ATLAS Upgrade Plans post Chamonix

Introduction/summary ATLAS Upgrade
Ideas after Chamonix:
 possibilities to adapt ATLAS Upgrade
Strategy Needs

ATLAS Upgrade Goals

- High statistics for SM measurements, e.g. Higgs and other boson couplings
- High statistics to investigate whatever is found at the LHC
 - ◆ Some rare SUSY decays, ...
- Increase mass reach in searches for new particles:
 - → SUSY, MSSM Higgses, W', Z', ...
- ◆ ATLAS wants and pushes to go from LHC 500-700 fb⁻¹ to sLHC ~3000 fb⁻¹ by 2030

Detector Upgrade Needs

- ◆ Current detector works well up to 2 x 10³⁴ cm⁻² s⁻¹
 - ◆ Small slow deterioration with instantaneous rate above that in some regions
 - ◆ Beyond 3 x 10³⁴ cm⁻² s⁻¹ problems are more marked (but gradual):
 - Forward calorimetry
 - Forward muon tracking and triggering
 - Inner tracker
 - Trigger
- ◆ Integrated dose limits (~700 fb⁻¹) and other aging effects (not dose related)
- Proposed previously:
 - ◆ New B-layer (IBL) end 2014
 - Several other improvements (more details later)
 - ◆ New Inner Tracker and possibly major end-cap calorimeter work
 - ◆ Big shutdown ~2019 (~18 months)
- How to adapt our plans following new expectations for LHC luminosity evolution?

Major ATLAS Upgrade Needs

Inner Tracker:

- If instantaneous L > 3×10^{34} cm⁻² s⁻¹
- ◆ If integrated luminosity > 700 fb⁻¹
- → If too many dead channels (cooling circuit leaks, HV bias, dead chips, ...) (not only radiation damage)
- We need a new Inner Tracker
- Needs significant R&D and long lead-time to build
- Needs a clear commitment to long term future of LHC now to maintain resources
- End-cap/forward calorimetry:
 - If HEC cold electronics deteriorate with radiation damage
 - ◆ Deterioration could start ~700 fb⁻¹, and be serious at 1000 fb⁻¹
 - If instantaneous rate too high
 - (could be fixed by warm miniFCAL, to be studied)
 - We need to open up the end-cap cryostat
 - Big job, avoid if possible
- ◆ ATLAS expects to need a major shutdown, ~18 months, depending on LHC 2020 or after
 - ◆ This needs to coincide with CMS and LHC long shutdowns

Chamonix Outcome

- Slower development of peak and integrated luminosity
- How many shutdowns and when?
- ◆ Task force: When can new IRQuads be ready? Report few weeks
- Task force: SPS solutions? Report few months
- Digest all Chamonix information, get experience with LHC
 - ◆ Updated long-term strategy and planning, Summer 2010
- ATLAS needs a long-term LHC strategy
 - → Major development work needed for several parts of the upgrade; need to maintain momentum, attract resources, keep experience
 - Scheduling: We need something realistic and coherent, erring on optimistic side
 - It is very difficult ever to accelerate a project as complicated as a new inner tracker
 - Needs commitment now to maintain momentum

Shutdowns

- Need to optimise the number of shutdowns
 - ◆ Realistic estimates of time needed for LHC and injector work
 - ◆ Time needed to ramp up new machine back to previous L
 - ◆ As few SD as possible, as short as possible, as much in parallel as possible
- Balance getting good data sets early versus shutdowns and re-tuning machine to get high luminosity
- Experiments and LHC synchronised

Some ATLAS (possible) Projects unchanged:

- ◆ Extra pixel layer (IBL) Project
 - → Improves ATLAS vertexing, even at low L (smaller r, less X0)
 - Acts as back-up to current B-layer if it develops many dead channels (not only radiation damage)
 - Continue to make ready-for-installation end 2014
 - ◆ Install first long SD (~8 months)
 - Project is advancing well with a good organisation
 - ◆ TDR draft being reviewed by small number of experts; iMoU in preparation

Proposals:

- New hardware track finder, FTK, to supply L2 with good seeds
 - TP being internally reviewed to study benefit to ATLAS
- Proposal for ATLAS Forward Physics, AFP, being considered:
 - Continue to study technical solutions
 - Can benefit from longer run at lower luminosity

Adapting ATLAS Upgrade Plans to new LHC Schedule

- ◆ To compensate for slower than anticipated rise in L, we investigate bringing several projects into Phase-I Upgrade to improve ATLAS performance, even at low luminosity
 - Extract as much as possible from the data
- Doing as much as possible outside a major sLHC shutdown reduces time pressure and helps us keep to the goal of 18 months
- We envisage organising these like the IBL project: self-contained projects with
 - ◆ Approval stage
 - TDR and MoU
 - Management structure

16 Feb 2010 Nigel Hessey, Nikhef LHCC Upgrade 8

Projects to consider before Phase-II Upgrade

Beampipes

◆ Al or Be everywhere (in 2012 SD)

Trigger:

- ◆ Combined trigger objects (L1Muon and L1Calo)
- Full granularity readout of calorimeters
 - Can it be done inside 3.2 μs? Main benefit comes with new inner tracker,
 6.4 or 9.6 μs latency
- ◆ Upgraded HLT farms

Muon:

- New small wheels, recover staged CSCs with new detector technologies
- Some new electronics (mezzanine boards)
- Consider bringing MDT into trigger
- Improved shielding

Before Phase-II (cont)

- Calorimeters:
 - ◆ New warm miniFCAL
 - Does it improve low-L performance? Early insertion reduces pressure on long SD
 - Help understand necessity of opening up end-cap cryostats for sLHC
- New shielding e.g. cavern walls
- New TAS and forward shielding to suit new IRQuads
- Inner Tracker
 - ◆ Investigate benefits and feasibility of extra Si discs in place of staged TRT C-wheels
 - ◆ Investigate replacing current pixel before sLHC shutdown
 - Can we do modular ID sections and avoid a long shut-down for sLHC?
 - → Fast gasses for TRT

Progress: Cu/diamond miniFCAL studied in Athena/Geant

Power reduction in FCAL ~50%

ID Progress

Hybrid development well advanced

ABCNext 250 nm chips excellent yield and performance

Sensor and module irradiation programme

Serial power control on hybrid; DC-DC tested

Frame Ver: 1.0 SS module assembly and test under development Doublesided module built and tested

Nigel Hessey, Nikhef LHCC Upgrade

Extend R&D

- Benefit from more time for an Inner Tracker
 - ◆ Extend R&D phase to improve basic building blocks
 - Material reduction and cost reduction
 - → Multiplexing:
 - Serial and/or DC-DC powering
 - Optical readout
 - → DCS, HV, cooling...
 - ◆ Pixel bump-bonding, thinning, ...
 - ◆ New detectors can they reliably bring cost and material savings?
 - ◆ Track trigger at L1 ideas
 - **٠...**

Lol Plans

- ATLAS has been preparing an LoI for the LHCC proposing the Phase-II/sLHC Upgrade
- We will discuss how to modify the goals, content and schedule next week
- e.g. move several projects out of the LoI and into separate TDRs, concentrating LoI more on ID and LAr end-caps; submission at appropriate time.
- We can adjust our overall planning once the LHC schedule is better known

Conclusions

- ATLAS Upgrade plans and R&D continue to make good progress
- ◆ ATLAS aims for high integrated L ramping p at an optimised rate and leading to ~3000 fb⁻¹ by ~2030
 - Achieved by a plan that optimises early integrated luminosity and long range goals
 - → Following Chamonix, we look forward to an updated planning from CERN in summer 2010
- To maximise the use of the slower than previously expected LHC intensity, we will upgrade some elements in Phase-I
- For a timely Upgrade project to achieve our physics goals, we need
 - ◆ CERN statement goal ~3000 fb⁻¹ around ~2030
 - ◆ A realistic (if slightly optimistic) and coherent LHC schedule with
 - Peak L, integrated L, shutdowns (when, how long)
 - Taking into account the needs of the experiments
 - ◆ These 2 elements are needed for sound technical planning and maintaining R&D Momentum
- We look forward to working with the machine and other experiments to arrive at an optimised plan