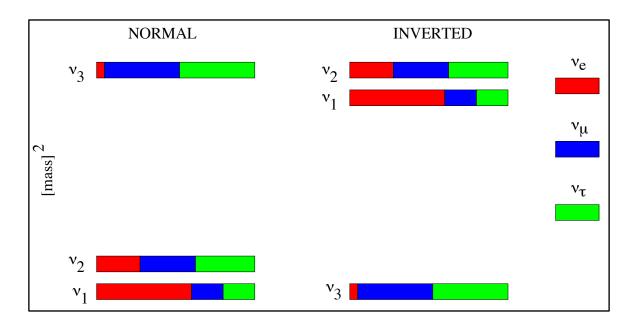
Global analysis of neutrino oscillation results

Thomas Schwetz

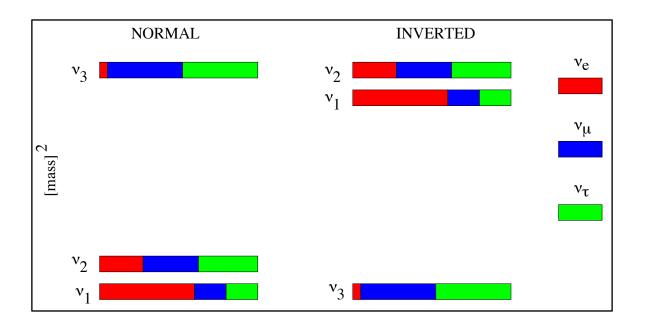
Colloquium Towards CP violation in neutrino Physics, 24-25 Oct 2019, Prague



www.kit.edu

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m₀
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (1 Dirac, 2 Majorana)



The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$

neutrino oscillations

• 3 phases (| Dirac, 2 Majorana)

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (| Dirac, 2 Majorana)

neutrino oscillations

 each parameter determined by several (classes of) experiments

 especially true for not-so-well determined parameters (θ₂₃, MO, Dirac-phase)

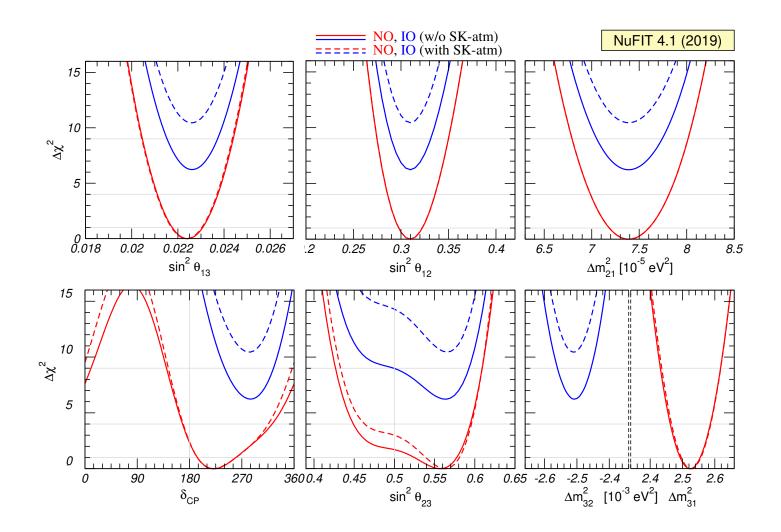
• interplay of different data sets \rightarrow global analyses

NuFit 4.1 (2019)

I. Esteban, C. Gonzalez-Garcia, A. Hernandez, M. Maltoni, TS, arXiv:1811.05487, JHEP 19

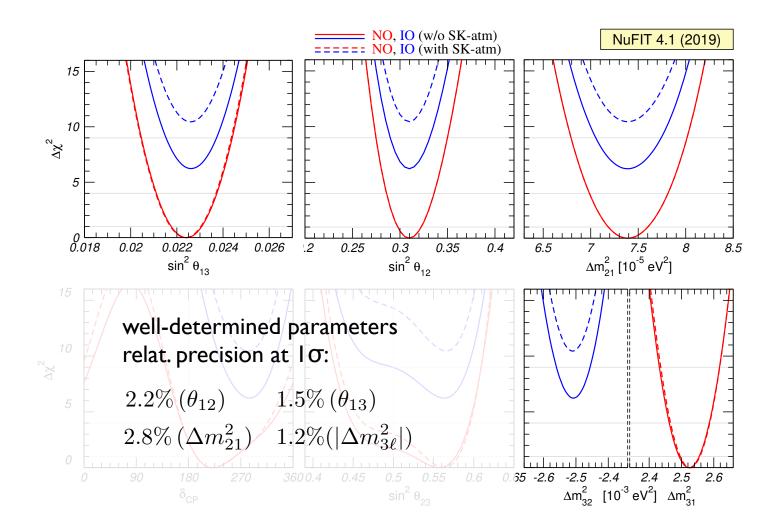
- http://www.nu-fit.org
- data available till July 2019
- full list of data see

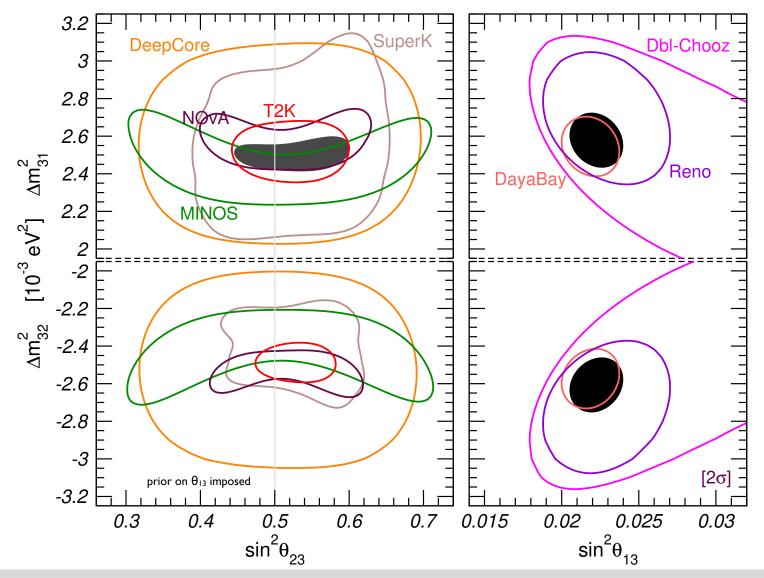
http://www.nu-fit.org/sites/default/files/v4l.release-notes.pdf

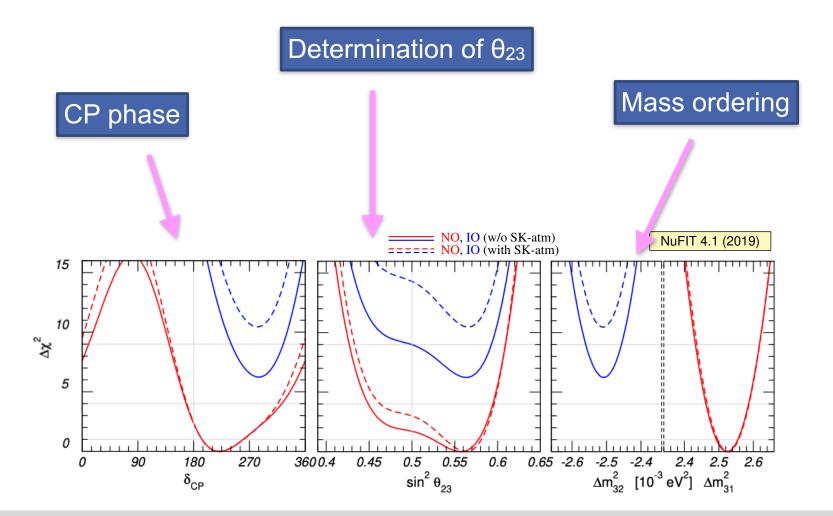

 T2K: 14.93e20 pot neutrino, 17e20 pot antineutrino NOvA: 8.85e20 pot neutrino, 12.33e20 pot antineutrino

global fits from Bari (Fogli, Lisi et al) and Valencia (Tortola, Valle et al) groups with similar results

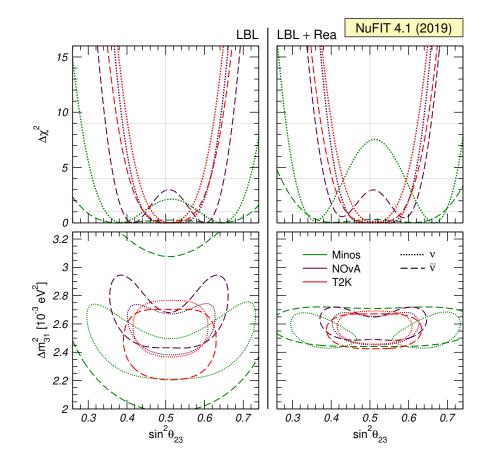
NuFit 4.1 (2019)




NuFit 4.1 (2019)

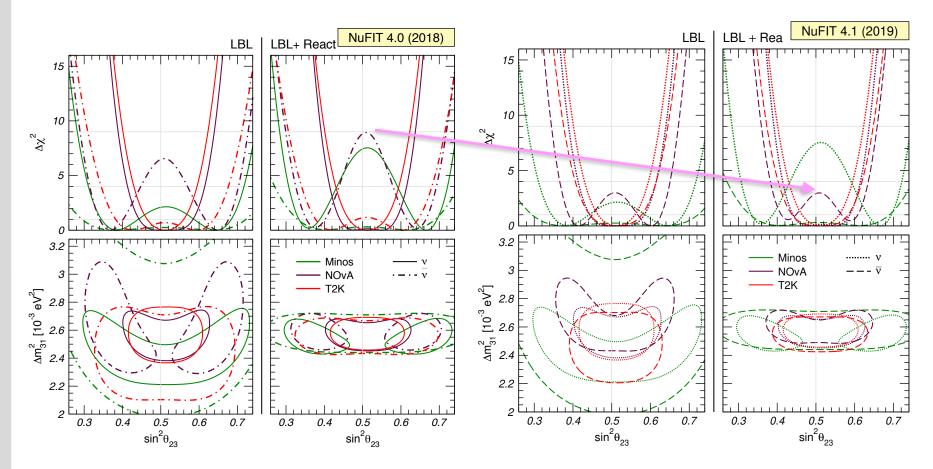

Atmospheric parameters NuFIT 4.1 (2019)

not-so-well determined



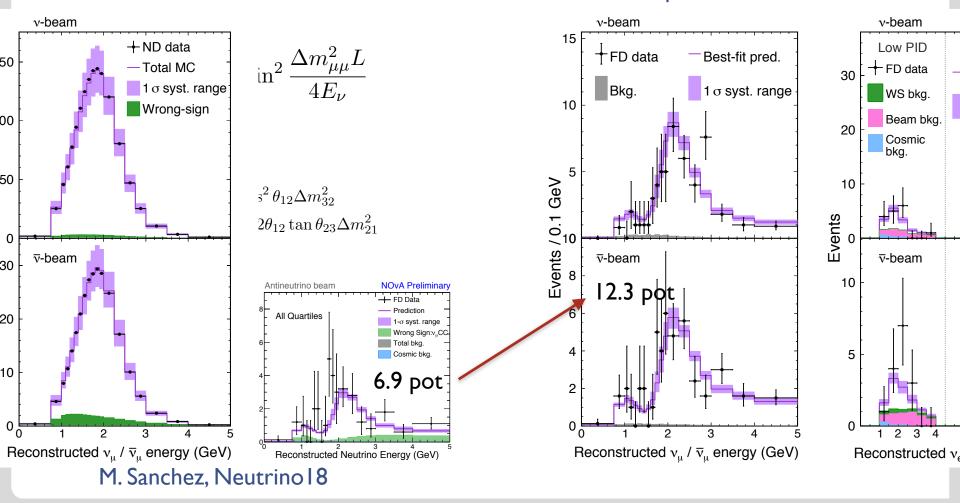
LBL disappearance results

$$P_{\mu\mu} \approx 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{\mu\mu}^2 L}{4E_{\nu}}$$


$$\begin{aligned} \sin^2 \theta_{\mu\mu} &= \cos^2 \theta_{13} \sin^2 \theta_{23} \,, \\ \Delta m_{\mu\mu}^2 &= \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 \\ &+ \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2 \end{aligned}$$

 2σ contours, normal ordering, prior on θ_{13} imposed

LBL disappearance results



NOvA anti-nu update $6.9 \rightarrow 12.3$ pot

 2σ contours, normal ordering, prior on θ_{13} imposed

LBL disappearance results

NOvA 2019 update 1906.04907

LBL appearance data

following Elevant, Schwetz, 15

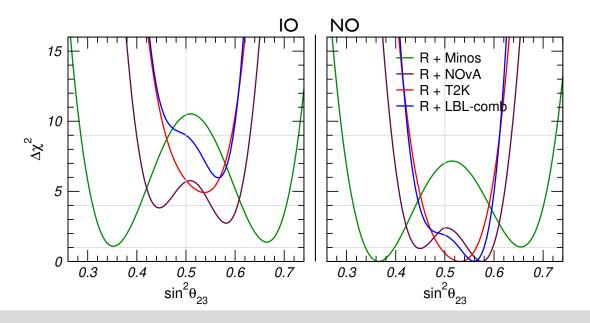
$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad o \equiv \operatorname{sgn}(\Delta m_{3\ell}^2)$$
$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05\\ 0.1 \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$	
\mathcal{N}	40	3.8	11	34	11	2018 numbers
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8	
						trend persists in
						recent T2K update

- Both neutrino and anti-neutrino events are enhanced by increasing s_{23}^2 .
- Values of $\sin \delta_{CP} \simeq +1 (-1)$ suppress (increase) neutrino events, and have the opposite effect for anti-neutrino events.
- For NO (IO) neutrino events are enhanced (suppressed) due to the matter effect, whereas anti-neutrino events are suppressed (enhanced).
- For NO (IO) the matter effect increases (decreases) the impact of δ_{CP} for neutrinos, while the opposite happens for anti-neutrinos.

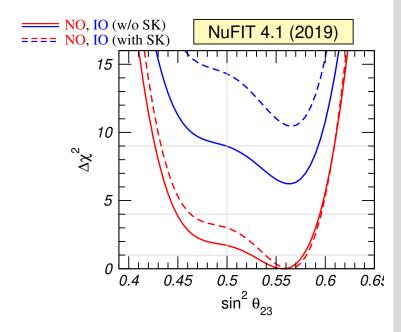
T2K NOvA

 $C' \approx 0.28$


θ_{23} octant

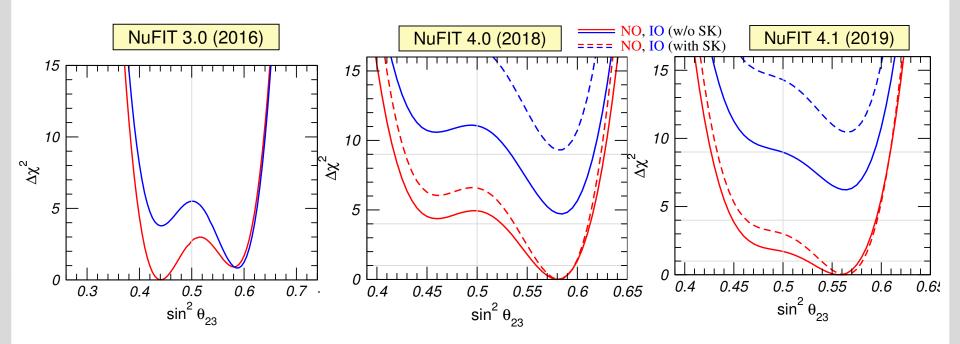
$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$


$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$	
\mathcal{N}	40	3.8	11	34	11	2018 numbers
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8	

θ_{23} octant — summary

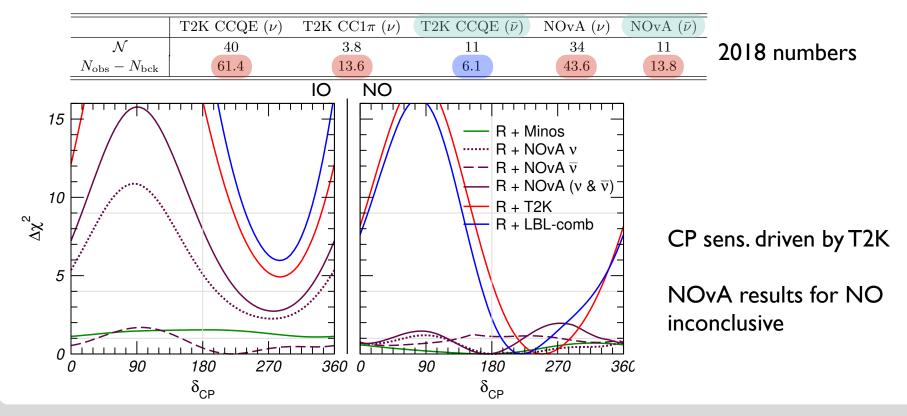


• preference for second octant, bf at $\sin^2\theta_{23} = 0.56$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 1.8$ (3.0) without (with) SK atm

• 2nd octant is good news for MO sensitivity of atm. and LBL experiments

θ_{23} octant — impact of recent data

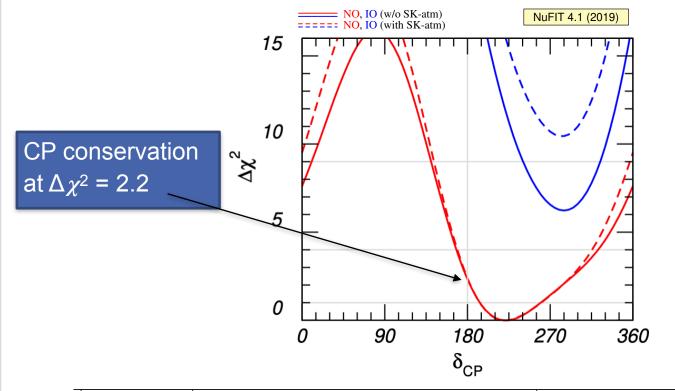
- preference for second octant, bf at $\sin^2\theta_{23} = 0.56$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 1.8$ (3.0) without (with) SK atm
- 2nd octant is good news for MO sensitivity of atm. and LBL experiments
- hints for 2nd octant decreased with recent update



CP phase

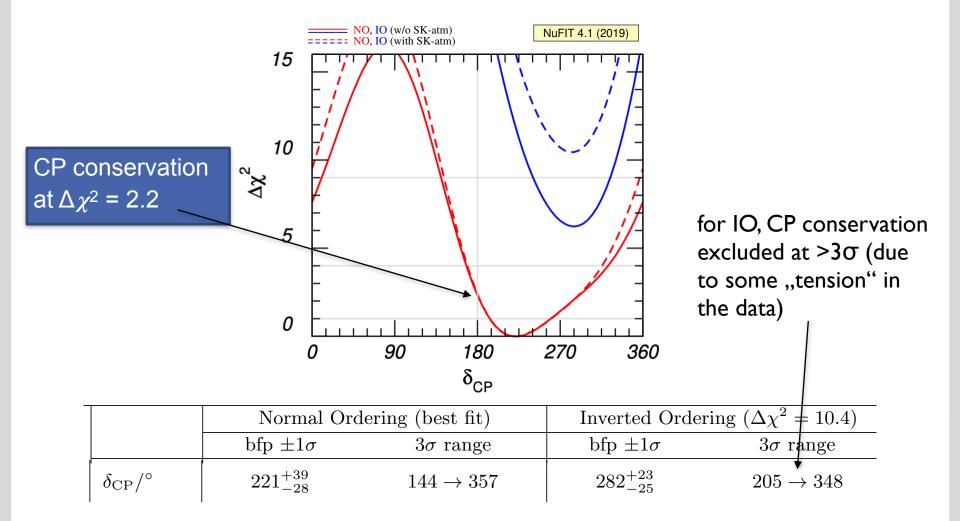
$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\rm CP}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \operatorname{sgn}(\Delta m_{3\ell}^2)$$


$$A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \text{T2K} \\ 0.1 & \text{NOvA} \end{cases}$$

CP phase

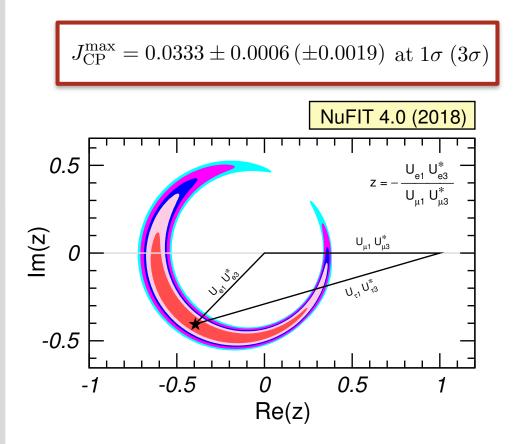
NuFIT 4.1 (2019)



		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 10.4)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\delta_{\rm CH}$	P/°	221^{+39}_{-28}	$144 \rightarrow 357$	282^{+23}_{-25}	$205 \rightarrow 348$	

CP phase

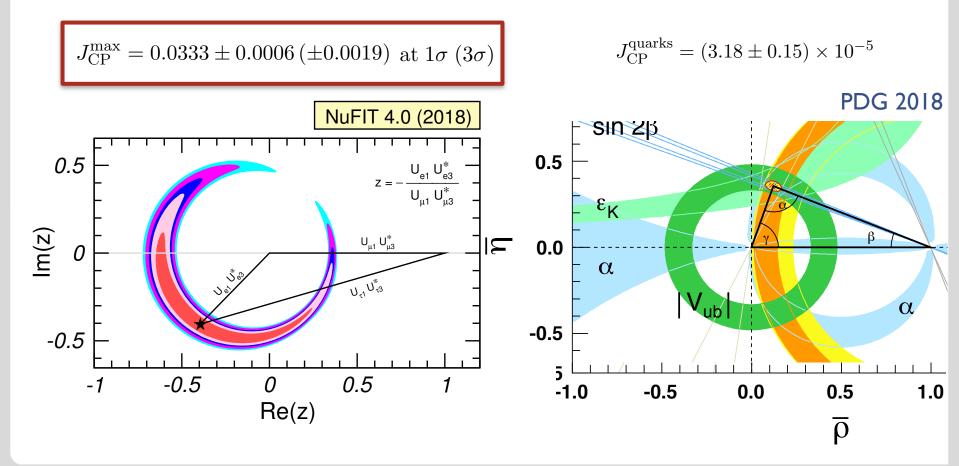
NuFIT 4.1 (2019)

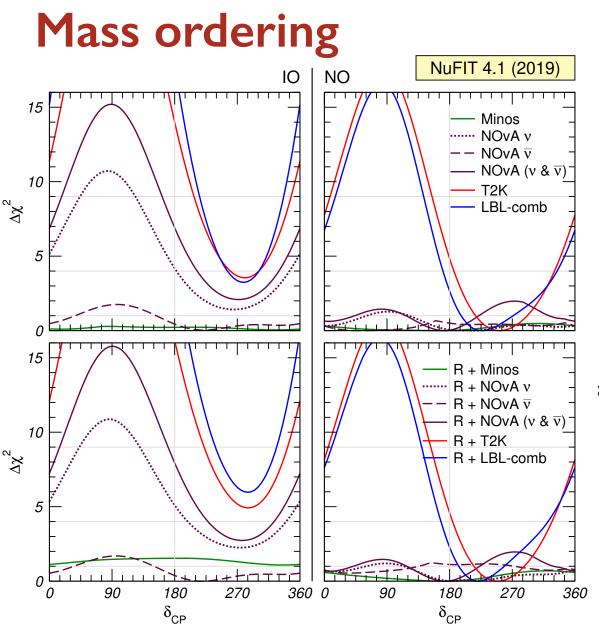


Leptonic CP violation

Jarlskog invariant:

 $J = |\text{Im}(U_{\alpha 1}U_{\alpha 2}^{*}U_{\beta 1}^{*}U_{\beta 2})| = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta \equiv J^{\max}\sin\delta$

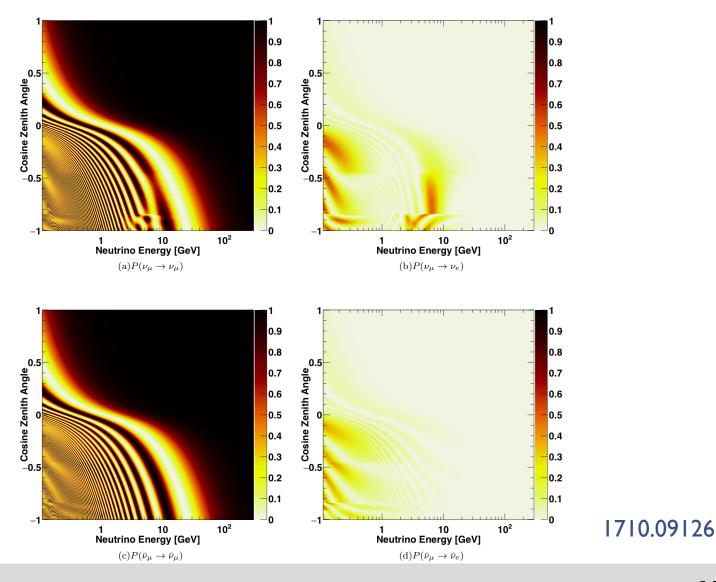



Leptonic CP violation

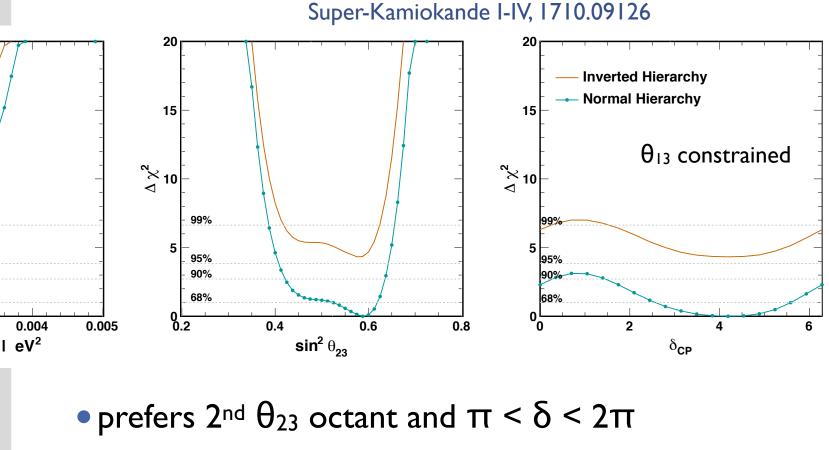
Jarlskog invariant:

$$J = |{
m Im}(U_{lpha 1} U_{lpha 2}^* U_{eta 1}^* U_{eta 2})| \ = s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^2 \sin \delta \equiv J^{
m max} \sin \delta$$

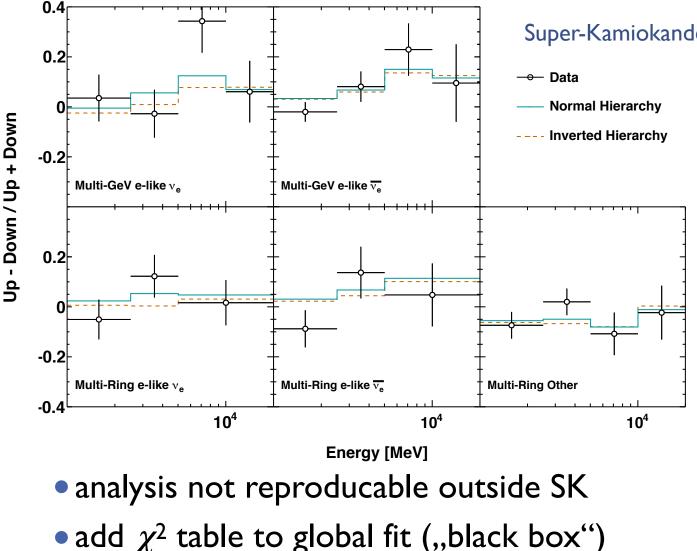
no reactor data, but θ_{13} prior added

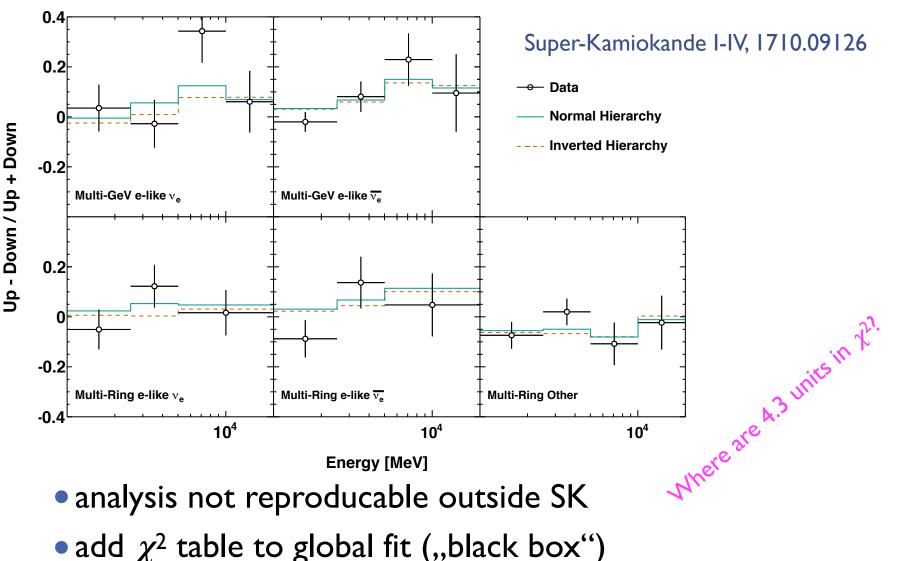

T2K: $\Delta \chi^2(IO) \approx 3.6$ adding NOvA: $\Delta \chi^2(IO) \approx 3.2$

adding reactors: $\Delta \chi^2(IO) = 6.2$

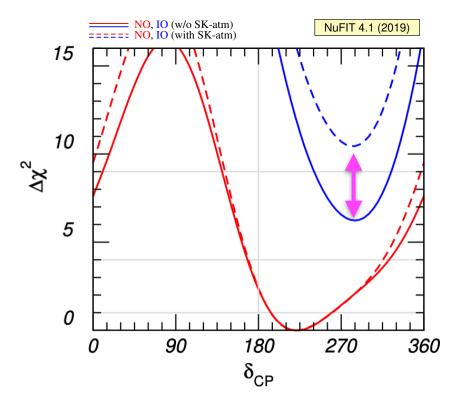

 ν_e and ν_μ disappearance: slightly different effective mass-squared differences

Nunokawa, Parke, Zukanovich, 05, 06 Blennow, TS, 13

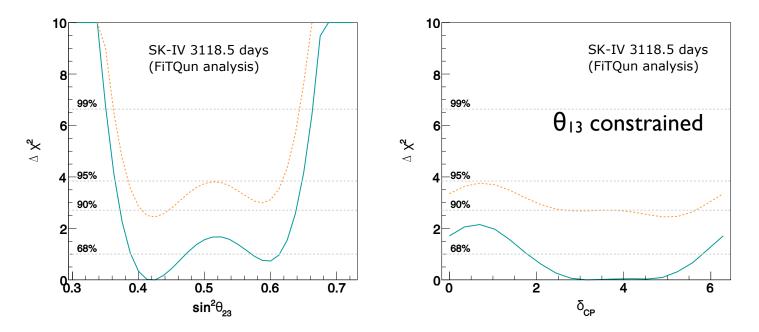




•
$$\chi^2(IO)$$
 - $\chi^2(NO)$ = 4.3


Super-Kamiokande I-IV, 1710.09126

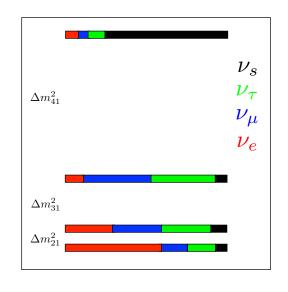
Mass ordering incl. atmospherics IT 4.1 (2019)


adding SuperK I-IV atm χ^2 table to the global fit \rightarrow inverted ordering becomes disfavoured at >3 σ

(contribution of IceCube to MO still very small)

	Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 10.4)$		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\delta_{ m CP}/^{\circ}$	221^{+39}_{-28}	$144 \rightarrow 357$	282^{+23}_{-25}	$205 \rightarrow 348$	

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230

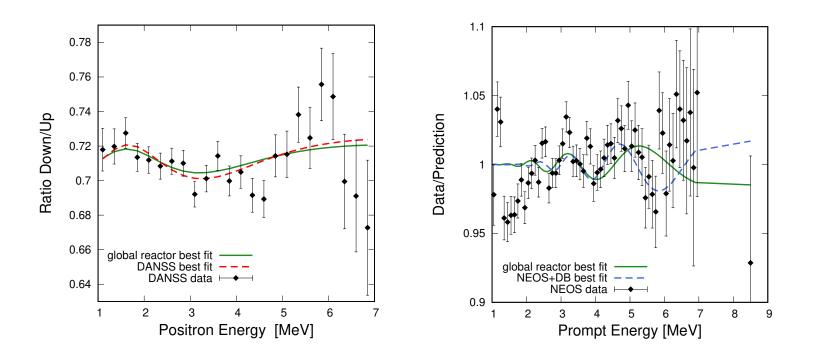

• $\chi^2_{(IO)}$ - $\chi^2_{(NO)}$ = 2.45 (compared to 4.3 from SK I-IV 2017)

 effective exposure 254 kt yr only 23% smaller (32% larger fiducial volume) (compared to 328 kt yr of SK I-IV 2017)

Anomalies inconsistent with 3-flavour paradigm

sterile neutrinos at the eV scale?

- Reactor anomaly ($\overline{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance)


Reactor anomaly

 tension between "predicted" and observed neutrino rates at nuclear reactors

	Berryman, Huber, 1909.09267					
	Analysis	$\chi^2_{3\nu}$	$\chi^2_{\rm min}$	$n_{\rm data}$	p	$n\sigma$
Huber, Muller, 2011	→ HM Rates	41.4	33.5	40	2.0×10^{-2}	2.3
Estienne et al., 1904.09358	<i>Ab Initio</i> Rates	39.2	37.0	40	0.34	0.95
Hayen et al., 1908.08302	→ HKSS Rates	58.1	47.5	40	5.0×10^{-3}	2.8
Tayen et al., 1700.00502 -	Spectra	184.9	172.2	212	1.8×10^{-3}	3.1
	DANSS + NEOS	98.9	84.7	84	8.1×10^{-4}	3.3

Relative spectral distortions

DANSS: relative spectra @ detector locations with L = 10.7 and 12.7 m

NEOS: spectrum at L = 24 m, relative to prediction based on Daya Bay near detector spectrum

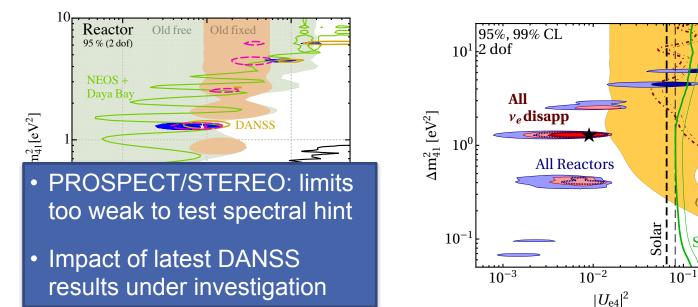
Dentler, Hernandez, Kopp, Maltoni, TS, 1709.04294

Combined V_e disappearance analysis

Analysis	$\Delta m^2_{41} \; [\mathrm{eV}^2]$	$ U_{e4}^2 $	$\chi^2_{ m min}/ m dof$	$\Delta \chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233-5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ disap. (flux-free)	1.3	0.00901	542.9/(594 - 8)	13.4	3.2σ
$\stackrel{(-)}{\nu}_{e}$ disap. (flux-fixed)	1.3	0.0102	552.8/(594-6)	17.5	3.8σ

Dentler et al., 1803.10661

$\sim 3\sigma$ hint for sterile neutrino oscillations, independent of reactor flux calculations!


Combined V_e disappearance analysis

Analysis	$\Delta m^2_{41} \; [\mathrm{eV}^2]$	$ U_{e4}^2 $	$\chi^2_{ m min}/ m dof$	$\Delta \chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233-5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ disap. (flux-free)	1.3	0.00901	542.9/(594 - 8)	13.4	3.2σ
$\stackrel{(-)}{\nu}_{e}$ disap. (flux-fixed)	1.3	0.0102	552.8/(594-6)	17.5	3.8σ

Dentler et al., 1803.10661

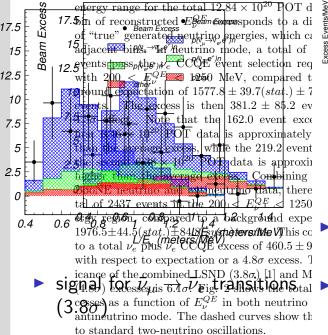
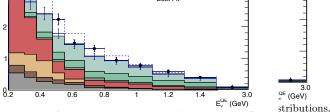
 C_{12}

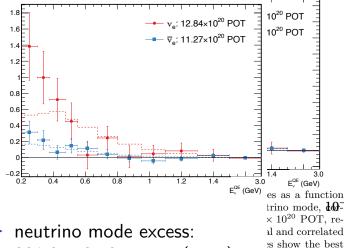
SK+D

 $\sim 3\sigma$ hint for sterile neutrino oscillations, independent of reactor flux calculations!

courte	icu.	1100	ano ano ano ano	numbero	are from	w pre	,000
sis [[2]						
313 1	01.						

Process	Neutrino Mode	Antineutr
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 :
$NC \pi^0$	501.5 ± 65.4	11 <u>2.3</u> :
$\mathbf{NC} \Delta \rightarrow \mathbf{N} \gamma$	172.5 ± 241	34.7 :
External Events	75.2 ± 10.9	15.3 :
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 :
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ±
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	$51.4 \pm 18.$
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	$398.7 \pm 28.$
Total Data	1959	478
ExcessID 2	0381.2 ± 85.2	79.3
0.26% (LSND) $\nu_{\mu} \rightarrow \nu_{e}$	463.1	1

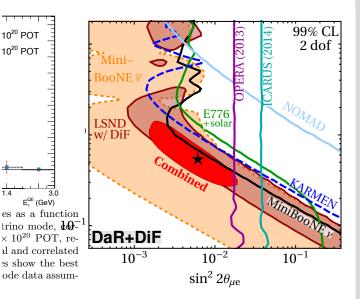




Fig. 3 compares the L/E_{ν}^{QE} distributions for the Mini-BooNE data excesses in neutrino mode and antineutrino mode to the L/E distribution from LSND [1]. The error bars show statistical uncertainties only. As shown in the figure, there is agreement among all three data sets. Fitting these data to standard two-neutrino oscillations including statistical errors only, the best fit oc-

corresponding to the total 12.84×10^{20} POT data, for ν_e CCQE data (points with statistical errors) and background (histogram with systematic errors). The dashed curve shows

(histogram with systematic errors). The dashed curve shows combined appearance data: the best fit to the neutrino-mode data assuming standard two combined appearance data: neutrino oscillations.

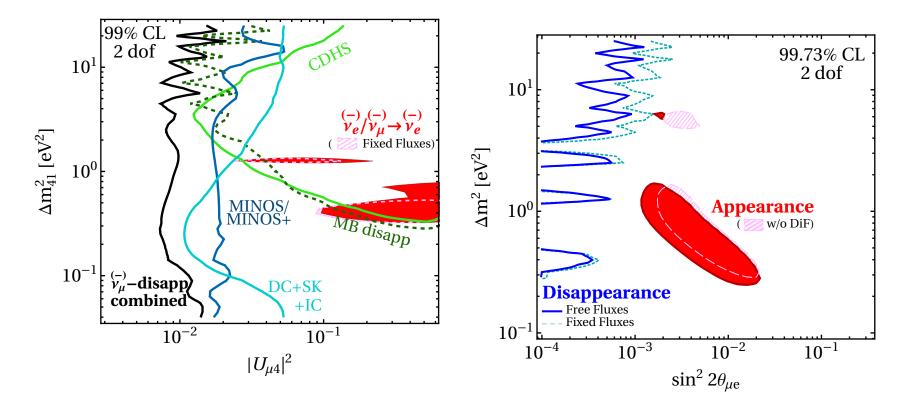
MiniBooNE, 1805.12028



 381.2 ± 85.2 events (4.5 σ)

ν - $\overline{\nu}$ combined excess: 460.5 \pm 95.8 events (4.8 σ)

 $\chi^2/ndf = 35.2/28$, corresponding to a probability of 16.4%. This best fit agrees with the MiniBooNE only best fit described below. The MiniBooNE excess of events in both oscillation probability and L/E spectrum is, therefore, consistent with the LSND excess of events, even though the two experiments have completely different neutrino energies, neutrino fluxes, reconstruction, backgrounds, and systematic uncertainties.


Dentler et al, 1803.10661

using pre-2018 MiniBooNE data, results quantitativley very similar

Strong tension btw appearance and disappearance

non-observation of oscillations in ν_{μ} disappearance (CDHS, MiniB, MINOS+, SK, IceCube)

consistency of appearance and disapp. data with a $p\mbox{-value} < 10^{-6}$

Dentler et al, 1803.10661

Strong tension btw appearance and disappearance

robust result wrt to	individual	experiments
----------------------	------------	-------------

	2	<u></u>	A 2	2	A 2	2 / 1 0	DC
Analysis	$\chi^2_{ m min,global}$	$\chi^2_{ m min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{ m min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}
Removing anomalous	data sets						
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	$1.6 imes 10^{-3}$
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	$5.2 imes 10^{-6}$
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	3.8×10^{-5}
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints	5						
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	$4.2 imes 10^{-7}$
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes 10^{-7}$
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$
Removing classes of a	lata						
$\stackrel{(-)}{\nu}_{e}$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	$3.6 imes 10^{-2}$
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}
$\nu_{\mu}^{(-)}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

reactor flux-free analysis Dentler et al, 1803.10661 results for 2018 MiniB very similar (tension gets slightly worse)

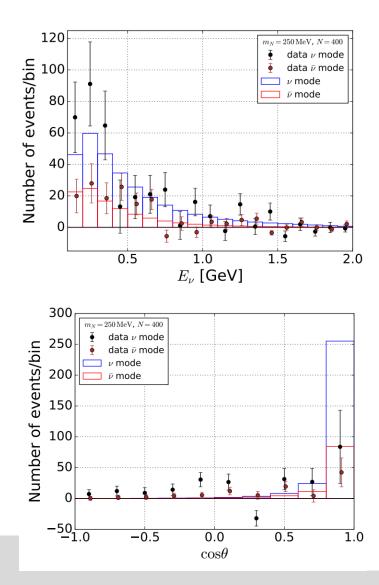
MiniBooNE and a decaying sterile neutrino

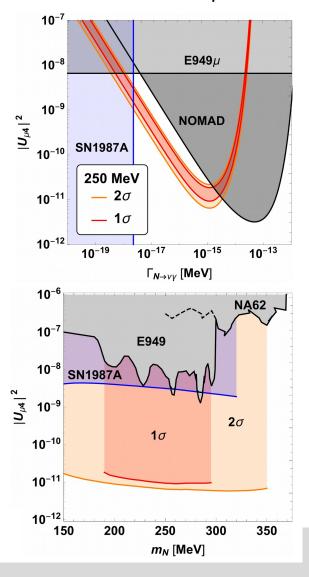
Palomares, Pascoli, TS, hep-ph/0505216; Gninenko, 0902.3802, 1009.5536 Bertuzzo, et. al, 1807.09877; Ballett, Pascoli, Ross-Lonergan, 1808.2915

our recent proposal:

Fischer, Hernandez, TS, 1909.09561

- sterile neutrino N with $m_N \sim 250 \text{ MeV} (m_\pi < m_N < m_K)$
- produce N in kaon decays via mixing $K \rightarrow N \mu/e$
- decay inside MB detector $N \rightarrow v\gamma$ via

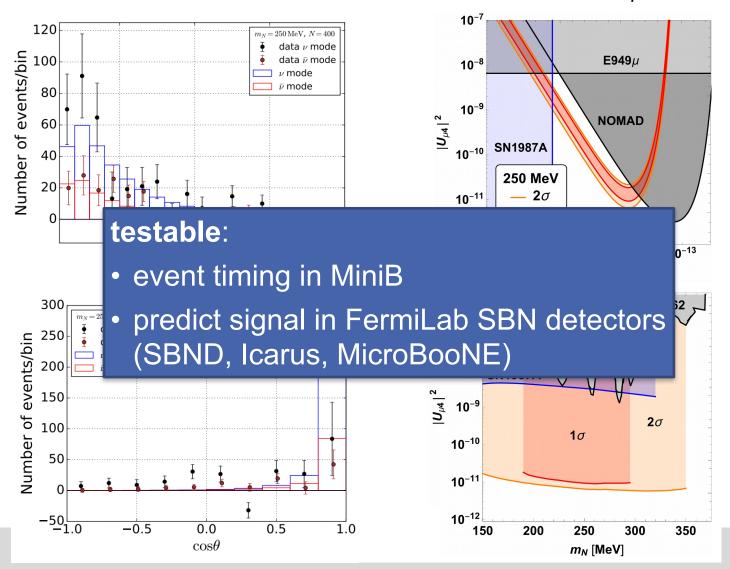

$$\mathcal{O}_{N \to \gamma \nu} = \frac{1}{\Lambda} \bar{N} \sigma^{\alpha \beta} \nu F_{\alpha \beta}$$



MiniBooNE and a decaying sterile neutrino

Fischer, Hernandez, TS, 1909.09561

 $K \to N\mu$



MiniBooNE and a decaying sterile neutrino

Fischer, Hernandez, TS, 1909.09561

 $K \to N\mu$

Summary I: anomalies

• hints from relative reactor spectral distortions: $\Delta m_{41}^2 \simeq 1.3 \text{ eV}^2$, $|U_{e4}^2| \simeq 0.01 \text{ at} \gtrsim 3\sigma$

• Gallium anomaly: significance reduced to 2.3σ Kostensalo, et al., 1906.10980

- LSND & MiniBooNE: eV-scale oscill. strongly disfavoured
- eV-scale neutrinos relevant for SBL oscillations are in strong tension with cosmology
- other BSM explanations of MiniBooNE and/or LSND? example: sterile neutrino decay (MeV to few 100 MeV)

Summary II: 3-flavour oscillations

• Octant of θ_{23} :

weak preference for second octant, bf at $\sin^2\theta_{23} = 0.56$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 1.8$ (3.0) without (with) SK atm

• mass ordering:

NO preferred by $\Delta \chi^2 = 6.2$ (10.4) without (with) SK atm

SK significance goes down with "improved" analysis global fit (incl. IceCube/ORCA & JUNO) may be fastest track to MO

• CP phase:

CP conservation allowed at $\Delta \chi^2$ = 2.2, bf at δ = 221°

Summary II: 3-flavour oscillations

• Octant of θ_{23} :

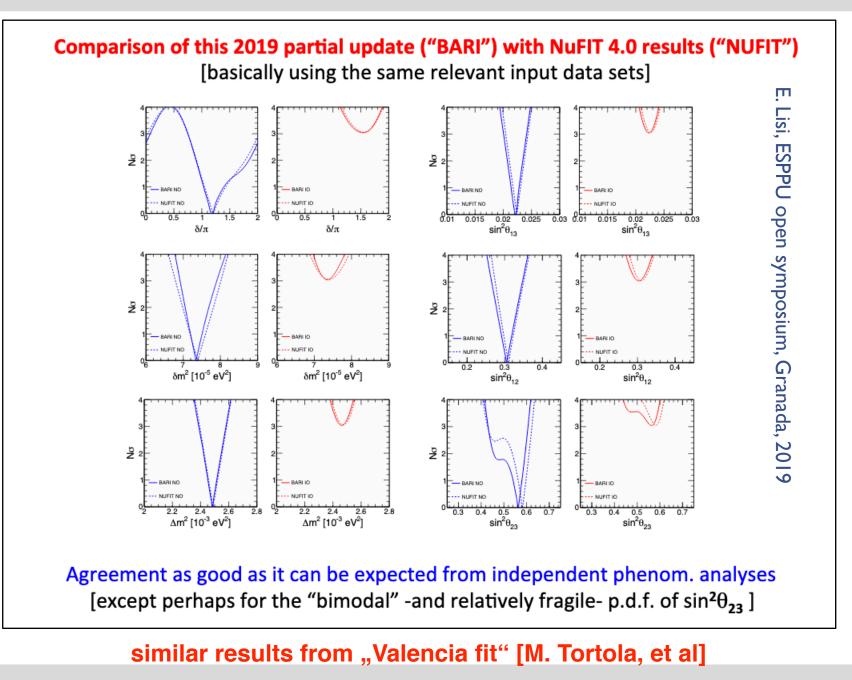
weak preference for second octant, bf at $\sin^2\theta_{23} = 0.56$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 1.8$ (3.0) without (with) SK atm

• mass ordering:

NO preferred by $\Delta \chi^2$ = 6.2 (10.4) without (with) SK atm

SK significance goes down with "improved" analysis global fit (incl. IceCube/ORCA & JUNO) may be fastest track to MO

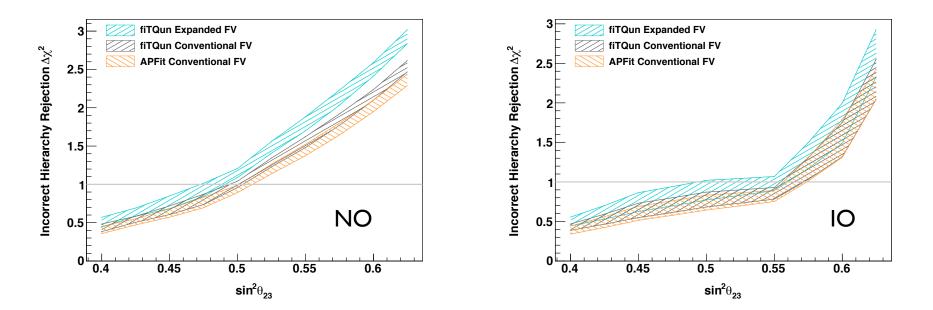
• CP phase:


CP conservation allowed at $\Delta \chi^2 = 2.2$, bf at $\delta = 221^{\circ}$

Thank you for your attention!

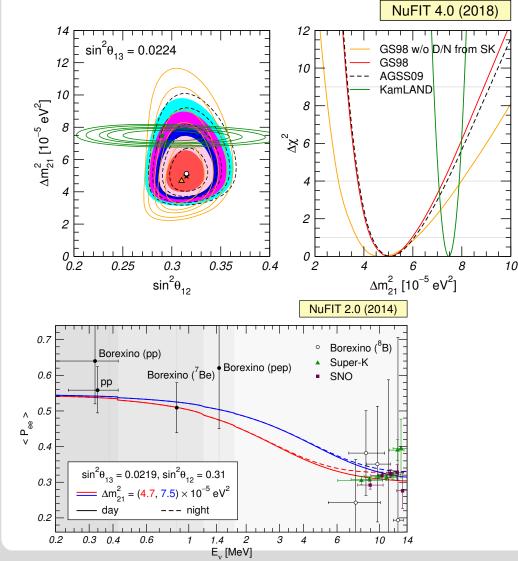
supplementary slides

Monte Carlo simulation of χ^2 distribution

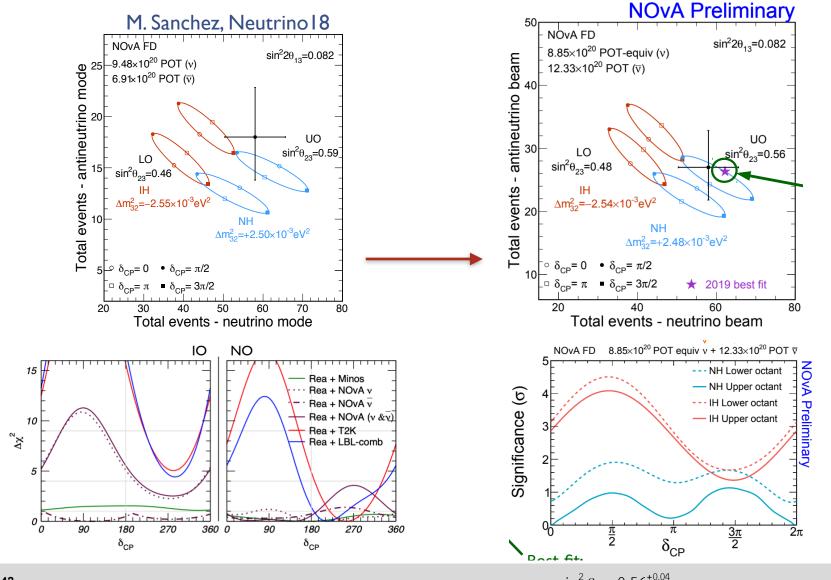


NuFit 3.0, Esteban et al., 1611.01514; Elevant, TS, 1506.07685

Mass ordering - atmospheric neutrinos

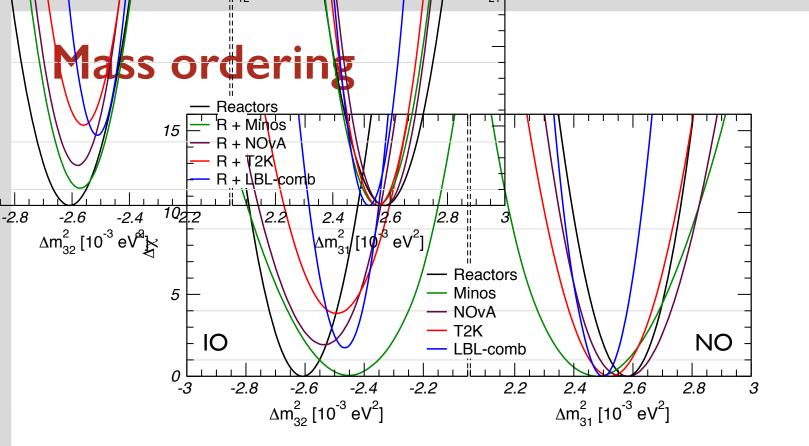

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230

θ_{13} constrained — expected sensitivity


Solar parameters

- using reconstructed fluxes from Daya-Bay in KamLAND analysis
- tension between solar and KamLAND remains at ~2σ
- robust wrt to solar models (abundances)
- driven by spectrum upturn and day/night data from SK

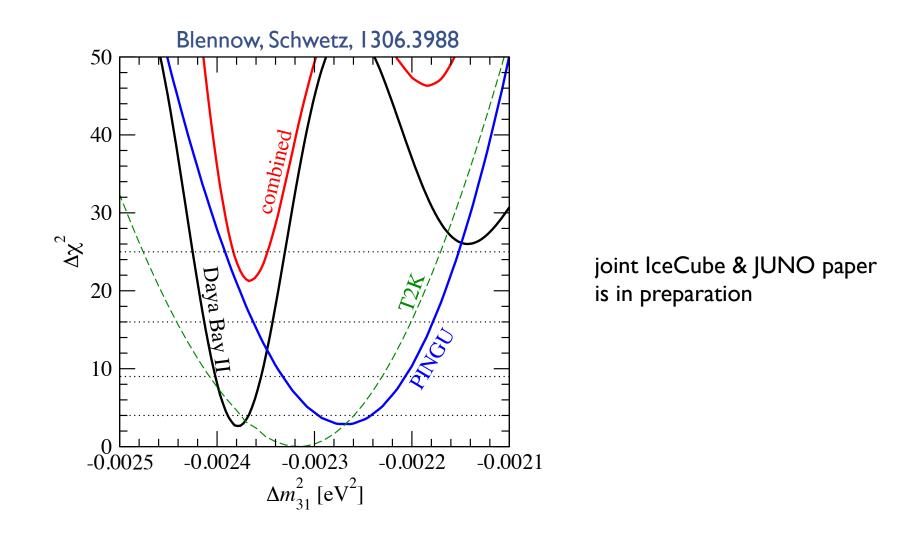
NOvA 2019 update



J. Wolcott, FNAL, 2019

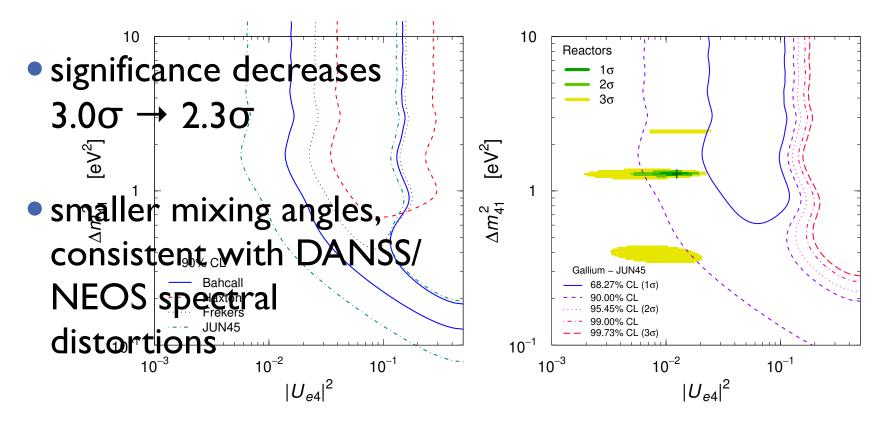
T. Schwetz @ Colloquium Prague 2019

 $\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$ $\Delta m_{22}^2 = +2.48^{+0.11}_{-0.03} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$


 v_e and v_{μ} disappearance depend on slightly different effective mass-squared differences

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$
$$\Delta m_{\mu\mu}^2 = \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 + \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2$$

Nunokawa, Parke, Zukanovich, 05, 06


$\nu_{\rm e}$ and ν_{μ} disapp. complementarity in future

Update on Gallium anomaly

 improved shell-model cross section calculations Kostensalo, Suhonen, Giunti, Srivastava, 1906.10980

