Cold nuclear matter transport coefficient in Drell-Yan and quarkonium production

C-J. Naïm in collaboration with F. Arleo and S. Platchkov

CEA/IRFU/DPhN - LLR/École Polytechnique

QGP France

July, 3th 2019 - Etretat

QGP France 1 / 2

Why hard processes in hadron-nuclei collisions?

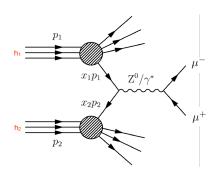
Hadron-nuclei collisions $pA/\pi A$

- ullet Lot of measurements from SPS to LHC energies ($\sqrt{s} pprox$ 20 GeV 8 TeV)
- Study confined nuclear matter
 - Static matter and known nuclear density
 - Important for LHC data interpretation !
- In the future, precise measurements from COMPASS

Hard processes to study nuclear medium

- Drell-Yan production
 - $\bullet \ hA \to \ell^+\ell^- + X$
 - Colorless final state
 - Very well understood in QCD
- Hadron production (mostly charmonium)
 - hA $\rightarrow q/g (\rightarrow h') + X$
 - Color in initial and final state
 - Hadron production mechanism not really known

QGP France 2 / 27


Collinear factorization

At large momentum transfer in pp, scale $Q \gg \Lambda_{\rm QCD} \approx 200$ MeV

$$\mathrm{pp} \to \gamma^{\star}/Z^0 \to \ell^+\ell^- + \mathrm{X} \; (\mathsf{Drell-Yan})$$

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,i} \int \mathrm{d}x_{1} f_{i}^{p}\left(x_{1},\mu\right) \int \mathrm{d}x_{2} f_{j}^{p}\left(x_{2},\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1},x_{2},\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^{n}}{Q^{n}}\right)$$

QGP France

3 / 27

Collinear factorization

At large momentum transfer in pp, scale $Q \gg \Lambda_{\rm QCD} \approx 200$ MeV

$$\mathrm{pp} \to \gamma^{\star}/Z^0 \to \ell^+\ell^- + \mathrm{X}$$
 (Drell-Yan)

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\rho}\left(x_{1},\mu\right) \int \mathrm{d}x_{2} f_{j}^{\rho}\left(x_{2},\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1},x_{2},\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^{n}}{Q^{n}}\right)$$

- $\hat{\sigma}_{ii}$ partonic cross section calculable in perturbation theory
- \bullet x₁, x₂: fraction of momentum carried by the parton in hadron
- $f_{i,j}$ Parton Distribution Function (PDF): universal non perturbative QCD object

3 / 27

Collinear factorization

Proton-nucleus (pA) collisions

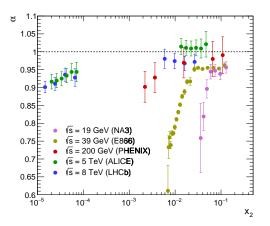
$$\frac{\mathrm{d}\sigma_{\mathrm{p}\mathbf{A}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,i} \int \mathrm{d}x_1 f_i^p\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^\mathbf{A}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_\mathbf{A}^n}{Q^n}\right)$$

Probing of PDF of a nuclei (without nuclear effects)

$$f_i^A = Zf_i^P + (A - Z)f_i^n$$

 $d\sigma_{\mathrm{p}A} = Zd\sigma_{\mathrm{pp}} + (A - Z)d\sigma_{\mathrm{pn}} \approx \mathrm{Ad}\sigma_{\mathrm{pp}}$

Investigate nuclear effects via

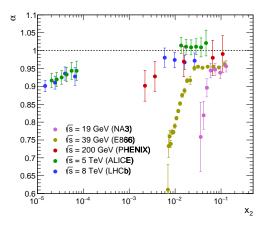

$$R_{\mathrm{pA}} \equiv \frac{1}{A} \frac{\mathsf{d}\sigma_{\mathrm{pA}}}{\mathsf{d}\sigma_{\mathrm{pp}}} \approx 1$$

Let's now study the data in hA ...

QGP France 4 / 27

Experimental obervations

Observable: $\sigma(pA \to J/\psi + X) \equiv \sigma(pp \to J/\psi + X) \times A^{\alpha}$

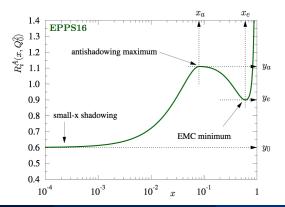


 $\textbf{ § Strong suppression in } \text{J}/\psi \text{ data at all } \sqrt{s} \text{ from SPS to LHC energies}$

QGP France 5 / 27

Experimental obervations

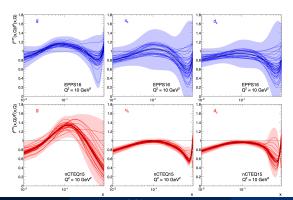
Observable: $\sigma(pA \to J/\psi + X) \equiv \sigma(pp \to J/\psi + X) \times A^{\alpha}$


- Strong suppression in J/ ψ data at all \sqrt{s} from SPS to LHC energies
- No scaling as a function of the x₂ momentum fraction

QGP France 5 / 27

Nuclear PDF effects

Nuclear Parton Distribution Functions (nPDF)


- EMC effect discovered in 1983 in DIS on nuclear targets
- PDF is modified in nuclei : $f_j^{p/A} \neq f_j^p$
- nPDF ratio $R_j^A = f_j^{p/A}/f_j^p$ via a **global fit** assumed to be **universal**

QGP France

Nuclear PDF effects

	EPPS16	nCTEQ15
Neutral current DIS I+A/p+d	✓	✓
Drell-Yan dilepton p+A/p+d	✓	✓
RHIC pions d+Au/p+p	✓	✓
Neutrinos-nucleus DIS	✓	
LHC p+Pb jet data	✓	
LHC p+Pb W and Z bosons data	✓	
Drell-Yan dilepton π A	✓	

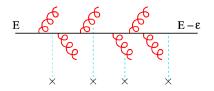
Nuclear PDF effects

Empirical observations in J/ψ data

- Amplitude of the suppression depends on the beam energy
- No scaling as a function of x₂

Nuclear PDF effects

- Nuclear PDF from global fit cannot explain alone these observations in hadron-nuclei collisions
- Other physics effects are present

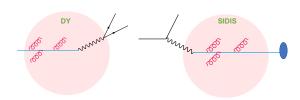


Quid of other hard processes in hadron-nuclei collisions?

QGP France 6 / 3

Parton energy loss

High-energy partons lose energy via soft gluon radiation due to rescattering in the nuclear medium


Energy loss effects

$$\frac{dN^{out}(E)}{dE} = \int_{\epsilon} \mathcal{P}(\epsilon, E) \frac{dN^{in}(E + \epsilon)}{dE}$$

with $\mathcal{P}(E, \epsilon)$: probability distribution in the energy loss given by QCD

QGP France 7 / :

Parton energy loss in hard processes

Drell-Yan process : $hA \rightarrow \ell^+\ell^- + X$

Initial state radiation

Hadron production in SIDIS : $eA \rightarrow e + h + X$

Final state radiation

Hadron production in hA : $hA \rightarrow q/g(\rightarrow h') + X$

- Initial state radiation
- Final state radiation
- Interferences initial/final state radiation

QGP France 8 / 27

Parton energy loss in BDMPS formalism

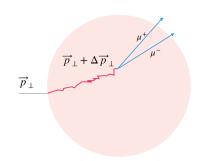
Energy loss in initial or final state (small formation time $t_f \lesssim L$))

$$\langle \epsilon \rangle_{LPM} \propto \alpha_s \hat{q} L^2$$

- hA $\rightarrow \ell^+\ell^- + X$ (DY)
- $eA \rightarrow e + h + X$ (SIDIS)

Energy loss in initial/final state (large formation time $t_f \gg L$)

$$\langle \epsilon
angle_{coh} \propto \sqrt{\hat{f q} L}/M \cdot E \gg \langle \epsilon
angle_{LPM}$$


• $hA \rightarrow [Q\bar{Q}(g)]_8 + X$ (Quarkonium)

Transport coefficient: the scattering properties of the medium

$$\hat{q}_g(x) = \frac{4\pi^2 \alpha_s(\hat{q}L) N_c}{N_c^2 - 1} \rho x G(x, \hat{q}L)$$

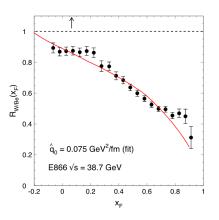
QGP France 9 / 27

p_T broadening as a probe for transport coefficient

$$egin{aligned} \Delta
ho_{\perp}^2 &= \left\langle
ho_{\perp}^2
ight
angle_{
m hA} - \left\langle
ho_{\perp}^2
ight
angle_{
m hp} = \hat{m{q}}(m{x}) m{L} \ & \left\langle
ho_{\perp}^2
ight
angle_{
m hA} &= rac{\int {
m d} m{p}_{\perp} m{p}_{\perp}^2 rac{{
m d} m{\sigma}_{
m hA}}{{
m d} m{p}_{\perp}} \ & \int {
m d} m{p}_{\perp} rac{{
m d} m{\sigma}_{
m hA}}{{
m d} m{p}_{
m hA}} \end{aligned}$$

• if $\hat{q}L \lesssim 1 \text{GeV}^2$, we can neglect Q^2 and α_s evolution

$$\hat{q}_g(x) = \frac{4\pi^2 \alpha_s(\hat{q}L) N_c}{N_c^2 - 1} \rho x G(x, \hat{q}L) \approx \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \frac{\hat{q}_0}{N} \left[\frac{10^{-2}}{x} \right]^{0.3}$$

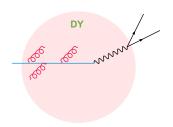

where $x = \min(x_0, x_2)$ and $x_0 \equiv \frac{1}{2m_0L}$

QGP France 10 / 27

Fit of J/ ψ data

Energy loss model only explains the ${\rm J}/\psi$ suppression [1]

E866 -
$$R_{W/Be}(x_F)$$



- \hat{q}_0 extraction with J/ ψ data: $\hat{q}_0 = [0.07 0.09] \text{ GeV}^2/\text{fm}$
- no nPDF calculation can explain these data

Drell-Yan rapidity dependence phenomenology [2]

Goal

- Explore energy loss effects
- Test universality of transport coefficient extracted with ${\sf J}/\psi$ data

Data analysis of hA collisions at SPS energy

- pA : E906 ($\sqrt{s} = 15$ GeV) and E866 ($\sqrt{s} = 38.9$ GeV)
- πA : NA10 ($\sqrt{s}=16.2$ GeV) and NA58/COMPASS ($\sqrt{s}=18.9$ GeV)

QGP France 12 / 27

Model of initial-state energy loss

Energy shift

$$\frac{\mathrm{d}\sigma(hA)}{\mathrm{d}x_{\mathrm{F}}\mathrm{d}M} = \sum_{i,j=q,\overline{q},g} \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{(1-x_{1})E_{\mathrm{b}}} \mathrm{d}\epsilon \mathcal{P}_{i}(\epsilon) f_{i}^{h} \left(x_{1} + \frac{\epsilon}{E_{\mathrm{b}}}\right) f_{j}^{A}(x_{2})$$

$$\times \frac{\mathrm{d}\widehat{\sigma}_{ij}}{\mathrm{d}x_{\mathrm{F}}\mathrm{d}M}(x_{1}x_{2}s)$$

Calculation

- Drell-Yan partonic cross section at Next-to-Leading order (NLO)
- ullet $\mathcal{P}(\epsilon)$: quenching weight related to the induced gluon spectrum
- Nuclei length L given by Glauber model
- $\hat{q}_0 = [0.07 0.09] \mathrm{GeV}^2/\mathrm{fm}$ fixed \rightarrow no free parameter in the model !

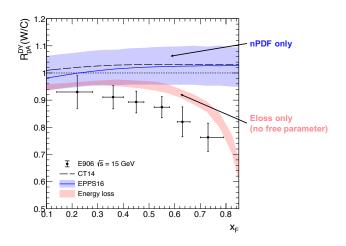

Observable

$$R(A/B, x_F) = \frac{B}{A} \left(\frac{d\sigma(hA)}{dx_F} \right) \times \left(\frac{d\sigma(hB)}{dx_F} \right)^{-1}$$

QGP France 13 / 27

Data analysis - E906 preliminary data [3]

pA collisions

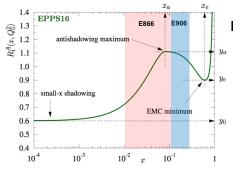


E906

- Drell-Yan data on Carbon (12), Fe (56) and W (184)
- Proton beam at $E_{beam} = 120 \text{ GeV}$
- $x_2 \in [0.1\text{-}0.3]$

$$R_{pA}^{\mathrm{DY}}(\mathsf{W/C},x_{\mathrm{F}})$$

Data analysis - E906 preliminary data

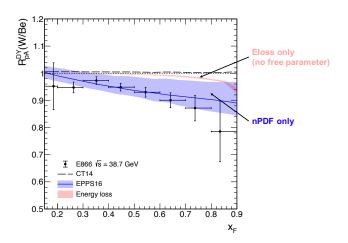


- Clear disagreement with the nPDF expectations!
- Qualitative agreement of energy loss shape and E906
- Strong indication in favour of energy loss in DY data

QGP France 15 / 27

Data analysis - E866 data [4]

pA collisions



E866

- Drell-Yan data on Be (9), Fe (56) and W (184)
- Proton beam at $E_{beam} = 800 \text{ GeV}$
- $x_2 \in [0.01\text{-}0.1]$

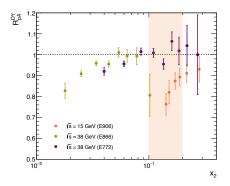
$$R_{pA}^{\mathrm{DY}}(\mathsf{W}/\mathsf{Be},x_{\mathrm{F}})$$

Data analysis - E866 data

- Good agreement with the nPDF expectations (used for the global fit)
- Energy loss effect more important at large x_F
- Good data to extract nPDF but need to take into account energy loss effect (few percent at large x_F)

QGP France 17 / 27

Violation of QCD factorization in DY process in pA collisions


Universality of nPDF verified in Drell-Yan process?

$$R_{pA}^{DY} = R_{pA}^{DY}(x_2)$$
: as a function of x_2 independent of \sqrt{s}

Scaling as a function of the x_2 :

 No between E866/E772 and E906 data

Indication in favour of violation of QCD factorization in pA in DY

QGP France 18 / 27

$p_{\rm T}$ broadening phenomenology

Goal

- Explore energy loss effects with p_T broadening
- Test universality of transport coefficient extracted with J/ψ data
- Probe the $xG(x,Q^2)$ dependence at $Q^2 \sim \hat{q}L$ (saturation scale) and at small $x_2 \sim 10^{-5}$ thanks to LHC data

Observable

$$\Delta \textit{p}_{\perp}^{2} = \left\langle \textit{p}_{\perp}^{2} \right\rangle_{\rm hA} - \left\langle \textit{p}_{\perp}^{2} \right\rangle_{\rm hp}$$

Data analysis in hA from SPS to LHC energy (world data):

- Drell-Yan data)
- Y data

 $lacktriangledown J/\psi$ data lacktriangledown Different color state but probing the same effect !

19 / 27

Other nuclear effects in the broadening calculation

For this study, we considered only the broadening effect but ...

- Energy loss effect
 - Affects only the normalisation of $R_{\rm pA}(p_{\rm T})$
 - Cancellation in Δp^2
- nPDF effect
 - $0 < p_{\perp} \lesssim M$: fixed target experiment, cancellation in Δp_{\perp}^2
 - $p_{\perp} \gtrsim M$: LHC case, very large error bar in gluon sector but

$$\frac{\mathrm{d}\sigma_{\mathrm{hA}}^{\mathrm{nPDF}}}{\mathrm{d}\rho_{\perp}} = \underbrace{R_{i}^{\mathrm{A}}\left(x_{2}\left(\rho_{\perp}\right),Q^{2}\right)}_{\text{if only normalisation: cancellation in }\Delta\rho_{\perp}^{2}} \times \frac{\mathrm{d}\sigma_{\mathrm{hp}}}{\mathrm{d}\rho_{\perp}}$$

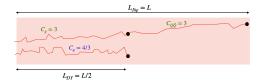
- at $x \lesssim 10^{-4}$: shadowing region $R_i^{\rm A}(x,Q^2) < 1$
- ullet at $0.05\lesssim x_2\lesssim 0.2$: antisadowing region $R_i^{
 m A}\left(x,Q^2
 ight)>1$

QGP France 20 / 27

Data analysed

Exp.	Beam	\sqrt{s} (GeV)	Process	Α	Ref.
NA3	р	19.3	J/ψ	Pt	[5]
	π^-	16.7/19.3/22.9			
	π^+	19.3			
NA10	π^-	16.2/23.1	DY	W	[6]
		23.1	J/ψ		
E772	р	38.7	DY	Ca, Fe, W	[7]
			Υ	Ca, Fe, W	
RHIC	d	200	J/ψ	Au	[8]
ALICE	р	5020	J/ψ	Pb	[9]
LHCb	р	8160	J/ψ	Pb	[10]

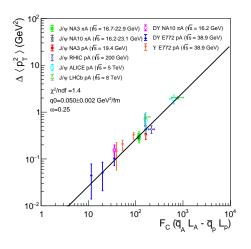
 \rightarrow from SPS to LHC energies : factor 400 !


QGP France 21 / 27

Colorimetry

Computation of broadening depending on initial and final color state

$$\Delta p_{\perp}^2 = \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hA}} - \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hp}} = \mathcal{C} \left(\hat{q}_{\mathrm{A}} \mathcal{L}_{\mathrm{A}} - \hat{q}_{p} \mathcal{L}_{p} \right)$$

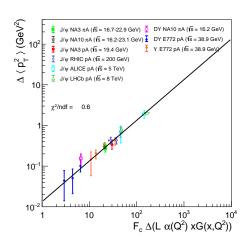

with
$$\mathcal{C} = \frac{\mathcal{C}_R + \mathcal{C}_{R'}}{2N_c}$$

Process	Collision	$C_R + C_{R'}$
Drell-Yan	πA	C_F
Drell-Yan	pА	C_F
Quarkonium	πA	$C_F + N_c$
Quarkonium	pА	$N_c + N_c$

QGP France 22 / 27

Broadening with simple model

• Simple model used

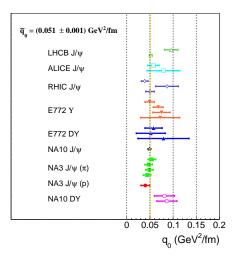

$$\hat{q}_g(x) = \hat{\mathbf{q}}_0 \left[\frac{10^{-2}}{x} \right]^{0.25}$$

- See talk of C. Marquet, $xG(x) \sim x^{-0.28}$
- Very nice scaling !!
- Extraction of \hat{q}_0 :

$$\hat{q}_0 = 0.050 \pm 0.002 \text{ GeV}^2/\text{fm}$$

QGP France 23 / 27

Broadening with xG(x) distribution


$$\hat{q}_g(x) = \frac{4\pi^2 \alpha_s(\mathbf{Q}^2) N_c}{N_c^2 - 1} \rho x G(x, \mathbf{Q}^2)$$

- Use the $xG(x, Q^2)$
- $Q^2 = \max(N \hat{q}L, Q_0^2)$
- $\alpha_s(Q^2)$ running

PDF nnlo	χ^2/ndf	N
CT14	0.6	4.7

24 / 27

Extraction of transport coefficient for each experiment

- Extraction of transport coefficient compatible with previous studies
- Good agreement for all data
- A transport coefficient universal at all energies!

Conclusion I

- Initial-state energy loss plays an important role on Drell-Yan suppression
 - E906 data shows a strong indication in favour of energy loss
 - At SPS energies, important effect!
- 2 Test of universality of transport coefficient extracted with ${\sf J}/\psi$
 - Two different energy loss regimes but the same transport coefficient
 - Compatibility with all Drell-Yan data
- Nuclear PDF effects on Drell-Yan process
 - Clear disagreement between E906 data and EPPS16 nPDF
 - nPDF effects are not dominant at SPS energies in Drell-Yan
 - Violation of QCD factorization from the comparison of E906 and E866/E772 data

Experiment	Beam energy	nPDF (EPPS16)	Energy loss
E906	120 GeV		Dominant
NA10	140 GeV	Equal	Equal/dominant at large x_F
NA58	190 GeV	Equal	Equal/dominant at largex _F
E866	800 GeV	Dominant except at large x_F	

QGP France

Conclusion II

- Extraction of cold nuclear matter transport coefficient
 - Scaling in Δp_{\perp}^2 for different processus \rightarrow common physic effect!
 - Different hard processes, different color state and a factor 400 between low and high energy
 - Extraction of transport coefficient compatible with previous studies
 - ullet Compatible with R_{pA} study in J/ ψ and DY data
 - Universality of transport coefficient at all energies !
- - The best $\chi^2/{\rm ndf}$ gives a $xG(x)\sim x^{-\alpha}$ with $\alpha=0.25$ at $x\sim 10^{-5}$ at $Q^2\sim \hat qL$ GeV²

QGP France

- [1] F. Arleo, R. Kolevatov, S. Peigné, and M. Rustamova, "Centrality and p_{\perp} dependence of J/ψ suppression in proton-nucleus collisions from parton energy loss," <u>JHEP</u>, vol. 05, p. 155, 2013.
- [2] F. Arleo, C.-J. Naïm, and S. Platchkov, "Initial-state energy loss in cold QCD matter and the Drell-Yan process," <u>JHEP</u>, vol. 01, p. 129, 2019.
- [3] P.-J. Lin,

 Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E
 - PhD thesis, Colorado U., 2017.
- [4] M. A. Vasilev et al., "Parton energy loss limits and shadowing in Drell-Yan dimuon production," <u>Phys. Rev. Lett.</u>, vol. 83, p. 2304, 1999.
- [5] J. Badier et al., "Experimental J/ψ Hadronic Production from 150 GeV/c to 280 GeV/c," Z. Phys., vol. C20, p. 101, 1983.
- [6] P. Bordalo et al., "OBSERVATION OF A NUCLEAR DEPENDENCE OF THE TRANSVERSE MOMENTUM DISTRIBUTION OF

QGP France 27 / 27

- MASSIVE MUON PAIRS PRODUCED IN HADRONIC COLLISIONS," Phys. Lett., vol. B193, p. 373, 1987.
- [7] P. L. McGaughey, J. M. Moss, and J. C. Peng, "High-energy hadron induced dilepton production from nucleons and nuclei," <u>Ann. Rev. Nucl.</u> Part. Sci., vol. 49, pp. 217–253, 1999.
- [8] A. Adare <u>et al.</u>, "Transverse-Momentum Dependence of the J/ψ Nuclear Modification in dAu Collisions at $\sqrt{s_{NN}}=200$ GeV," <u>Phys.</u> Rev., vol. C87, no. 3, p. 034904, 2013.
- [9] J. Adam et al., "Centrality dependence of inclusive J/ ψ production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV," JHEP, vol. 11, p. 127, 2015.
- [10] R. Aaij et al., "Prompt and nonprompt J/ ψ production and nuclear modification in pPb collisions at $\sqrt{s_{\rm NN}}=8.16$ TeV," Phys. Lett., vol. B774, pp. 159–178, 2017.