=1034 cm-2s-1 L=2.3x1034 cm-2s-1

“going from 4 to 2 IPs ATLAS & CMS luminosity can be increased 
by factor 2.3 - further, increasing crossing angle to 340 µrad, 
bunch length (x2), & bunch charge to Nb=2.6x1011 would yield 
L=3.6x1034 cm-2s-1 [β*=0.5 m]”

~0.01

~0.01

~0.01

~0.01

β*~0.55 m β*~0.5 m
nominal ultimate



50-ns upgrade
with 25-ns 
collisions
in LHCb at 1-2%
the luminosity

25 ns

50 ns

nominal

25 ns

ultimate & 25-ns 
upgrades: LHCb
“late collisions” 
with ββββ*~3 m?

50-ns upgrade (LPA),
no collisions in LHCb

50 ns
25 ns

what about LHCb? – bunch patterns

50 ns: much reduced e- cloud! LHCb transparent



+ β∗ β∗ β∗ β∗ reduction by up to a factor of 2

+ larger aperture in triplet

- potential loss in optics flexibility

- higher chromaticity & chromatic aberrations

- more parasitic long-range beam-beam collisions

- about 1 year downtime

LHC-IR “phase-I”: merits & concerns



• total beam-beam tune shift ≤0.01 
– SPS p-pbar experience

• long-range beam-beam → crossing angle ≥9σσσσ
• arc cooling capacity

– global & local limitations, cooling shares with IR
– heat load from SR, image currents, & e-cloud

• IR layout & optics → ββββ* 
• event pile up in the detectors (≤300, ≤150?)
• luminosity lifetime (≥ 5h?)

upgrade constraints
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constraint - crossing angle
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range - f(triplet, ββββ*):
285 µµµµrad (nominal)
315 µµµµrad (ultimate)
till~410 µµµµrad “phase I”
→500 µµµµrad “phase II”?



b-b tune shift, φ & luminosity
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at the b-b limit, larger Piwinski angle &/or larger emittance increase luminosity!

total b-b tune shift
for two IP’s with
alternating crossing

optimization strategies:
1) increase Nb with ε (e.g. controlled ε blow up at top energy)
2) increase Nb with 1/Rφ & “flat” bunch Fprofile~1.4 (“LPA”) 
3)   vary ε as 1/Rφ (“small emittance”)
4)  set 1/Rφ =1 at IP and minimize β* (e.g. crab crossing)  



beam-beam limit – θc dependence?

for hadrons, one historical experiment at the SPS
K. Cornelis, W. Herr, M. Meddahi, PAC91 San Francisco

φ~0.45 φ>0.7

θc=500 µrad θc=600 µrad
small emittance

in lepton colliders crossing angle has reduced 
the beam-beam limit (DORIS-I, KEKB,…)

(almost) no additional beam-beam effect, but φφφφ was much smaller than considered for SLHC



θθθθc

• RF crab cavity deflects head and tail in opposite direction so that 
collision is effectively “head on” for luminosity and tune shift

• bunch centroids still cross at an angle (easy separation)
• 1st proposed in 1988, in operation at KEKB since 2007 
advantages: higher geometric luminosity, easy leveling, 
potentially higher beam-beam tune shift

crab crossing



θθθθc

1) large Piwinski angle  θc σz >> 2 σx* 
2) longitudinally flat profile
→ reduced tune shift, higher bunch charge

(& 50 ns spacing for e-cloud)

large Piwinski angle – “LPA”



efforts focus on crab crossing & LPA scheme:

ü crab cavities

ü generation & stability of long flat bunches

ü electron cloud simulations

recent progress on “phase-II” schemes



LHC-CC09 workshop
LHC Crab Cavity Workshop, 
jointly organized by CERN, 
EuCARD-ACCNET, US-LARP, 
KEK, & Daresbury
Lab/Cockcroft Institute
CERN, 16-18 September 2009

~50 participants,  LHC Crab Cavity Advisory Board established



CERNCERN
statementstatement

(Steve Myers) (Steve Myers) 
on LHC crab on LHC crab 

cavitiescavities
issued after issued after 

AccNetAccNet
LHCLHC--CC09 CC09 
workshopworkshop



CERN statements (excerpts)CERN statements (excerpts)
1. KEKB success … CERN must pursue crab cavities for LHC

2.  … Future R&D should focus on compact cavities … suitable for 
both [local and global] schemes

7. Demonstration experiments should focus on differences between 
electrons and protons (e.g. effect of crab-cavity noise with beam-
beam, impedance, beam loading) and on reliability & machine 
protection which are critical for LHC

8. A beam test with KEKB crab cavity in another proton machine 
… useful, meaningful and sufficient …

9. Possible modifications of Interaction Region 4 during the 2013/14 
shutdown

11. Crab cavity infrastructure … be included in all … LHC upgrades

12. Crab cavities can increase luminosity w/o accompanying increase 
in beam intensity, thereby avoiding negative side effects 



CC designs presented at LHCCC designs presented at LHC--CC09CC09



further crab cavity progressfurther crab cavity progress
30 October 2009: 
launch of CERN working group on feasibility 
of KEKB crab cavity test in SPS

WG conclusions  on 18 December 2009: 
no real showstoppers; KEKB crab cavity could 
be used/tested at SPS in 2012; best location 
found (space & available cryogenics);
SPS beam test including LHC collimators; 
effect of RF noise; trip rates; proposal 
of bypass (i.e. 2 movable beam pipes w Y)



LPA progressLPA progress

Example: Bunch Flattening of the LHC Beam at 7 Example: Bunch Flattening of the LHC Beam at 7 TeVTeV
with 400MHz and 200MHz RF systemswith 400MHz and 200MHz RF systems

Mountain Range

Normal Bunch Flattened Bunch

simulation studies and experiments on LPA beam generation & 
stability by Chandra Bhat (US-LARP/FNAL)



flatness along flatness along 
the PS batchthe PS batch

Chandra Bhat,
Heiko Damerau,
et al.

transient beam loading compensation may be required

LPA experiments in PS & SPSLPA experiments in PS & SPS
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“ultimate”nominal

spare cooling 
capacity
for 0.55 m ββββ*

going above Nb=1.7x1011 & ultimate luminosity requires 
dedicated IR cryo plants; limit then becomes Nb~2.3x1011 

spare
cooling
capacity
at zero
luminosity
(=total-SR
-impedance)

e-cloud
heat
load for
SEY=1.3

cooling & e- heat for 25 ns spacing
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Average heat load - 2nd batch - 50ns - LPA scheme
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(longer flat bunches)

L. Tavian,
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spare cooling 
capacity
for 0.25 m ββββ*

spare
cooling
capacity
at zero
luminosity
(=total-SR
-impedance)

e-cloud
heat
load for
SEY=1.5!

going above Nb=2.3x1011 & ultimate luminosity requires 
dedicated IR cryo plants; limit then becomes Nb~5.0x1011 

cooling & e- heat for 50 ns spacing

“LPA”



e- heat with LHCb satellite

“LHCb satellite” has small effect on 50-ns heat load

satellite intensity is varied as the inverse of main-bunch 
intensity to yield target luminosity of 2x1033 cm-2s-1 in (S)LHCb

H. Maury Cuna, 2009



constraints - Nb range

• beam-beam tune shift of “head-on” collision
ü is the limit for crab crossing;
ü going beyond ultimate Nb requires large

Piwinski angle or large emittance;
ü even larger crossing angle than for LR-BB

may be needed in some scenarios

• arc cooling capacity (global & local limits)

• collimation efficiency & machine protection

• injectors



Nb constraint: collimator damage
• studied in simulations & experiments, small beam size 
• critical failure mode: one dump kicker module pre-fires 

asynchronously & kicks bunches onto collimators
• collimator damage limit in kJ/mm2:

– Cu: 50 kJ/mm2

– CFC: 5 MJ/mm2 (collimators – 2 MJ/mm2 tested in TT40)

• typical location: σr = 0.2 mm è Ab = 0.13 mm2 (nominal 
emittance, without dilution from showers).

• stored energy & transverse energy density:
– nominal bunch: 130 kJ èèèè 1.0 MJ/mm2

– ultimate bunch: 190 kJ èèèè 1.5 MJ/mm2

– 2 x ultimate bunch: 380 kJ èèèè 3.0 MJ/mm2

• single bunch > 5.1e11 p exceeds damage limit of primary & 
secondary collimators; damage limit depends only on 
total beam intensity Ralph Assmann, LMC 03.02.2010



• transverse energy density rises strongly with beam energy (γ); it also 
scales with number of protons (Np

tot) over normalized emittance (εn):

• higher intensity or smaller emittance put similar strain on 
material survival! 

• → “low emittance” upgrade options are no magic bullet; they solve 
some issues (RF, radiation, …), but do not address damage limit

• constraint from machine robustness:

ρE = γ 2 ⋅
N p

tot

ε n

⋅ C C =
mpc

2

π βxβy

Np
tot

εn

≤1.3 ×1020  
protons
m rad

Ralph Assmann, LMC 03.02.2010

constraint - beam brightness



constraint − β* range

0.55 m nominal
0.50 m ultimate

0.40 m
0.30 m
0.25 m 

0.22 m
…
0.14 m

IR “phase I” , 
larger aperture NbTi quad’s +…

IR “phase II”
Nb3Sn quad’s + … 

hard limit from linear chromatic correction



bunch collision rate 
= #bunches/beam x revolution frequency

#events per bunch crossing 
= cross section x luminosity / bunch collision rate

nominal #events/crossing in the detector 
= 6x10-26 cm2 1034 cm-2s-1 / (32 x106 s-1) 
= 19

e.g. 10 times higher luminosity at same #bunches
→ ~200 events per crossing (detector upgrade!)

inelastic cross section

constraint – pile up 



for a given luminosity value, the luminosity lifetime 
depends only on total beam current [w/o leveling] 

luminosity
intensity beam total

∝lumiτ

totIP

bb
eff

Ln
nN
σ

τ ˆ=( ) ( )2/1

ˆ

efft
L

tL
τ+

=

fast decay of beam intensity and luminosity (few hours) 
dominated by proton burn off

with

algebraic (≠exponential) decay!
(gas scattering and IBS add negligible contributions  [F.Z. ABP-RLC 23.09.05] , 

which are not exponential either)

luminosity decay & lifetime



cross section 

C. Amsler et al., Physics Letters B667, 1 (2008)

from 
cosmic rays

LHC

σtot∼∼∼∼
100 mbarn
~ 10-25 cm2

σinelastic∼∼∼∼
60 mbarn~
6x10-26 cm2

total cross section for LHC c.m. energy from cosmic ray experiments

cross sections



example scenarios

(1) nominal, Nb=1.15x1011 ,β*=0.55 m, θc=285 µrad

(2) ultimate , Nb=1.7x1011 ,β*=0.50 m, θc=315 µrad

(3) “phase I+”, Nb=2.3x1011 ,β*=0.30 m, θc=348 µrad

(4) “phase I w crab”, Nb=1.6x1011 ,β*=0.30 m (θc=348 µrad)

(5) “phase II+”, Nb=2.3x1011 ,β*=0.14 m, θc=509 µrad

(6) “phase II w crab”, Nb=1.6x1011 ,β*=0.14 m 

( θc=509 µrad) [also same case w/o crab]

(7) “LPA-50”, 50 ns, Nb=4.2x1011 , β*=0.25 m, θc=381 µrad

(8) “LPA-25”, 25 ns, Nb=2.6x1011 , β*=0.50 m, θc=339 µrad





parameter highlights
parameter symbol nom. ult. ββββ*=30 ββββ*=30

(crab)
ββββ*=14 ββββ*=14

(crab)
LPA(50 
ns, flat)

ppb Nb [1011] 1.15 1.7 2.3 1.6 2.3 1.6 4.2

beta* at IP1&5 β∗ [m] 0.55 0.5 0.30 0.30 0.14 0.14 0.25

Piwinski angle 0.65 0.75 1.1 0.0 2.3 0.0 2.0

tune shift ∆Qtot 0.009 0.009 0.01 0.01 0.006 0.01 0.01

peak luminosity
L [1034

cm-2s-1] 1 2.3 5.9 4.0 7.5 7.9 7.4

peak evt’s / #ing 19 44 111 76 142 150 280

lumi lifetime τL [h] 23 15 7.7 7.8 6.0 4.0 5.3
average
(Tturnaround=5 h)

Leff [1034

cm-2s-1] 0.55 1.12 2.4 1.6 2.8 2.4 2.6

Trun,opt [h] 15.2 12.2 8.7 8.8 7.7 6.3 7.5
annual luminosity 
(200 days, 60% 
availability) Lint[fb-1] 57 116 245 168 286 253 274



nominal

luminosity [1034 cm-2s-1]

time [h]

ββββ*=30 cm, 
Nb=2.3x1011

ββββ*=14 cm, Nb=2.3x1011

ββββ*=14 cm, Nb=1.6x1011

ββββ*=14 cm, Nb=1.6x1011, & crab

ββββ*=25 cm, 
Nb=4.2x1011,

LPA

luminosity evolution - examples



ββββ*=14 cm, Nb=2.3x1011

ββββ*=14 cm, Nb=1.6x1011, no crab
ββββ*=14 cm, Nb=1.6x1011, & crab

ββββ*=25 cm, 
Nb=4.2x1011,

LPA

luminosity [1034 cm-2s-1]

time [h]

ββββ*=14 cm & Nb=2.3x1011 has very similar performance to ββββ*=14 cm,&
Nb~1.6x1011 and crab, and to ββββ*=25 cm & Nb=4.2x1011 & 50 ns spacing

luminosity evolution – selected cases



nominal

#events/crossing

time [h]

ββββ*=30 cm, 
Nb=2.3x1011

ββββ*=14 cm, Nb=2.3x1011

ββββ*=14 cm, Nb=1.6x1011

ββββ*=14 cm, Nb=1.6x1011, & crab

ββββ*=25 cm, 
Nb=4.2x1011,

LPA

events/crossing evolution

all scenarios give peak #events/#ing ~100-150,
except for LPA ~300



changing θc, β* or σz during the store in order to
→ reduce event pile up & IR peak power deposition
→ maximize integrated luminosity

leveling with crossing angle has two advantages:
increased average luminosity, operational simplicity

natural option for early separation or crab cavities, 
leveling may first be tested in LHC heavy-ion collisions

two leveling strategies:
(1) constant luminosity
(2) constant beam-beam tune shift

luminosity leveling



w/o leveling L=const ∆Qbb=const

luminosity 
evolution
beam 
current 
evolution
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run  time

average 
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no leveling
∆∆∆∆Q=const
L=const

ββββ*=14 cm, Nb=2.3x1011, Tta=5 h

no leveling
∆∆∆∆Q=const
L=const

luminosity [1034 cm-2s-1]

time [h]

|∆∆∆∆Q| 

time [h]

leveling – example evolution



β*=14 cm, 25 ns spacing, Tta=5 h 

no leveling L=const ∆∆∆∆Qbb=const
Nb(0) [1011] 2.3 2.3 2.3 2.3
L(0)[1034cm-2s-1] 7.5 7.1 12.3 7.1
|∆Qbb(0)| 0.0059 0.0056 0.01 0.0056
|∆Qbb(Trun)| 0.0036 0.0090 0.01 0.0056
θc(0) [µrad] 509 539 239 539
run time Trun [h] 7.74 4.74 2.72 11.9

<L>[1034cm-2s-1] 2.8 3.5 3.6 3.2
events/#ing (0) 142 135 234 135

leveling examples leveling – example numbers



β*=25 cm, 50 ns spac., “LPA” Tta=5 h 

no leveling L=const ∆Qbb=const
Nb(0) [1011] 4.2 4.2 4.2
L(0)[1034cm-2s-1] 7.4 4.5 4.5
|∆Qbb(0)| 0.010 0.0056 0.0056
|∆Qbb(Trun)| 0.006 0.010 0.0056
θc(0) [µrad] 381 672 672
run time Trun [h] 7.45 6.0 23.2

<L>[1034cm-2s-1] 2.6 2.5 2.1
events/#ing (0) 280 172 172

leveling – other example numbers



<L> vs. turnaround time 

ββββ*=14 cm, Nb=2.3x1011

ββββ*=30 cm, Nb=2.3x1011

ββββ*=25 cm, Nb=4.2x1011, 50 ns

leveling

leveling

<L> [1034 cm-2s-1]

Tta [h]

reducing Tta from 10 to 2 h increases <L> about 2x,
similar average luminosity for all 3 scenarios 



<L> vs. β* - the KEY PLOT
<L> [1034 cm-2s-1]

ββββ* [cm]

Nb=1.7x1011

Nb=1.15x1011

Nb=2.3x1011
8σσσσ sep.

10σσσσ sep.

10σσσσ sep.

9.5σσσσ sep.

Tta=5 h

beam intensity is much more important than ββββ*, reducing
ββββ* only helps with crab cavities or with smaller emittance

crab
crossing

Nb=1.7x1011

Nb=1.7x1011

reduced emittance

Nb=2.6x1011

“LPA” at 25 ns



ε vs. β* - for low-emittance scheme
γεγεγεγε [µµµµm]

ββββ* [cm]

emittance for the low-emittance scheme determined by ∆∆∆∆Q

Nb=1.7x1011

10σσσσ separation

∆∆∆∆Qbb=-0.01



note: some assumptions and conditionsRalph Assmann, LMC 03.02.2010

LHC intensity limits at 7 TeV



• several upgrade scenarios w. 25 or 50-ns spacing
• annual luminosities of 150-300 fb-1

• collimation phase 2 essential
• beyond ultimate: separate cryoplants for IR1, 5 & 4
• maximum Nb ~2.3x1011 at 25 ns, ~5.0x1011 at 50 ns

limited by arc beam-screen cooling capacity
• Tta - 10→2 h: 2x higher <L>
• β* : factor 2 reduction → 10-20% higher <L>, unless 

accompanied by crab cavities or smaller ε
• Nb: factor 2 increase → 3 times higher <L>!
• crab crossing: 10-100% higher <L> ; crab cavities 

also provide easy leveling & increase flexibility

conclusions



• leveling with (effective) crossing angle:
→1.5-3 x higher Trun , →40% lower peak pile up
→(or) increase <L> by ~15%

• present luminosity optimization assumes collisions
in two IPs, LHCb collisions compatible with 50-ns
spacing by adding less-intense satellite bunches

• recommended R&D focus:
- understanding and mitigating intensity limits
- minimization of turnaround time (3 h → ~1 h?)
- new interaction-region design with (much) smaller

ββββ* together with crab cavities and/or smaller-
emittance beams

more conclusions 



questions

• how much event pile up is acceptable?
- is there a clear upper limit and which? 

• is #events per crossing the relevant number, 
or e.g. #events per 50 ns?

- or in other words, is pile up limit / crossing 
the same for 25-ns and 50-ns spacing?

• is there an official policy or guideline for LHCb and 
ALICE running at the time of SLHC?; will the 4 
experiments always run together? present upgrade 
scenarios are optimized for high luminosity in two 
IPs; additional collisions will contribute to ∆Qbb



thank you for your attention!


