An overview and remarks to the future of dense QCD studies at the LHC

Michael Winn

Nuclear physics division, IRFU-CEA

Etretat, $3^{\rm th}$ of July 2019 QGP France Based on LHCP material, but with additional comments

Thanks for discussions with my colleagues at DPhN. in France, at CERN, in Germany and elsewhere,

Outline

- **▶** introduction
- ► LHCP overview
- comments

QGP physics with nucleus-nucleus collisions at high energies

T-range probed at the LHC according to hydrodynamic models

p/T⁴: pressure over temperature⁴

HRG: Hadron Resonance Gas

HTL: Hard thermal loop

SB: Stefan-Boltzmann limit of non-interacting quarks and gluons

Figure taken from PLB 370 (2014), T-range from PRC 89, 044910 (2014)

The QCD many-body system in the lab: nucleus-nucleus (AA) collisions

- measure equilibrium properties
- understand non-equilibrium dynamics and relation to equilibrium

Why **heavy-ion** collisions for QGP physics today and in the **future**?

There are conceptual open questions!

- precondition: How does thermalisation work? Where does it work? Where fluid dynamics applicable?
- Phase transition properties w.r.t. deconfinement and chiral restoration?
- Underlying degrees of freedoms? pseudoparticles at which scale?
- Material properties and the interactions of d.o.f. at QCD at finite T?
- Initial wave function? Role of saturation?

Side products

- pushing relativistic hydrodynamics to the limits
- pushing perturbative and non-perturbative field theory calc. to the limits
- reating extreme electromagnetic fields in the laboratory to $\gamma\gamma/\gamma$ pomeron/odderon collider
- answer questions in astrophysics and spectroscopy
- hardware/software R&D

Why high-energy heavy-ion collisions?

- large range, perturbative probes
- time ordering of collision impact, parton production and system evolution
- if not critical point search or specific signature suffering at high-energy or energy dependence needed
 - ightarrow high-energy advantageous
- ▶ large nucleus → more particles
- small nuclei instrumental to answer thermalisation questions and to challenge overall paradigm however for QGP properties, the largest system presumably easiest to connect to matter properties
- compromises: signal strength optimisation

Why high-energy heavy-ion collisions in the future?

- ▶ "standard model" based on prominent phenomena: flow & jet quenching
 - \rightarrow soft particle production described via hydrodynamic models
 - \rightarrow hard particle production "stopped/breaked" in dense QCD
 - → synergy with HEP: techniques and observables
- solid ground to progress
- beyond this base paradigm: very model dependent statements
- Answering more ambitious questions:
 - \rightarrow more precise and new measurements
 - ightarrow a leap to connect theory via phenomenology with data
- more than a smooth continuation:
 - → requires self-critical revisions where needed
 - \rightarrow needs ambitious goals

even if this SM is still challenged (very healthy for our field!): see e.g. SQM Bierlich or Urs transport calc. or hydro of HF in pPb, PbPb QGP appears robust.

Yellow Report: The questions for future dense QCD studies

- 1. What are the material properties of QCD matter and the properties of the transition between phases?
- 2. What are the degrees of freedom and their interactions?
- 3. Where does the fluid description break down? Are there other concepts that we need to describe data with?
- 4. What are the characteristics of the initial stages?

→ future LHC programme

The upgrades for the future programme

50 kHz Pb-Pb with TPC, 2 ms, courtesy D. Rohr.

a technological challenge for a broad physics programme

The future heavy-ion schedule: proposal from YR working group

- Run 3&4 Pb-Pb:
 - 13 ${
 m nb}^{-1} pprox$ 10 imes Run 1&2 luminosity
 - soft probes: $\approx 100 \times \text{Run} \ 1\&2 \ \text{thanks}$ to ALICE continuous read-out
- ► Run 3&4 complements to Pb-Pb:
 - p-Pb: 1.2 pb⁻¹ ATLAS/CMS, 0.6 pb⁻¹ ALICE/LHCb & pp references
 - pp@14 TeV for high-multiplicity events: $0.2~{\rm fb^{-1}}~{\rm ALICE/ATLAS/CMS}$
 - short O-O and p-O runs in Run 3
- Run 5: proposal for lighter ions running for larger luminosities

ALICE upgrade in a nutshell

- 50 kHz Pb-Pb continous read-out
 - \rightarrow integrated online-offline system \mbox{O}^2 with partial online calibration

Run 3 upgrade overview: J. Norman parallel; FIT detector V. Grabski: poster.

LHCb upgrades for Run 3

- ► LHCb Run 3: fixed-target upgrade: 10-100 larger luminosity than Run 2 → unique heavy-ion programme for heavy-flavour & soft physics LHCb-PUB-2018-015
- ► LHCb Run 3: tracking, trigger & read-out for 5× larger pp pile-up LHCb-TDR Velo, LHCb-TDR Tracker
 - ightarrow better heavy-ion performance

CMS (ATLAS) upgrades for Run 4 in view of heavy-ions

- ▶ ATLAS/CMS Run 4: enlarged tracker performance & acceptance: $|\eta| < 2.5 \rightarrow |\eta| < 4.0$ CMS-TDR, ATLAS-TDR Pixel, ATLAS-TDR Strip \rightarrow unprecedented correlation studies and more
- ► CMS Run 4: PID in $|\eta| <$ 3.0 TDR \rightarrow p/K/ π separation with 0.7 < $p_T <$ 3 GeV/c

The physics of the future programme from YR

- 1. Material properties of QCD matter & properties of the transition between phases?
 - \rightarrow Characterising the macroscopic long wavelength QGP properties
- 2. Degrees of freedom and their interactions?
 - \rightarrow Accessing the microscopic parton dynamics underlying QGP properties
- 3. Where does the fluid description break down?
 - \rightarrow Developing a unified picture of particle production across collision systems
- 4. Characteristics of the initial stages?
 - \rightarrow Probing parton densities in nuclei in a broad (x,Q^2) range and searching for parton saturation

Characterising the macroscopic properties

top: Madai visualisation of MUSIC hydrodynamics. left bottom: cartoon M. Attems.

Exploit the standard model of heavy-ion collisions to learn about QCD matter:

- shear and bulk viscosity, heavy-quark diffusion
- temperature and phase transition characteristics

Characterising the macroscopic properties: unprecedented precision

Nuclear modifications CMS CMS-PAS-FTR-17-002, v₂ with baryons ALICE ALICE-PUB-867.

- heavy-flavour measurements: heavy-quark diffusion
- constrain hadronisation models: heavy-flavour baryons and exotic nuclei
- electro-magnetic radiation via dileptons: chiral restoration and temperature

Access the microscopic dynamics underlying QGP properties

Use multi-scale objects as tools

- parton radiation in medium with jet observables arXiv:1808.03689
- ► QCD force via quarkonium

top to bottom: PLB 790 (2019) 108, PRL 109 (2012) 072301, PLB790 (2019) 270.

Microscopic parton dynamics

CMS-PAS-FTR-17-002.

- jet structure measurements: constrain the in-medium radiation
- quarkonium production: constrain the in-medium force

Particle production and multi-body dynamics from small to larger collision systems

Unify our understanding of particle production from pp to Pb-Pb:

- search for energy loss and thermal radiation in small collision systems: p-Pb, pp and O-O
- explore pp and p-Pb collisions in Pb-Pb collision multiplicity regime

Developing a unified picture from small to larger systems

Left: CMS-PAS-FTR-18-026/ALICE-PUB-867, right: ATL-PHYS-PUB-2018-039.

- precision correlation studies with hard mass scale
- test energy loss with clean coincidence measurements not relying on normalisation
- probe hadron production with pp collisions in Pb-Pb multiplicity regime

Partonic content of nuclei: initial conditions and the low-x limit

p-Pb collider kinematics of compared with HERA and fixed-target, nuclear DIS, UPC kinematics.

- nuclear parton distributions not strongly constrained as initial condition of heavy-ion collision
- extreme kinematics probing onset of non-linear effects

Probing a broad (x, Q^2) range and searching for the possible onset of saturation

UPC Quarkonia ALICE-PUB-867/CMS-PAS-FTR-18-027, Drell-Yan LHCb-CONF-2018-005.

- probe nucleus with quasi-real photon in ultra-peripheral collisions (UPC)
- new observables in p-Pb with colour neutral final state at forward rapidity
- probe lowest available Bjorken-x & densest QCD systems
- forward calorimeter for Run 4 under consideration in ALICE, presentation by N. Novitzky link

Nuclear PDF constraint: isolated photons ALICE forward calorimeter.

Beyond 2030: lighter ions for larger luminosity

	$^{16}O^{8+}$	$^{40}{\rm Ar}^{18+}$	$^{40}\text{Ca}^{20+}$	$^{78}{\rm Kr}^{36+}$	$^{129}\mathrm{Xe}^{54+}$	$^{208}\text{Pb}^{82+}$
γ	3760.	3390.	3760.	3470.	3150.	2960.
$\sqrt{s_{ m NN}}$ /TeV	7.	6.3	7.	6.46	5.86	5.52
$\int_{\text{month}} L_{AA} dt/nb^{-1}$	5.89×10^{4}	3180.	2190.	218.	38.2	4.92
$\int_{\text{month}} L_{\text{NN}} dt/\text{pb}^{-1}$	1.51×10^{4}	5090.	3510.	1330.	636.	213.

Pb-Pb equivalent defined via nucleon-nucleon lumi., bottom: in Yellow Report based on: PRL120, 232301 (2018)

- lighter nuclei: larger nucleon-nucleon luminosities by more than factor 10
- ► make accessible new QGP probes
- example: time structure of jet-quenching with boosted top decays in ATLAS/CMS
- Argon Argon collisions explored: final choice based on physics and accelerator considerations

New instrumentation beyond 2030

Magnetic Field

• B = 0.5 or 1 T

Spatial resolution

- Innermost 3 layers: σ ~ 1μm
- Outer layers: $\sigma \sim 5 \mu m$

Vertex material thickness

X/X0 ~ 0.05% / layer

Time Measurement

Outermost layer integrates high precision time measurement $(\sigma_t \sim 20ps)$

Concept from Adamova et al.: arXiv:1902.01211.

- concept for a next generation heavy-ion experiment: lightweight all-silicon, PID via timing and preshower, high rates, $|\eta| < 4.0$
- LHCb upgrade 2 LHCb-PUB-2018-009: upgrade to run in pp at pile-up ≈ 30
- ▶ together with higher luminosity with lighter nuclei → large potential for presently unaccessible observables ultra-hard probes, soft electro-magnetic electromagnetic radiation, multi-heavy-flavour and higher order fluctuations
- with new detectors: intention to rerun in PbPb likely

Conclusions

The future of dense QCD studies at the LHC

A broad programme in Run 3&4

- ▶ based on the ALICE upgrade & ATLAS/CMS/LHCb upgrades
- ▶ 10 (hard) 100 (soft) × larger data sets in Run 3&4

Scientific goals:

- characterisation of QCD matter in & out of equilibrium, hadronisation & the initial state of heavy-ion collisions
- construction of a unified picture from pp up to Pb-Pb

Opportunities beyond 2030:

- large statistics for hard scale physics, radiation, multi-heavy flavour and higher order fluctuations with collisions of lighter ions
- ▶ innovative new instrumentation for low/intermediate-p_T

Thoughts on small systems in Run 3/4 and beyond

- a main focus of Run 3 as well as Run 4: conceptual questioning should be addressed throughoutly very important as a field as a whole
- RHIC will likely also contribut with OO runs or other system scans
- in my view: further future of a heavy-ion programme should not be centred around this question
 - \rightarrow "smaller" nuclei advantageous in terms of lumi or depending on findings of Run 3/4 as better lab
 - \rightarrow but not as a matter of study in itself
- a comment on ALICE pp programme Run 3/4 in this context:
- identify where ATLAS/CMS/LHCb is not sufficient within much shorter running time
- $-\ exclusive\ or\ inclusive\ QCD\ measurements\ could\ be\ complements,\ where\ PID\ instrumentation\ and\ low\ material\ budgets\ beneficial:$

double vector meson production for odderon search, DY-jet correlations at low scales for BFKL dynamics, glueball searches in KK-mass distribution etc.

→ requires triggering on topologies!

Thoughts on long-term hard probes opportunities

- **b** boosted objects and very high- p_T with precision
- ▶ use pp toolkit and beyond as well as weak interaction → interesting and synergistic with pp programme

Theory and phenomenology needs to be develop further in order to gauge its importance and the insight!

Thoughts on long-term soft probes opportunities

- electromagnetic radiation
- heavy-flavour/quarkonium
- net-charge transport, higher moments

In order to fully profit from precision improvements, need sustained theory effort!

- ightarrow starting discussions: first at ALICE physics week in July
- \rightarrow first ideas to use a YR-like group to write-up the case after initial inputs including hard probes

Thoughts on relation to lepton-proton/ion opportunities

- lepton-ion machine helpful to resolve a number of modelling/theory uncertainties in particular in initial state
- potentially also contributions to conceptual questions: small systems correlations
 - \rightarrow in many cases, difficult to forecast how far the exchange will go
 - \rightarrow to fully exploit this opportunity: need to run in parallel EIC and a heavy-ion programme at high-energies

Participations in future projects

- good position: first-hand information from 3 experiments at the LHC
- future project(s) should have:
 - clear ambitious scientific goals: competitive
 - a spectrum of different observables: heavy-ions is dynamic
 - a critical mass
 - technically interesting aspects

Examples:

- decipher geometry & time structure of QGP with electromagnetic and/or weak probes and "exclusive" probes:
 - "take pictures of the QGP as function of time"
- measure qq-potential with different states
- measure phase transition universality class
- measure charge transport like energy transport (→ flow not for energy, but for charge, baryon number etc.)
- something completely new
- ▶ more conceptual: "full event reconstruction"

Heavy-ion collisions has deep questions to answer and there are plenty opportunities

Back-up: Further opportunities with heavy-ion beams

Right: ATL-PHYS-PUB-2018-018.

- ▶ larger statistics for light-by-light collision studies ATLAS and CMS with Run 2 data: evidence with 2015 data, Nature Physics 13 (2017) 852, ATLAS, arXiv:1810.04602, CMS, observation with 2018 data arXiv:1904.03536, ATLAS
- p-O collisions for cosmic ray related studies
- ► Further beyond Standard model searches explored in arXiv:1812.07688 exploiting low pile-up, strong e.m. fields and thermal production

Inner Tracking System

ALICE-TDR-017

- ALice Plxel DEtector (ALPIDE): monolithic silicon pixel sensor with binary read-out
- ▶ 7 (3-2-2) layers
- \blacktriangleright innermost layer at 39 \rightarrow 22 mm radius, 0.35% X_0 for inner layers
- ▶ 10 m², 12.5 billion pixels
- \triangleright spatial resolution 5 μ m

Inner Tracking System: assembly

Left: Halves of layers 4, 3, 5, right: inner barrel.

- assembly in full swing at CERN
- inner barrel and first half of middle and outer barrel completed
- ► ALICE Expression of Interest for a fully cylindrical Run 4 upgrade ALICE-PUBLIC-2018-013

 → see M. Keil's presentation link

top: inner barrel, bottom: Run 4 proposal layout.

Muon Forward Tracker

ALICE-TDR-018

- new silicon detector in front of muon absorber
- secondary vertexing for heavy-flavour and background reduction for low-p_T quarkonium and low-mass dileptons
- ► ALPIDE chip: 5 disks

Muon Forward Tracker: final steps

MFT Mechanical support structure (service barrel) and manual pick and place of waver.

- all components in their final steps
- final assembly this year at CERN
- ▶ more details in M. Marchisone's talk link

Time Projection Chamber

TPC layout, electrode overview ALICE-TDR-016

- ▶ 100 μ s drift time, \approx 90 m³ gas volume
- replace gated multiwire-proportional chambers with quadruple GEM
- operational point:
 - ion-back flow in drift region < 1% for gain 2000 with Ne-CO₂-N₂ gas
 - local energy resolution < 12% with $^{55}{\rm Fe}$
- new electronics and partial online calibration
- Run 1/2 tracking and dE/dx performance with continuous read-out at 50 kHz Pb-Pb

Time Projection Chamber on its way to upgrade

Transport of TPC, last multi-wire proportional read-out chamber removed in May 2019.

- ► TPC on surface in clean room
- being equipped with quadruple GEMs
- ▶ details in E. Hellbär's talk link