


# Why study heavy flavours?



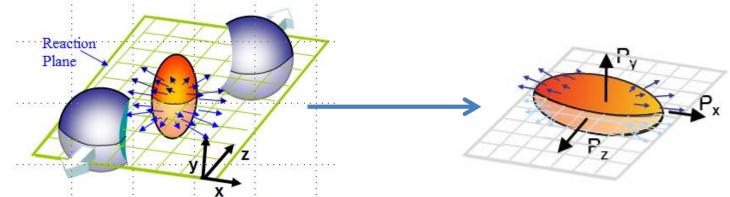
### Heavy-ion collisions

- Charm and beauty quarks produced in initial hard scatterings, prior to the formation of the Quark-Gluon Plasma (QGP)
  - $\tau_{c/b} \sim 0.01 0.1 \text{ fm/}c < \tau_{OGP} (0 1 1 \text{ fm/}c)$
- ☐ Flavour conserved by the strong interaction
- Experience the full collision history
  - Excellent probes to characterize the QGP



### □ Open heavy flavours:

- In-medium radiative and collisional parton energy loss
  - Medium density and path-length dependence
  - ❖ Colour-charge dependence:  $\Delta E_{\text{qluons}} > \Delta E_{\text{quarks}}$
  - Quark-mass dependence:  $\Delta E_{\text{gluons}} > \Delta E_{\text{u,d,s}} > \Delta E_{\text{c}} > \Delta E_{\text{b}}$
- Heavy-quark participation in the collective expansion, thermalisation of the medium
- Modification of hadronisation mechanisms in the medium
- □ pp collisions: reference, tests of pQCD-based predictions, production mechanisms
- p-Pb collisions: control experiment, cold nuclear matter effects


### Key observables



 $\square$  Nuclear modification factor  $R_{AA}$ 

$$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \sim \frac{{\rm QCD~medium}}{{\rm QCD~vacuum}}$$

☐ Azimuthal anisotropy and Fourier coefficients



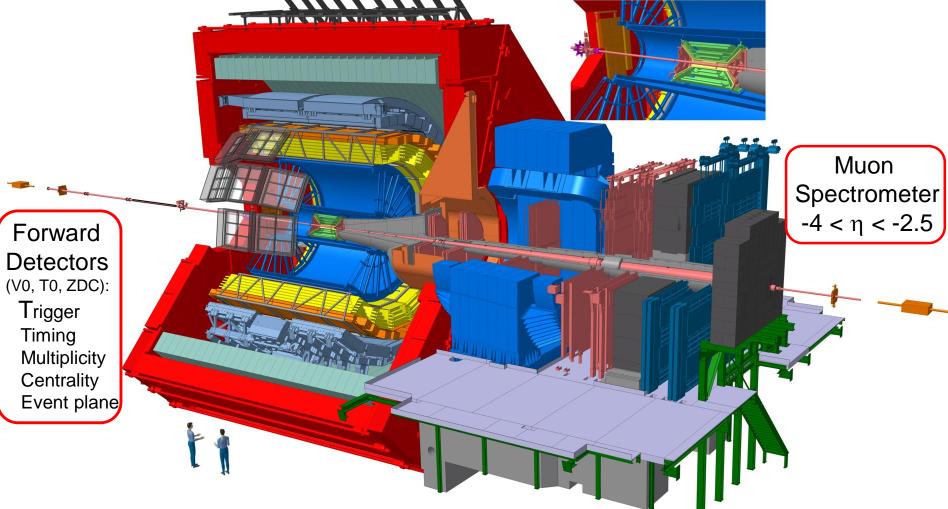
$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)] \qquad v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

$$v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

□ Other interesting observables: particle ratios → hadronisation mechanisms production in jets

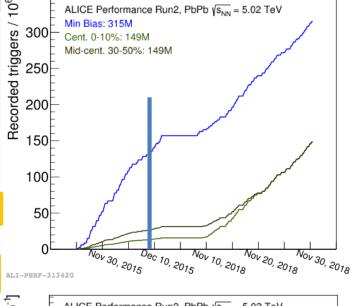
# **ALICE layout**




Central Barrel, |η| < 0.9

vertexing (ITS),

tracking (ITS, TPC),

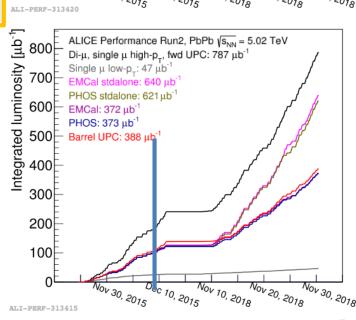

PID (ITS, TPC, TOF, TRD, HMPID,

Calorimeters)



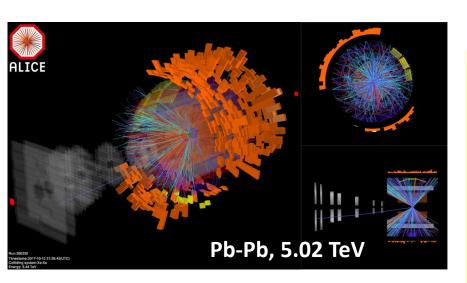
# Collected data samples with ALICE

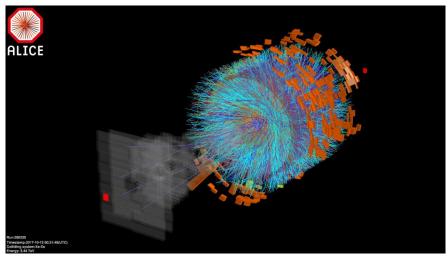
| System | Year(s)                             | √snn (TeV)                       | <b>L</b> int                                                                                                                                      |
|--------|-------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| pp     | 2009-2013<br>2015,2017<br>2015-2018 | 0.9, 2.76,<br>7, 8<br>5.02<br>13 | ~200 µb <sup>-1</sup> , ~100 nb <sup>-1</sup> ,<br>~1.5 nb <sup>-1</sup> , ~2.5 nb <sup>-1</sup><br>~1.3 nb <sup>-1</sup><br>~59 nb <sup>-1</sup> |
| p-Pb   | 2013<br>2016                        | 5.02<br>5.02, 8.16               | ~15 nb <sup>-1</sup><br>~3 nb <sup>-1</sup> , ~25 nb <sup>-1</sup>                                                                                |
| Xe-Xe  | 2017                                | 5.44                             | ~0.3 µb⁻¹                                                                                                                                         |
| Pb-Pb  | 2010, 2011<br>2015, 2018            | 2.76<br><b>5.02</b>              | ~75 µb <sup>-1</sup><br>~250 µb <sup>-1</sup> ,~0.9 nb <sup>-1</sup>                                                                              |




ALICE Performance Run2, PbPb √S<sub>NN</sub> = 5.02 TeV

300


Cent. 0-10%: 149M


- ☐ LHC run 2 finished end of 2018 (December)
- Rich trigger menu
- Largest statistics collected for Pb-Pb in the 2018 run
  - Min. bias: ~1 x 2015
  - Central: ~9 x 2015
  - Mid-central: ~4 x 2015
  - $\mu$  high  $p_{T}$ : ~3 x 2015
- Significant increase of integrated luminosity: more precise measurements for hard probes



# Open heavy-flavour channels studied in heavy-ion (Pb-Pb and Xe-Xe) collisions







### Open heavy-flavour channels in ALICE ☐ Charmed hadrons (|y|) < 0.5

• 
$$D^0 \rightarrow K^-\pi^+$$

• D+ 
$$\rightarrow$$
 K<sup>-</sup> $\pi$ <sup>+</sup> $\pi$ <sup>+</sup>

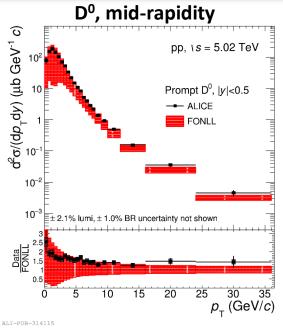
• 
$$D^*_{+} \rightarrow D^0 (K^-\pi^+)$$

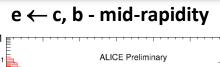
• 
$$D_s^+ \rightarrow \phi (K^-K^+)\pi^+$$

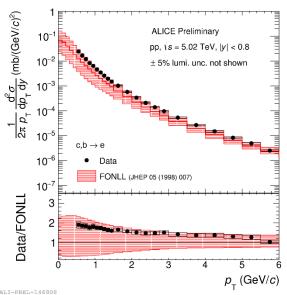
$$^{+} \Lambda_{c}^{+} \xrightarrow[]{} pK^{0}_{s}$$

$$\begin{array}{ccc}
 & b \to D \\
 & \Lambda_c^+ \to p K^- \pi^+
\end{array}$$

• 
$$\Lambda_c + \rightarrow e^+ \Lambda \nu_e$$


• 
$$\Xi_c^0 \rightarrow e^+ \Xi^- \nu_e$$


### ☐ Heavy-flavour hadron decay leptons


• eX 
$$(|y| < 0.9) \leftarrow c, b$$

■ 
$$\mu X (2.5 < y < 4) \leftarrow c, b$$

# Open heavy-flavour production in pp collisions

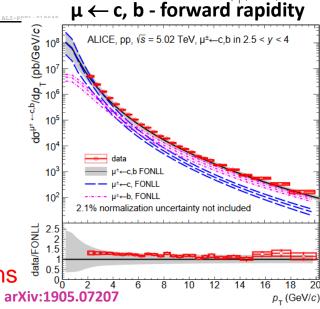






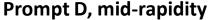
 $f^{\sigma}$ (d $ho_{
m T}$ dy) (pb GeV $^{1}$  c)  $D^0$  from b hadrons, |y| < 0.5→ Data FONLL

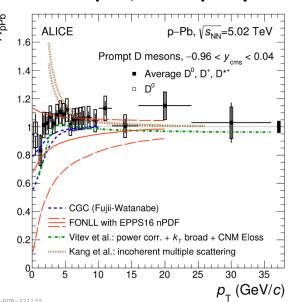
non-prompt D<sup>0</sup> - mid-rapidity


**ALICE Preliminary** pp,  $\sqrt{s} = 5.02 \text{ TeV}$ 

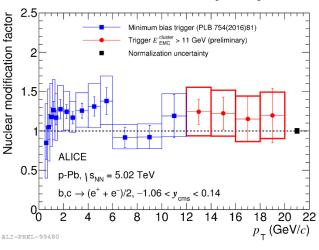
20 p\_ (GeV/c)

ALICE, Eur. Phys. J. C 79 (2019) 388


ALICE, Eur. Phys. J. C 79 (2019) 388

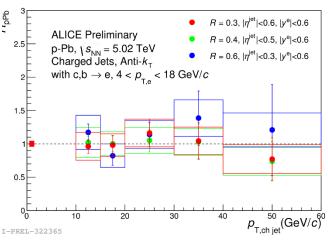

- $\square$  Precise measurements over a wide  $p_T$  interval
- Data well described by pQCD-based calculations at both central and forward rapidities
- ☐ Measured production cross sections at the upper edge of FONLL calculations
- Same trends at other  $\sqrt{s}$  and for other channels
- ☐ Uncertainties smaller than theoretical ones
- Important reference for p-Pb and Pb-Pb/Xe-Xe collisions




### Open heavy-flavour production in p-Pb collisions







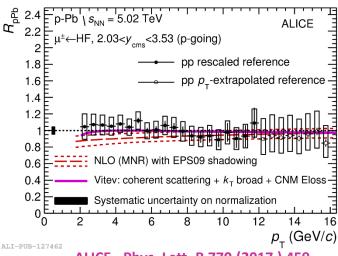

 $e \leftarrow b+c$ , mid-rapidity



ALICE, Phys. Lett. B 754 (2016) 81

e ← b + c in jets, mid-rapidity

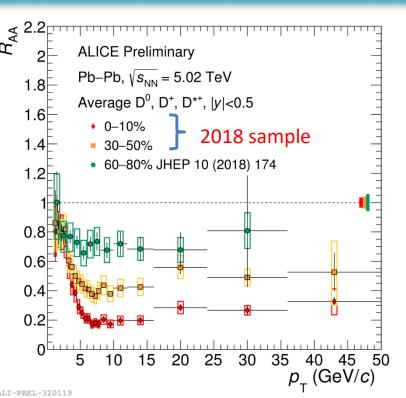



ALICE, Phys. Rev. C 94 (2016) 054908

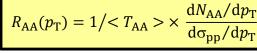
# $\square$ $R_{\text{pPb}}$ compatible with unity within uncertainties for all channels, at both mid-rapidity and forward rapidity at intermediate/high $p_{\text{T}}$

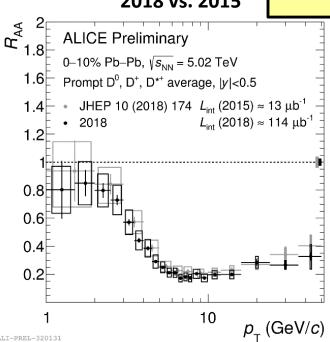
Cold nuclear matter effects are small

 $\square$   $R_{pPb}$  described by models including cold nuclear matter effects


 $\mu \leftarrow b+c$ , forward



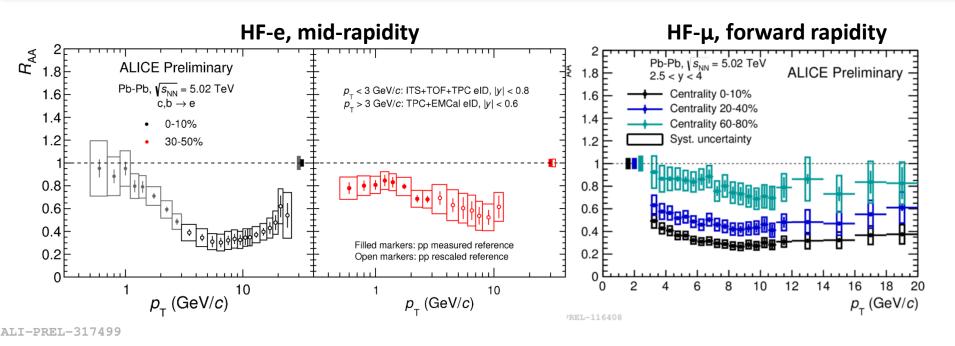

ALICE, Phys. Lett. B 770 (2017) 459


# Non-strange D-meson $R_{AA}$ in Pb-Pb collisions





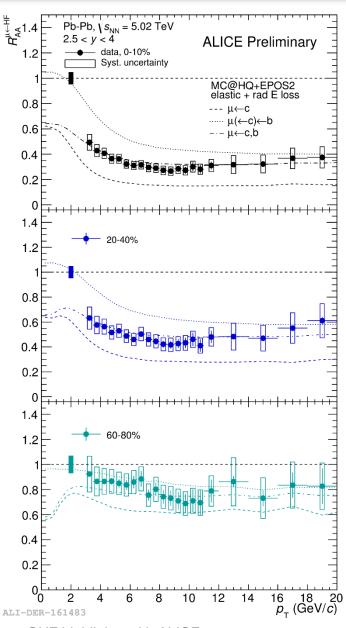
# 2018 vs. 2015






- $\square$  More precise measurements with the 2018 Pb-Pb sample: better constrain at low  $p_{\top}$ 
  - Important for the measurement of the total charm cross section
- ☐ Increasing suppression from peripheral to central collisions
  - $\rightarrow$  A factor of  $\sim$ 5 in the 0-10% centrality class at intermediate  $p_T$  (6 <  $p_T$  < 8 GeV/c)
- $\square$  Decreasing suppression towards the low  $p_{\top}$  region
  - Several competing effects: shadowing, flow, energy loss, ...
- ☐ The measured suppression is due to final-state effects i.e effects related to the in-medium energy loss ( $R_{pPb} \sim 1$ )

# Heavy-flavour lepton $R_{AA}$ in Pb-Pb collisions

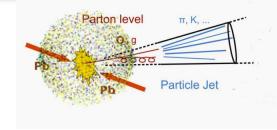


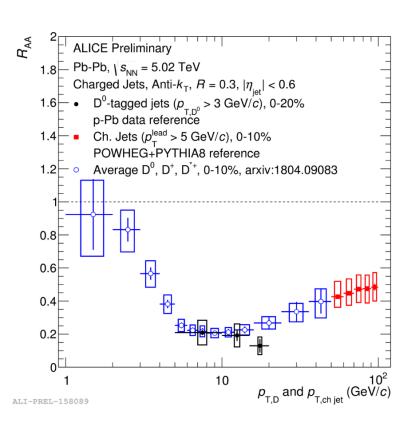



- $\blacksquare$  Precise measurements over a wide  $p_T$  interval from central to peripheral collisions
- □ Similar  $R_{AA}$  for heavy-flavour hadron decay muons at forward rapidity (2.5 < y < 4) and heavy-flavour hadron decay electrons at central rapidity (|y| < 0.8)
  - Heavy-flavour lepton yields suppressed by a factor of about 3 in the 10% most central collisions at intermediate  $p_T$
  - > Heavy quarks undergo strong interactions in the medium over a wide y region

# Heavy-flavour decay muon $R_{AA}$ vs. models





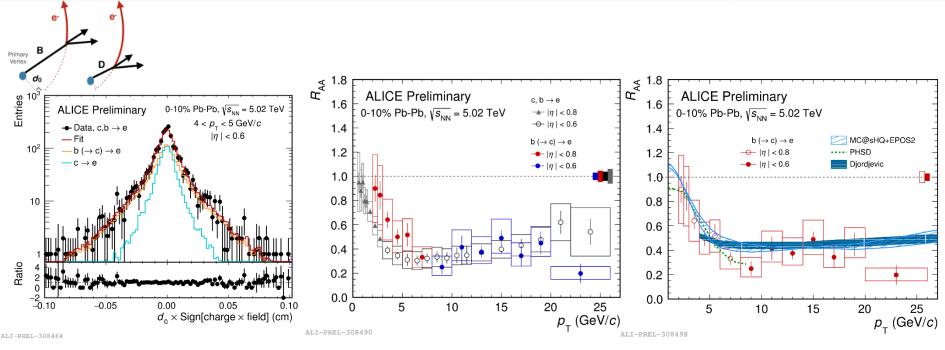


- $\square$  MC@sHQ+EPOS2 describes well the measured  $R_{AA}$  over the whole  $p_T$  interval and all centralities from central to peripheral collisions
- □ TAMU (only elastic collisions) underestimates the suppression at high  $p_T$  and has difficulties to describe  $R_{AA}$  in peripheral collisions
- $\square$  SCET describes well the measured  $R_{AA}$  in central collisions
- ➤ The improved precision of the R<sub>AA</sub> measurement can allow us to set important constraints to models

# $\overline{D^0}$ -tagged jet $R_{AA}$ in Pb-Pb collisions



# Charged jets containing a D<sup>0</sup> meson with $p_T > 3 \text{ GeV/}c$






□ D<sup>0</sup>-tagged jet R<sub>AA</sub> exhibits similar trends

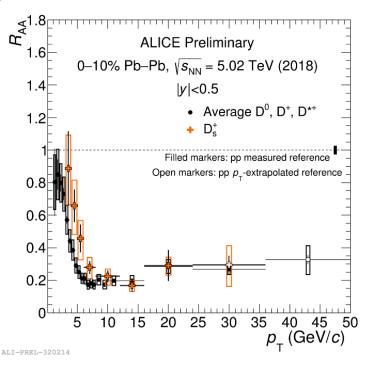
as D mesons vs  $p_T$ 

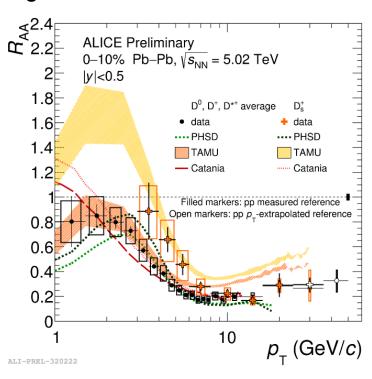
- Strong suppression ( $R_{AA} \sim 0.2$ ) in  $5 < p_{T, ch. jet} < 20 \text{ GeV/}c$
- ☐ Hint of smaller suppression for charged jets with  $p_T > 50 \text{ GeV/}c$





- ☐ Longer lifetime for beauty hadrons compared to other sources
  - $\triangleright$  Larger DCA ( $d_0$ ) to the primary vertex
- MC templates fitted to data to separate the electron sources
- Strong suppression of e ← b yields due to energy loss in the QGP
- $\square$  Low  $p_T$ : hint for  $R_{AA}$  (e  $\leftarrow$  b) >  $R_{AA}$  (e  $\leftarrow$  c+ b)
- □ High  $p_T$ : similar  $R_{AA}$  as  $e \leftarrow c$ , b ( $e \leftarrow b$  dominates over  $e \leftarrow c$  in pp collisions)
- $\square$   $R_{AA}$  (e  $\leftarrow$  b) described by transport models


PHSD: Phys. Rev C 93 (2016) 034906; MC@sHQ+EPOS2: Phys. Rev. C 89 (2014) 014905; Djordjevic: Phys. Rev. C 92 (2015) 024918


# Strange-D mesons in Pb-Pb collisions

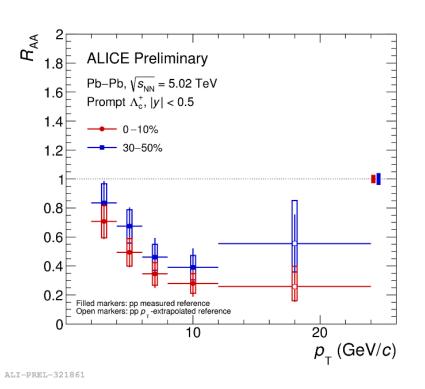


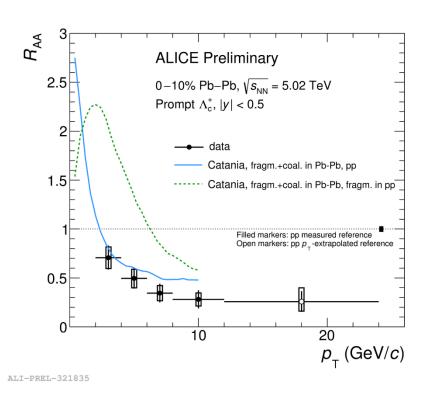
$$D^+_s \rightarrow \Phi \pi^+ \rightarrow K^+K^-\pi^+$$

#### Study of hadronisation mechanisms and strangeness enhancement inside the QGP






- $\square$  Similar pattern for strange and non-strange D-meson  $R_{AA}$
- ☐ Smaller suppression for strange D mesons than non-strange D mesons
  - > Enhancement of strangeness in the QGP as expected
- ☐ Increase of the D<sup>+</sup><sub>s</sub> R<sub>AA</sub> w.r.t. non-strange D mesons predicted by three transport models


# Charmed baryons in Pb-Pb collisions

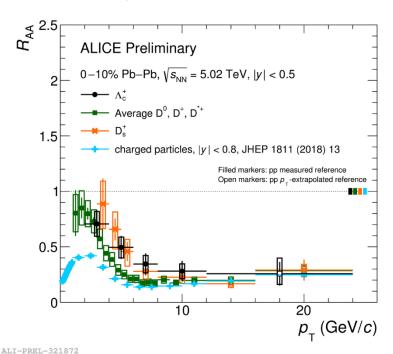


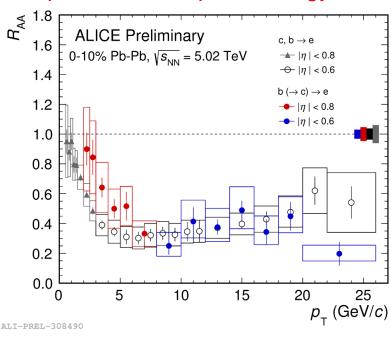
$$\Lambda^+_c \rightarrow K^0_s p \rightarrow \pi^+ \pi^- p$$

### Important tool to study hadronisation mechanisms inside the QGP






- $\Box$  Hint for a larger suppression (smaller  $R_{AA}$ ) in central than in semi-central Pb-Pb collisions
- ☐ Good agreement with Catania model with a scenario where both coalescence and fragmentation are present in Pb-Pb and pp collisions

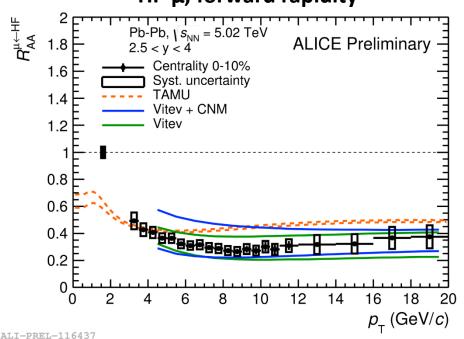

Catania: Eur. Phys. J. C (2018) 78; statitstical hadronisation model: arXiv:1901.09200

# Where do we stand with $R_{AA}$ hierarchy?

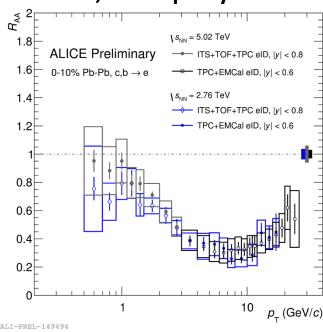


 $\Delta E(\pi^{\pm}) > \Delta E(D) > \Delta E(B) \rightarrow R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$  ? as naively expected from colour-charge and quark-mass depend energy loss






- $\square$  D mesons less suppressed than charged particles at low  $p_T$ : interplay of different  $p_T$  shapes & fragmentation functions, flow, colour-charge dependence
- $\square$  e  $\leftarrow$  b less suppressed than e  $\leftarrow$  b, c at low  $p_T$ : quark-mass ordering
- lacktriangle Hint for less suppression for  $D^+_s$  and  $\Lambda^+_c$  compared to D mesons, difficult to conclude for  $D^+_s$ 
  - ightharpoonup Hint of hierarchy observed at low  $p_T$ :  $R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$

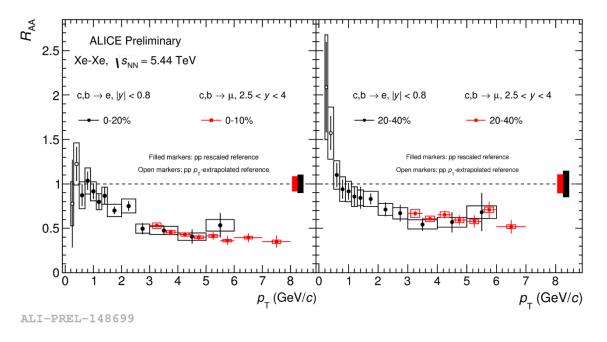

# Open heavy-flavour R<sub>AA</sub> vs. √s<sub>NN</sub>







#### HF-e, mid-rapidity

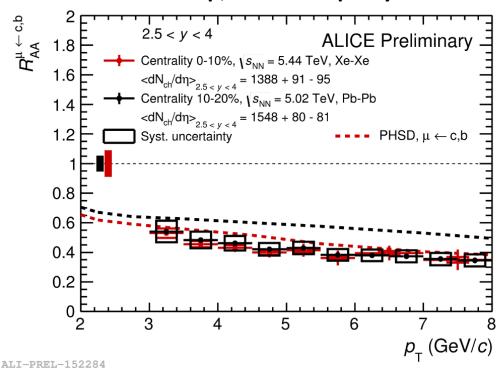



- Similar  $R_{AA}$  at 5.02 TeV and at 2.76 TeV within uncertainties in central collisions for muons and electrons from heavy-flavour hadron decays at forward rapidity and mid-rapidity, respectively
  - Does not imply same energy loss at both energies:
    - interplay of energy loss and spectra shapes [м. Djordjevic, arXiv: 1505.04316]
    - possible different fractions of charm and beauty

# Open heavy-flavour R<sub>AA</sub> in Xe-Xe collisions



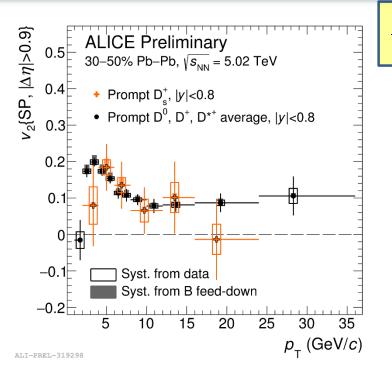
- Investigate the system size dependence of heavy-quark in-medium energy loss
- ☐ Study initial-state effects on heavy-quark production
- ☐ Further characterize the hot and dense medium created in heavy-ion collisions and provide new constraints on model predictions

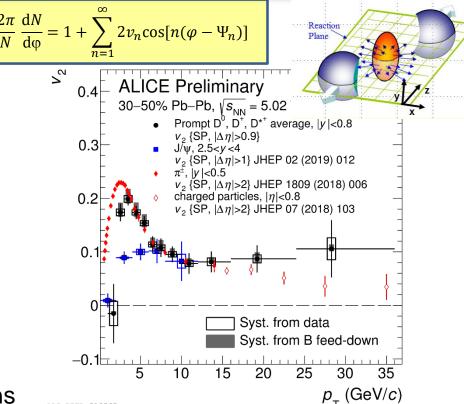



- Is Similar trends  $vs. p_T$  and centrality as in Pb-Pb collisions for leptons (muons at forward rapidity and electrons at mid-rapidity) from heavy-flavour hadron decays
  - > Strong suppression of a factor of about 2 2.5 for  $3 < p_T < 6$  GeV/c in central Xe-Xe collisions

# Open heavy-flavour $R_{AA}$ in Xe-Xe and Pb-Pb



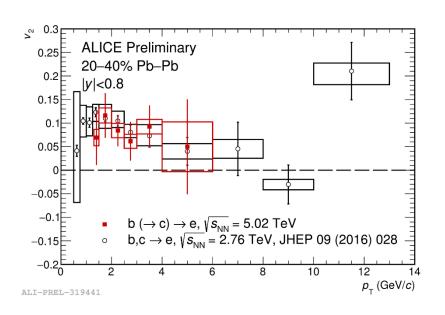

#### HF-μ, forward rapidity

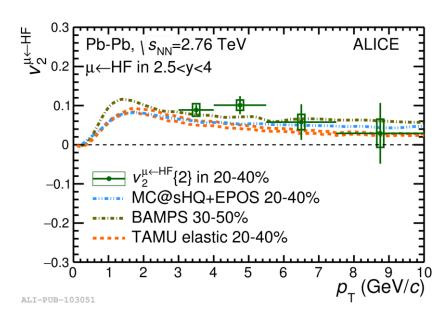



- □ Similar  $R_{AA}$  observed in Xe-Xe and Pb-Pb collisions for  $\mu \leftarrow c$ , b when compared at similar average charged-particle multiplicity density < dN/d η>
- A bit of tension for PHSD model to reproduce the scaling observed at forward rapidity

PHSD: Phys. Rev C 93 (2016) 034906

# Strange and non-strange $v_2$ in Pb-Pb collisions

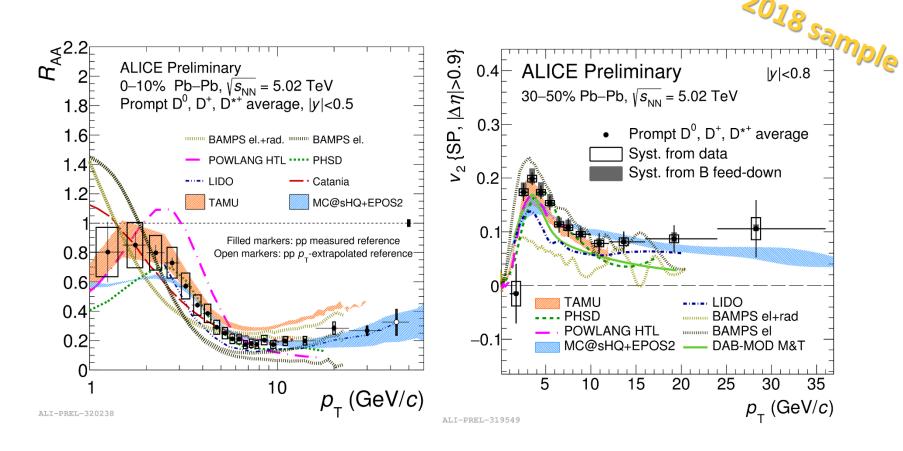



- $\square$  Non-zero elliptic flow ( $v_2$ ) for D mesons
  - Participation of charm quarks in the QGP collective expansion
- □ Non-strange D-meson  $v_2$  compatible with  $v_2(D_s^+)$  within uncertainties, down to  $p_T = 3 \text{ GeV}/c$
- $\square$  Low  $p_T$ :  $V_2(J/\psi) < V_2(D) < V_2(\pi^{\pm})$ 
  - $\triangleright$  Light quarks contribute to  $v_2$  (D)
- $\square$  High  $p_T$ : similar  $v_2$  for different particles within uncertainties
  - In-medium path-length dependent energy loss effects

# Beauty $v_2$ in Pb-Pb collisions





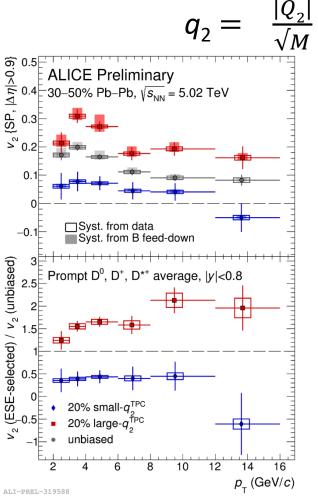



- Non-zero  $v_2$  measured for beauty electrons, significance 3.49 $\sigma$  in 1.3 <  $p_T$  < 4 GeV/c
  - Hint that b quarks participate in the collective expansion of the medium
- $v_2$  (e  $\leftarrow$  b) compatible with v2 (e  $\leftarrow$  b, c) within uncertainties
- $\square$  Similar  $v_2$  measured at forward rapidity for  $\mu \leftarrow b$ , c
  - Participation of heavy quarks, mainly charm quarks, in the collective expansion of the system

# D-meson $R_{AA}$ and $v_2$ vs. models






- $\Box$  Data precision constrains the description of charm interaction and diffusion in the medium at low  $p_{\mathsf{T}}$
- ☐ Interplay of CNM (shadowing), collisional and radiative energy loss, coalescence and realistic medium evolution required to describe data

# D-meson $v_2$ with Event-Shape Engineering

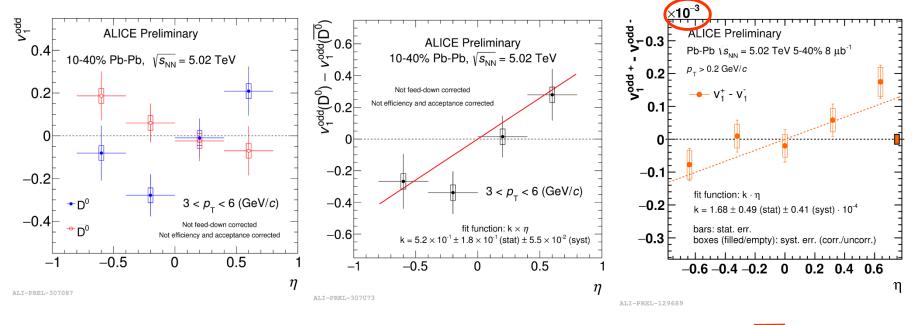


#### ☐ Fluctuations in the initial state and event eccentricity

- $\triangleright$  Event-by-event variation of  $v_2$  at a given centrality class
- $\triangleright$  Studied by measuring  $v_2$  for different 2<sup>nd</sup> order reduced q-vector ( $q_2$ ) values



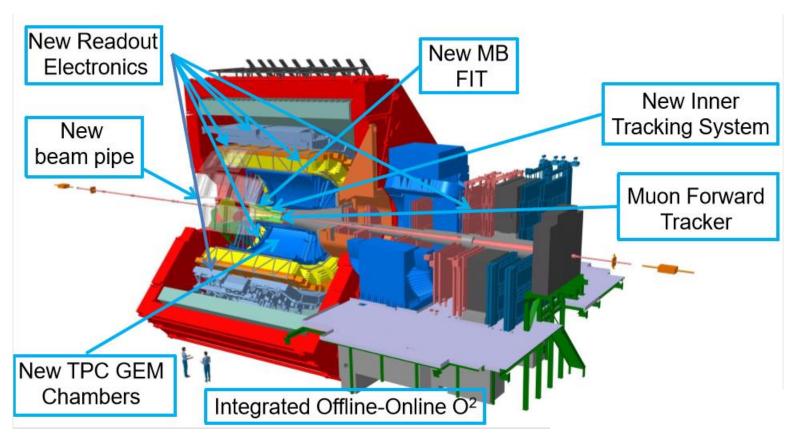
$$\langle q_2^2 \rangle = 1 + \langle M - 1 \rangle \langle v_2^2 - \delta_2 \rangle$$


 $\delta_2$ : non-flow effect

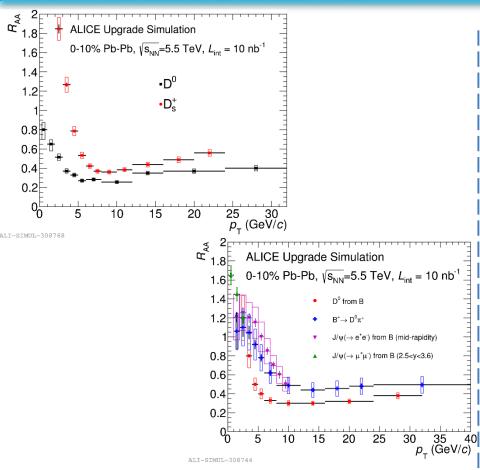
- $\square$  D-meson  $v_2$  with large  $q_2$  > D-meson  $v_2$  with small  $q_2$
- ☐ Clear difference of D-meson  $v_2$  in events (30-50% centrality class) with small and large  $q_2$
- Charm sensitive to collectivity of light-hadron bulk and even-by-event fluctuations in the initial state
- $\Box$  Hint of separation also with  $q_2^{VOA}$  (backup)

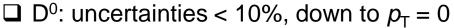
# D-meson directed flow $v_1$ in Pb-Pb collisions



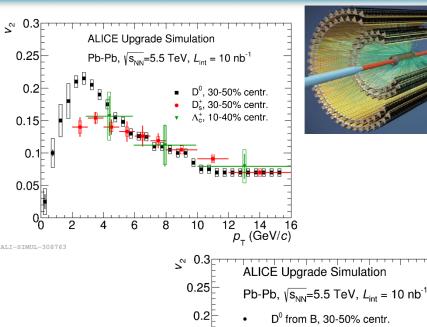

- $\square$  Quantify the charge-dependent  $v_1$  due to the presence of a strong electromagnetic field, generated by the movement of proton spectators
- ☐ Charm quarks produced when the magnetic field is maximum
  - Good probe to study the charge-dependent v₁




- $\square$  Indication of opposite trend of  $v_1$  as a function of  $\eta$  for  $D^0$  and  $\overline{D^0}$  mesons
- $\square$  Positive slope for  $D^0$  mesons with a 2.7 $\sigma$  significance
- □ Larger slope for D<sup>0</sup> mesons than charged particles [and than theoretical predictions, not shown]


# Open heavy-flavour prospects for run 3-4

- $\Box$  High precision measurements of rare probes down to the low  $p_T$  region
  - $\rightarrow$  x 100 larger minimum-bias sample (~10<sup>11</sup> events) and x 10 larger sample for rare probes at forward rapidity compared to Run 2 (Pb-Pb: Lint > 10 nb<sup>-1</sup>)
- ☐ Increase readout rate to 50 kHz, presently limited to ~1 kHz
- ☐ Improvement of pointing resolution at mid-rapidity (UITS) and heavy-flavour vertices also forward rapidity (MUON + MFT)





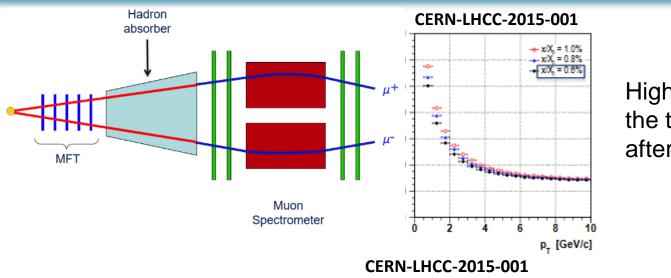




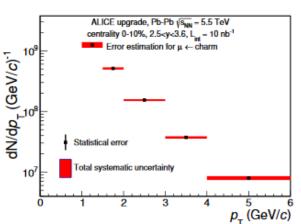

- $\Box$  D<sup>+</sup><sub>s</sub>: can be measured down to low  $p_T$  with a good accuracy
- ☐ Beauty measurements via several channels at both mid and forward rapidity

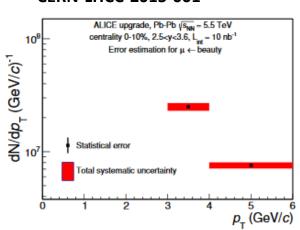


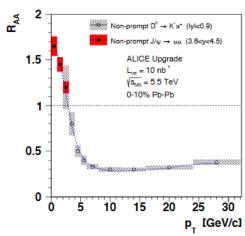
0.15


0.05

■ Elliptic flow measurements for charmed mesons and baryons ( $\Lambda^+_c$ ), and beauty down to low  $p_T$  with high precision


 $J/\psi(\rightarrow e^+e^-)$  from B, 10-40% centr.


 $B^+ \to D^0 \pi^+$ , 20-40% centr.


# Selected performance studies with MFT-MUON



High pointing accuracy in the transverse plane after matching







□ Charm and beauty measurements at forward rapidity (2.5 < y < 3.6) down to low  $p_T$  with high precision via single muons (c, b) and non-prompt J/ $\psi$  (b)

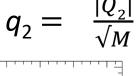
### Conclusion

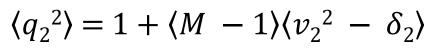


- ☐ Strong suppression of open heavy flavours over a wide rapidity interval
  - Heavy-quark energy loss
  - Indication of less suppression for beauty
  - Mass ordering?
- ☐ Charmed baryons and strange D mesons less suppressed than non-strange D mesons
  - > Coalescence?
- Non-zero elliptic flow of open heavy flavours and also observed for beauty electrons
  - Participation of charm and beauty quarks in the collective expansion of the medium

#### More to come soon

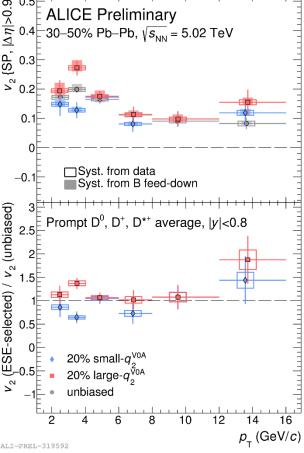
- ☐ Ongoing analyses with the 2018 Pb-Pb sample
  - QM2019 in November
- □ ALICE upgrade
  - Fist data taking in 2021





# D-meson $v_2$ with Event-Shape Engineering



- ☐ Fluctuations in the initial state and event eccentricity
  - $\triangleright$  Event-by-event variation of  $v_2$  at a given centrality class
  - $\triangleright$  Studied by measuring  $v_2$  for different 2<sup>nd</sup> order reduced q-vector ( $q_2$ ) values


$$q_2 = \frac{|Q_2|}{\sqrt{M}}$$

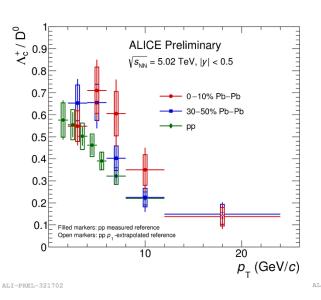


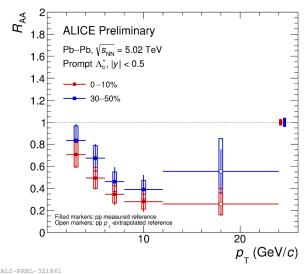


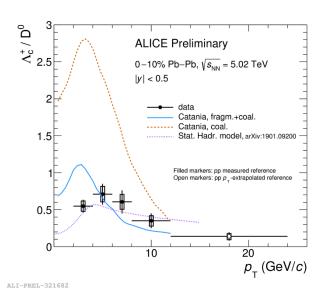
 $\delta_2$ : non-flow effect

- $\square$  D-meson  $v_2$  with large  $q_2$  > D-meson  $v_2$  with small  $q_2$
- $\square$  Clear difference of D-meson  $v_2$  in events (30-50%) centrality class) with small and large  $q_2$
- Charm sensitive to collectivity of light-hadron bulk and even-by-event fluctuations in the initial state
- $\Box$  Hint of separation also with  $q_2^{V0A}$  (backup)




30


# Charmed baryons in Pb-Pb collisions



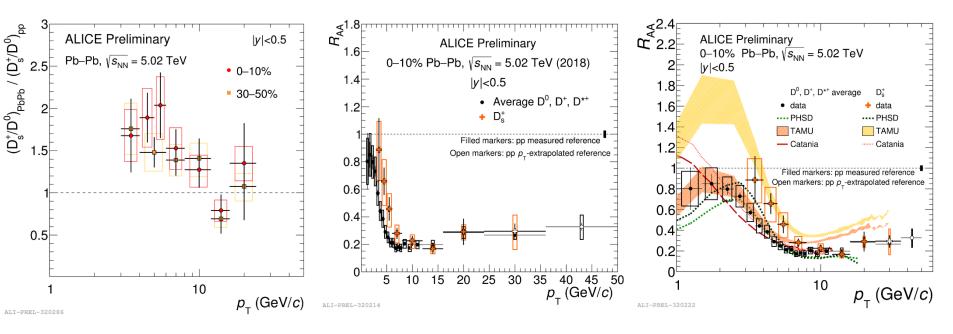

$$\Lambda^+_c \rightarrow K^0_s p \rightarrow \pi^+ \pi^- p$$

### Important tool to study hadronisation mechanisms inside the QGP







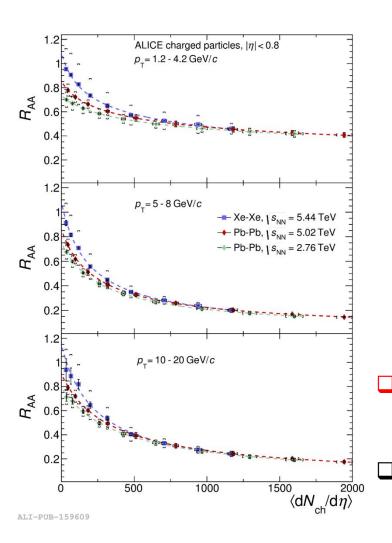

- Hint of a larger  $\Lambda^+_{\mathbb{C}}/\mathbb{D}^0$  ratio in Pb-Pb collisions than in pp collisions at intermediate  $p_{\mathbb{T}}$ , in particular
- $\Box$  Larger  $\Lambda^+_c/D^0$  ratio in central than in semi-central Pb-Pb collisions
- $\Box$  Hint for a larger suppression (smaller  $R_{AA}$ ) in central than in semi-central Pb-Pb collisions
- lacktriangled Good agreement of  $\Lambda^+_{\text{C}}/\text{D}^0$  ratio with statistical hadronisation model and Catania model with a scenario where both coalescence and fragmentation are present

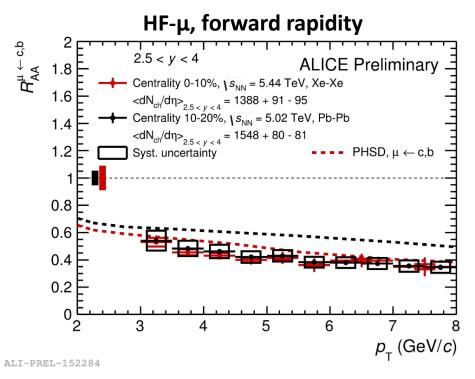
### Strange-D mesons in Pb-Pb collisions



$$D_s^+ \rightarrow \Phi \pi^+ \rightarrow K^+ K^- \pi^+$$

#### Study of hadronisation mechanisms and strangeness enhancement inside the QGP





- ☐ Hint of enhancement of D+<sub>s</sub>/D<sup>0</sup> ratio in Pb-Pb collisions w.r.t. pp collisions
- ☐ Similar pattern for strange and non-strange D-meson R<sub>AA</sub>
- Smaller suppression for strange D mesons than non-strange D mesons
  - Enhancement of strangeness in the QGP as expected
- □ Increase of the  $D_s^+ R_{AA}$  w.r.t. non-strange D mesons predicted by three transport models

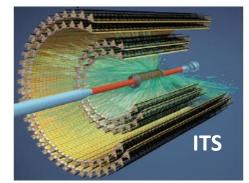
PHSD: Phys. Rev C 93 (2016) 034906; TAMU: Phys. Lett. B 735 (2014) 445; Catania: Eur. Phys. J. C (2018) 78

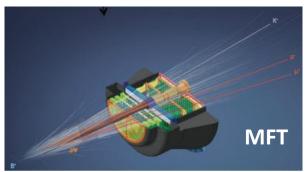
### Open heavy-flavour $R_{AA}$ in Xe-Xe and Pb-Pb





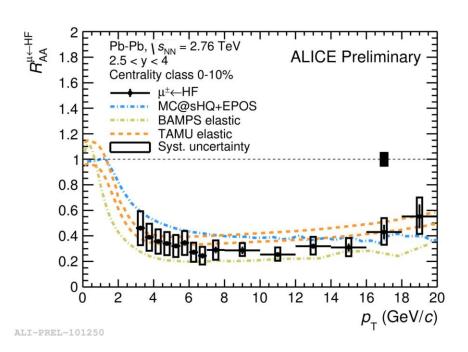


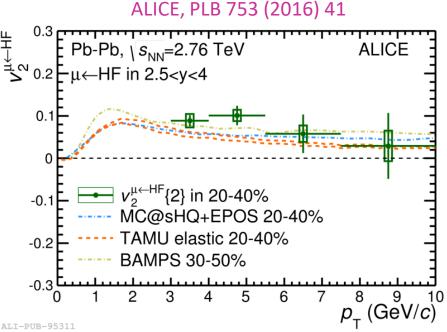

- Similar R<sub>AA</sub> observed in Xe-Xe and Pb-Pb collisions for μ ← c, b when compared at similar average charged-particle multiplicity density <dN/dη>
  - A bit of tension for PHSD model to reproduce the scaling observed at forward rapidity


PHSD: Phys. Rev C 93 (2016) 034906

# ALICE upgrade




- Major upgrade currently in preparation for LHC Run3 (2021-2023)
  - Ongoing R&D, construction and installation during the second Long Shutdown
  - New conditions with Run 3: Pb-Pb interaction may reach 50kHz (now ~ 8 kHz)
- ☐ Goals of ALICE Run 3:
  - High precision measurements of rare probes with main focus on the low  $p_T$  region  $\rightarrow$  x 100 larger minimum-bias sample compared to Run 2 (~10<sup>11</sup> events)
  - Increase readout rate to 50 kHz, presently limited to ~1 kHz
  - Improvement of pointing resolution at both central and forward rapidity
- ☐ New Inner Tracking System (ITS)
  - Improved pointing resolution, reduced material budget, faster readout
- New Forward Muon Tracker (MFT)
  - New Silicon tracker, heavy-flavour vertices also at forward rapidity
- New TPC readout chambers based on GEM
- □ Upgraded readout for many detectors,
   Integrated Online-Offline (O²) system,
   New Fast Integration Trigger detector (FIT)

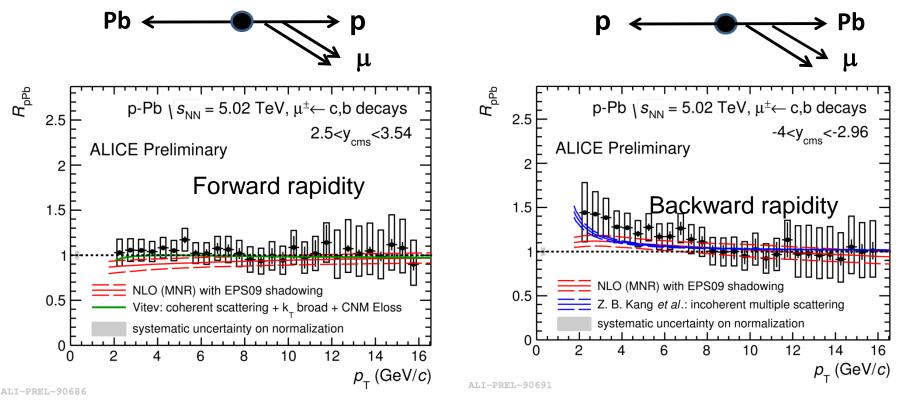





# Muons from heavy-flavour hadron decays at $\sqrt{s_{NN}}$ = 2.76 TeV: comparison with models

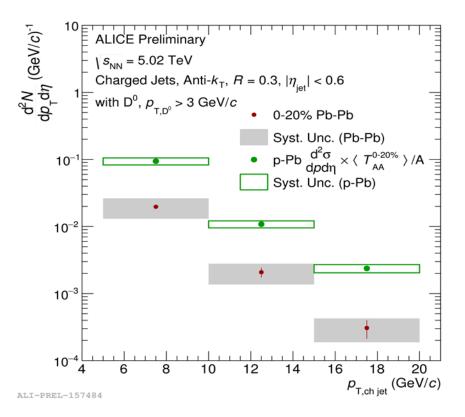







- $\square$   $R_{AA}$  in central collisions and  $v_2$  in semi-central collisions reasonably described by models including energy loss in the QGP but not in details
  - > Further constraints to models: comparison with Run 2 measurements

MC@ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; BAMPS: Phys. Lett. B 717 (2012) 430; TAMU: Phys. Lett. B 735 (2014) 445


# Heavy-flavour decay muons: R<sub>pPb</sub> vs p<sub>T</sub>





- $\square$   $R_{pPb}$  at forward rapidity is consistent with unity and, at backward rapidity is slightly larger than unity in  $2 < p_T < 4 \text{ GeV}/c$  and close to unity at higher  $p_T$
- Cold nuclear matter effects are small
- R<sub>pPb</sub> described by perturbative QCD calculations implementing cold nuclear matter effects

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 R. Sharma et al., Phys. Rev. C 80 (2009) 054902; Z.B. Kang et al., Phys. Lett. B 740 (2015) 23

