Modification of B_u^+ , B_s^0 and B_c^+ mesons in PbPb collisions with CMS detector

Guillaume Falmagne
Laboratoire Leprince-Ringuet, Palaiseau (France)
On behalf of the CMS collaboration

QGP France 2019 July 1st – 4th

The quark-gluon plasma probed by heavy quarks

QCD at very high temperature → deconfinement
 → quarks and gluons move freely in a quark-gluon plasma

- Heavy quarks produced on smaller time scales than QGP expansion
 brings information on the whole QGP history
- This talk: **b** quark, bound with a *u*, *s*, or *c* quark.

Flavour dependence of energy loss

- Heavy quarks lose energy in the QGP (gluon radiation, elastic collisions).
 However:
 - Smaller energy loss than gluons, due to smaller color charge
 - Smaller energy loss than light quarks, due to possible dead-cone effect (relevant at low p_T)

PLB 782 (2018) EPJC 78 (2018) JHEP 04 (2017)

 $\rightarrow 1 > R_{AA}(B) > R_{AA}(D) > R_{AA}(h^{\pm})...$

Early interest in beauty at CMS: non-prompt J/ψ

Run I (2.76 TeV): JHEP 05 (2012) 063 Run II (5.02 TeV): EPJC 78 (2018) 509

- J/ψ from b-hadron decays \equiv measurable displacement from primary vertex
- Long B lifetime \longrightarrow J/ψ born outside of QGP \longrightarrow no colour screening \longrightarrow probes directly the b-quark energy loss
- Disentangles energy loss in open-beauty vs open-charm
 insight into quark mass dependence of energy loss
- 2D fit of
 - m_{J/ψ}
 - Pseudo-proper length

$$L_{J/\psi} = L_{displacement} rac{m_{J/\psi}}{|p_{\mu\mu}|}$$

Early interest in beauty at CMS: non-prompt J/ψ

Run I (2.76 TeV): JHEP 05 (2012) 063 Run II (5.02 TeV): EPJC 78 (2018) 509

• Extract from 2D fit: $N_{J/\psi}$, $N_{\mu\mu\;bkg}$, and non-prompt fraction (all other parameters fixed from 1D data fits or MC fits)

- R_{AA} at medium p_T : hierarchy with open charm and light hadrons R_{AA} ?
- High p_T : radiative energy loss same than for light hadrons?
- Low p_T : less suppression than at high p_T

Early interest in beauty at CMS: b-jets

Run I: PhysRevLett.113.132301 (2014)

- b-jet \equiv jet containing a displaced vertex, with mass constraints
- High $p_T \longrightarrow$ suppression likely from radiative energy loss
- Caveat: part of b-jets come from gluon splitting (does not probe strictly b-quark energy loss)

Extracted jet-medium coupling consistent with that of inclusive jets
 only mild mass dependence allowed at high p_T

Exclusive decays

- Inclusive: ✓ high stats but X no flavour discrimination
 & large contamination from non-b partons & smeared kinematics
- Exclusive: $\mbox{\ensuremath{\checkmark}}$ low stats but $\mbox{\ensuremath{\checkmark}}$ clearer decay kinematics & exploits the golden $J/\psi \to \mu^+\mu^-$ channel

Exclusive *b* decay with highest stats

$$\mathbf{B_s^0} \rightarrow J/\psi \ \phi$$

 $\phi \rightarrow K^+ K^-$
arXiv 1810.03022
(2018)

Compare suppression to that of B_u^+

$${\bf B_c^+} \to J/\psi \ \mu^+ \ \nu$$
 Preliminary

Test recombination of b with c use leptonic channel \rightarrow 20× higher BF

Exclusive decays

- Inclusive: ✓ high stats but X no flavour discrimination
 & large contamination from non-b partons & smeared kinematics
- Exclusive: $\mbox{\ensuremath{\checkmark}}$ low stats but $\mbox{\ensuremath{\checkmark}}$ clearer decay kinematics & exploits the golden $J/\psi \to \mu^+\mu^-$ channel

Exclusive *b* decay with highest stats

$$B_s^0 \rightarrow J/\psi \ \phi$$

 $\phi \rightarrow K^+ K^-$
arXiv 1810.03022
(2018)

Compare suppression to that of B_u^+

Test recombination of b with c use leptonic channel \rightarrow 20× higher BF

Common analysis strategy

- Measure $R_{\rm PbPb}(B_u^+,\,B_s^0,\,B_c^+)$ at $\sqrt{s_{\rm NN}}=5.02$ TeV with CMS Run II, and compare them
- Standard selections for muons, dimuons, charged tracks
- Use discriminant variables to improve signal significance, via MultiVariate Analysis (Boosted Decision Tree, BDT):
 - Lifetime significance
 - ullet μ displacement from PV
 - angle $\overrightarrow{p_{3\mu}} [\overrightarrow{PV}, \overrightarrow{SV}]$
 - Vertex probability
 - $\sum_{i,j=1,2,3} |\Delta R(\mu_i, \mu_j)|$
 - ..

- Acceptance + efficiency + (partial) background studies with MC
- Part of background: data-driven studies
- Deeper background study necessary for B_c , because of partial reconstruction (non-resonant signal)

CMS data and MC samples

Extensive use of CMS good displaced vertex reconstruction

- data (B^+ and B_s): 2015 RunII at $\sqrt{s_{\rm NN}}=5.02$ TeV, pp and PbPb
- ullet data (B_c^+) : High PbPb 2018 lumi $(4 imes \mathcal{L}_{2015})$ is key (and 2017 pp data)

Neutral hadron (e.g. neutron)

MC: PYTHIA8 + GEANT4 + EVTGEN + PHOTOS + HYDJET

---- Photon

Getting the cross sections and R_{PbPb}

$$\begin{split} \left. \frac{\mathrm{d}\sigma_{\mathrm{pp}}^{B}}{\mathrm{d}\rho_{\mathrm{T}}} \right|_{|y| < 2.4} &= \left. \frac{1}{2} \frac{1}{\mathcal{B} \, \mathcal{L}} \, \frac{1}{\Delta \rho_{\mathrm{T}}} \, \frac{N_{\mathrm{pp}}^{(B + \overline{B})}(\rho_{\mathrm{T}})}{\alpha_{\mathrm{pp}}(\rho_{\mathrm{T}}) \varepsilon_{\mathrm{pp}}(\rho_{\mathrm{T}})} \right|_{|y| < 2.4} \\ \left. \frac{1}{T_{\mathrm{AA}}} \frac{\mathrm{d}N_{\mathrm{PbPb}}^{B}}{\mathrm{d}\rho_{\mathrm{T}}} \right|_{|y| < 2.4} &= \left. \frac{1}{2} \frac{1}{\mathcal{B} \, N_{\mathrm{MB}} \, T_{\mathrm{AA}}} \, \frac{1}{\Delta \rho_{\mathrm{T}}} \, \frac{N_{\mathrm{PbPb}}^{(B + \overline{B})}(\rho_{\mathrm{T}})}{\alpha_{\mathrm{PbPb}}(\rho_{\mathrm{T}}) \varepsilon_{\mathrm{PbPb}}(\rho_{\mathrm{T}})} \right|_{|y| < 2.4} \end{split}$$

- N_{pp.PbPb} from the fits
- Branching fraction \mathcal{B} from PDG
- ullet Acceptance lpha and efficiency arepsilon corrections calculated with MC
 - Comparison of MC and data distributions for discriminant variables
 no bias for BDT

B_u^+ modification

- $B_u^+ \to J/\psi~K^+$: combine $\mu + \mu$ + charged track with basic selection cuts
- $b o J/\psi \ X$ background: shape from MC
- Standard systematics: fit shape, selection, MC distributions for acceptance×efficiency, ...

 Not enough stats to reject models yet, but incoming update with 2018 PbPb data!

A strange story for heavy mesons

How strange is the QGP?
 Known strangeness enhancement in the QGP
 Enhancement of strange heavy mesons?
 Coalescence of heavy quark
 with a (thermal) s from the medium?

lvI<0.5

 \rightarrow Compare B^+ and B_s^0 suppression, to 'cancel' energy loss effects

Hint in ALICE:
$$R_{AA}(D_s^+) > R_{AA}(D)$$

(JHEP 03 (2016) 082)
ALI-PREL-320286

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ALICE Preliminary

→ Measure double ratio

 $rac{R_{
m PbPb}(B_s^0)}{R_{
m PbPb}(B^+)}$

B_s^0 reconstruction, selection, fitting

- $B_s^0 \to J/\psi \ \phi$ is reconstructed combining:
 - $J/\psi = {\sf dimuon}$ with displaced vertex probability > 0.01
 - ullet ϕ = displaced vertex fit of opposite-charge selected tracks
- Final selection done with BDT with discriminant variables
- $b \rightarrow J/\psi X$ background negligible thanks to tight ϕ mass cut

PbPb

Focus on the Boosted Decision Tree

- Goal: maximize the statistical significance of B_s^0 signal
- Signal sample: B_s^0 MC (scaled to FONLL prediction) Background sample: B_s^0 mass sidebands in data (mostly random J/ψ and ϕ combinations)
- Input for BDT = variables with distinct signal and background shapes
- Gives BDT variable, which is cut to get the highest significance
- Checks with prompt J/ψ MC sample that background is not artificially peaking due to BDT

Results: B_s nuclear modification factor

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = \frac{1}{T_{\mathrm{AA}}} \frac{\mathrm{d}N_{\mathrm{PbPb}}^{\mathrm{B}_{\mathrm{s}}^{\mathrm{0}}}}{\mathrm{d}p_{\mathrm{T}}} \bigg/ \frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\mathrm{B}_{\mathrm{s}}^{\mathrm{0}}}}{\mathrm{d}p_{\mathrm{T}}}$$

Comparison with:

- TAMU: Langevin transport model, with recombination
- CUJET: pQCD-based, without recombination

 \rightarrow $R_{AA}(B_s^0)$ consistent with 1,

but uncertainties leave room for possible enhancement or suppression

Results: ratio of B_s and B modification factors

Some uncertainties cancel in double ratio $R_{PbPb}(B_s^0) / R_{PbPb}(B^+)$

- \rightarrow allows for quantifying how B_s^0 mesons are suppressed w.r.t. B^+
- → significant contribution of beauty recombination with strange quarks in heavy ion collisions?

Indication of B_s^0/B^+ enhancement (p-value 18% - 28%)

Not significant yet

→ need more statistics

(analysis in progress with 2018 data!)

Recombination with charm?

 At LHC energies, many charm quarks produced in the surrounding nuclear collision

- "Standard" recombination with J/ψ :
 - Binding of uncorrelated c and \bar{c} (statistical hadronization)
 - continuous dissocation/recombination of bound state (transport model)
 - CGC, comovers, ...
- B_c difficult to produce in 1 hard collision: need a b̄b and a c̄c pair.
 → If a b quark can recombine with charm in the medium ... dramatic augmentation! Up to 10³ 10⁴ in some papers (Rafelski et al. PRC62 (2000))
 - → Could bring new insights/discriminate on recombination mechanisms!
- Caveats: added to suppression mechanisms (b energy loss etc.), and happens at $p_T \lesssim m_{B_c}$
- Two different heavy quarks bound → original view of flavour dependence of energy loss

Additional challenges with B_c^+ trimuon analysis

Low cross section:

- Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$):
 - Hadronic channel observed in pp 2017 data, but 4× less equivalent lumi in PbPb + potential suppression + higher track background → hopeless in PbPb
 - Non-peaking signal → have to master the backgrounds!
 - Smeared kinematics (p_T unfolding to be planned)

 $B_c^+ o J/\psi \ \pi^+$ reco+selected pp data 5 TeV $N_{B_c} \simeq 120$

 $B_c^+ \to \mu\mu\mu$ generated trimuon mass

Additional challenges with B_c^+ trimuon analysis

Low cross section:

B_c production peaks at p_T = 3 GeV → aim at lower p_T muons
 → Push down muon kinematic acceptance cuts + allow a 3rd muon (not firing the dimuon trigger) in a looser acceptance

Used samples

- \bullet pp 2017 (300 pb⁻¹) and PbPb 2018 (1.5 nb⁻¹) at 5.02 TeV, with dimuon trigger
- For B_c signal: use BCVEGPY2.2 specific generator, then: PYTHIA, EVTGEN, GEANT, ...

 No embedded samples for PbPb yet (coming soon) → scale pp MC to PbPb luminosity

For background studies:

- MC for prompt J/ψ and non-prompt J/ψ (daughter of B^0 , B^+ , B_s)
- Define samples w.r.t. dimuon sign (0 or ± 2) and J/ψ or trimuon mass sidebands

Mastering the backgrounds

BDT & strategy for normalization

- Apply BDT after basic selection. Discriminant variables: same as $B_{(s)}$ + some topology, e.g. $\Delta R(J/\psi)/mean(\Delta R(\mu, \mu))$
- BDT needs normalizations of signal & background samples

 As preliminary study, no fit of data is done: use a priori normalizations, even for signal MC, and compare with data pp, Prompt J/ψ

 Signal MC: scale to cross section from pp 7 TeV measurement (average from LHCb [1,2] and CMS [3]). Extrapolate to 5 TeV and to the whole phase space with BCVEGPY.

• (Non-)prompt J/ψ MC: use pp and PbPb cross sections from CMS meas. in same kinematic range, extrapolated for $p_T(J/\psi) < 6.5$ GeV [4]

pp preliminary result

- Same sign + + +/-- sample only shown for illustration
- More work needed on $J/\psi \mu$ combinatorics: here, simplistic TRUEJPSI extrapolation
- data-MC agreement to be improved, but confidence in high $m_{\mu\mu\mu}$ region
- To improve BDT performance, will run BDT separately in categories: p_T (2 bins), rapidity (2 bins) ($\neq m_{J/\psi}$ resolution), and m_{uuu} (2-3 bins) (very \neq backgrounds)
- Use control regions to check background description (e.g. invert BDT cut, or vertex probability cut for combinatorics)

B_c candidates mass with valBDT>0.10

PbPb preliminary result

- Use pp MC for now (embedded MC not ready yet), assuming arbitrary R_{PbPb} for signal B_c , and using PbPb (non-)prompt J/ψ cross sections
- ullet More work needed on backgrounds, but confidence in high $m_{\mu\mu\mu}$ region
- More MC stats to come → better BDT performance / less overtraining

R_{AA} / R_{AA} / R_{AA}

CUJET

50

— TAMU

- Rich zoology of results on medium modifications of b-quark and b-mesons in PbPb with CMS
- First measurement of B_s^0 decays in heavy ions

7.ECMS

 $6^{-}|y| < 2.4$

10

 $R_{AA}^{B_s^o} \, / \, R_{AA}^{B^+}$

 Work in progress: towards measurement of B_c^+ in heavy ions

p_ (GeV/c)

- Rich zoology of results on medium modifications of b-quark and b-mesons in PbPb with CMS
- First measurement of B_s^0 decays in heavy ions
- Work in progress: towards measurement of B_c⁺ in heavy ions

BACKUP

B_s Signal extraction: fit of raw yields

- ullet Fit with unbinned extended maximum likelihood method ${\cal B}_s^0$ mass
- Double gaussian (same means) for signal + linear function for combinatorial background
- Signal shapes from MC
- Non-prompt J/ψ background (from other B mesons) negligible thanks to tight ϕ mass cut

B_s acceptance and efficiency

- α : Accepted $B_s^0 =$ daughters pass basic detector acceptance cuts
- ε : Reconstructed $B_s^0 = \text{accepted} + \text{reconstructed daughters} + \text{pass}$ selection cuts
- Measured on signal MC
- For BDT: check the similarity of MC and data distributions for discriminant variables

B_s proton-proton cross section: comparison to FONLL

- Spectrum calculated for all b-quark hadrons. Uncertainty from variation of m_b, m_c, μ_R , and μ_F .
- Apply (constant) production fraction of B_s : 10.3% from PDG (hypothesis checked with PYTHIA)
- → pp measurement consistent with FONLL prediction

Systematics on B_s pp and PbPb cross sections

Done separately for each p_T bin:

source	Rel. error on R_{PbPb}
luminosity / N_{MB} / T_{PbPb}	2-3%
branching fractions	8%
kaon tracking efficiency	8-12%
muon efficiency	3-5%
B_s^0 BDT selection efficiency	3-19%
Signal and background fit models	1-9%
Correction of B_s^0 p_T shape in MC	1-8%
B_s^0 acceptance difference in MC/data	1-2%

2017-2018 data: new single muon acceptance cuts

From single muon efficiency maps:

MC normalization for (non-)prompt J/ψ

pp trimuon mass for various BDT cuts

B, candidates mass with valBDT>-0.20

B_c candidates mass with valBDT>0.25

2500

2000

1500

1000