Why study heavy flavours? ### Heavy-ion collisions - Charm and beauty quarks produced in initial hard scatterings, prior to the formation of the Quark-Gluon Plasma (QGP) - $\tau_{c/b} \sim 0.01 0.1 \text{ fm/}c < \tau_{OGP} (0 1 1 \text{ fm/}c)$ - ☐ Flavour conserved by the strong interaction - Experience the full collision history - Excellent probes to characterize the QGP ### □ Open heavy flavours: - In-medium radiative and collisional parton energy loss - Medium density and path-length dependence - ❖ Colour-charge dependence: $\Delta E_{\text{qluons}} > \Delta E_{\text{quarks}}$ - Quark-mass dependence: $\Delta E_{\text{gluons}} > \Delta E_{\text{u,d,s}} > \Delta E_{\text{c}} > \Delta E_{\text{b}}$ - Heavy-quark participation in the collective expansion, thermalisation of the medium - Modification of hadronisation mechanisms in the medium - □ pp collisions: reference, tests of pQCD-based predictions, production mechanisms - p-Pb collisions: control experiment, cold nuclear matter effects ### Key observables \square Nuclear modification factor R_{AA} $$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \sim \frac{{\rm QCD~medium}}{{\rm QCD~vacuum}}$$ ☐ Azimuthal anisotropy and Fourier coefficients $$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)] \qquad v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$ $$v_n □ Other interesting observables: particle ratios → hadronisation mechanisms production in jets # **ALICE layout** Central Barrel, |η| < 0.9 vertexing (ITS), tracking (ITS, TPC), PID (ITS, TPC, TOF, TRD, HMPID, Calorimeters) # Collected data samples with ALICE | System | Year(s) | √snn (TeV) | L int | |--------|-------------------------------------|----------------------------------|---| | pp | 2009-2013
2015,2017
2015-2018 | 0.9, 2.76,
7, 8
5.02
13 | ~200 µb ⁻¹ , ~100 nb ⁻¹ ,
~1.5 nb ⁻¹ , ~2.5 nb ⁻¹
~1.3 nb ⁻¹
~59 nb ⁻¹ | | p-Pb | 2013
2016 | 5.02
5.02, 8.16 | ~15 nb ⁻¹
~3 nb ⁻¹ , ~25 nb ⁻¹ | | Xe-Xe | 2017 | 5.44 | ~0.3 µb⁻¹ | | Pb-Pb | 2010, 2011
2015, 2018 | 2.76
5.02 | ~75 µb ⁻¹
~250 µb ⁻¹ ,~0.9 nb ⁻¹ | ALICE Performance Run2, PbPb √S_{NN} = 5.02 TeV 300 Cent. 0-10%: 149M - ☐ LHC run 2 finished end of 2018 (December) - Rich trigger menu - Largest statistics collected for Pb-Pb in the 2018 run - Min. bias: ~1 x 2015 - Central: ~9 x 2015 - Mid-central: ~4 x 2015 - μ high p_{T} : ~3 x 2015 - Significant increase of integrated luminosity: more precise measurements for hard probes # Open heavy-flavour channels studied in heavy-ion (Pb-Pb and Xe-Xe) collisions ### Open heavy-flavour channels in ALICE ☐ Charmed hadrons (|y|) < 0.5 • $$D^0 \rightarrow K^-\pi^+$$ • D+ $$\rightarrow$$ K⁻ π ⁺ π ⁺ • $$D^*_{+} \rightarrow D^0 (K^-\pi^+)$$ • $$D_s^+ \rightarrow \phi (K^-K^+)\pi^+$$ $$^{+} \Lambda_{c}^{+} \xrightarrow[]{} pK^{0}_{s}$$ $$\begin{array}{ccc} & b \to D \\ & \Lambda_c^+ \to p K^- \pi^+ \end{array}$$ • $$\Lambda_c + \rightarrow e^+ \Lambda \nu_e$$ • $$\Xi_c^0 \rightarrow e^+ \Xi^- \nu_e$$ ### ☐ Heavy-flavour hadron decay leptons • eX $$(|y| < 0.9) \leftarrow c, b$$ ■ $$\mu X (2.5 < y < 4) \leftarrow c, b$$ # Open heavy-flavour production in pp collisions f^{σ} (d $ho_{ m T}$ dy) (pb GeV 1 c) D^0 from b hadrons, |y| < 0.5→ Data FONLL non-prompt D⁰ - mid-rapidity **ALICE Preliminary** pp, $\sqrt{s} = 5.02 \text{ TeV}$ 20 p_ (GeV/c) ALICE, Eur. Phys. J. C 79 (2019) 388 ALICE, Eur. Phys. J. C 79 (2019) 388 - \square Precise measurements over a wide p_T interval - Data well described by pQCD-based calculations at both central and forward rapidities - ☐ Measured production cross sections at the upper edge of FONLL calculations - Same trends at other \sqrt{s} and for other channels - ☐ Uncertainties smaller than theoretical ones - Important reference for p-Pb and Pb-Pb/Xe-Xe collisions ### Open heavy-flavour production in p-Pb collisions $e \leftarrow b+c$, mid-rapidity ALICE, Phys. Lett. B 754 (2016) 81 e ← b + c in jets, mid-rapidity ALICE, Phys. Rev. C 94 (2016) 054908 # \square R_{pPb} compatible with unity within uncertainties for all channels, at both mid-rapidity and forward rapidity at intermediate/high p_{T} Cold nuclear matter effects are small \square R_{pPb} described by models including cold nuclear matter effects $\mu \leftarrow b+c$, forward ALICE, Phys. Lett. B 770 (2017) 459 # Non-strange D-meson R_{AA} in Pb-Pb collisions # 2018 vs. 2015 - \square More precise measurements with the 2018 Pb-Pb sample: better constrain at low p_{\top} - Important for the measurement of the total charm cross section - ☐ Increasing suppression from peripheral to central collisions - \rightarrow A factor of \sim 5 in the 0-10% centrality class at intermediate p_T (6 < p_T < 8 GeV/c) - \square Decreasing suppression towards the low p_{\top} region - Several competing effects: shadowing, flow, energy loss, ... - ☐ The measured suppression is due to final-state effects i.e effects related to the in-medium energy loss ($R_{pPb} \sim 1$) # Heavy-flavour lepton R_{AA} in Pb-Pb collisions - \blacksquare Precise measurements over a wide p_T interval from central to peripheral collisions - □ Similar R_{AA} for heavy-flavour hadron decay muons at forward rapidity (2.5 < y < 4) and heavy-flavour hadron decay electrons at central rapidity (|y| < 0.8) - Heavy-flavour lepton yields suppressed by a factor of about 3 in the 10% most central collisions at intermediate p_T - > Heavy quarks undergo strong interactions in the medium over a wide y region # Heavy-flavour decay muon R_{AA} vs. models - \square MC@sHQ+EPOS2 describes well the measured R_{AA} over the whole p_T interval and all centralities from central to peripheral collisions - □ TAMU (only elastic collisions) underestimates the suppression at high p_T and has difficulties to describe R_{AA} in peripheral collisions - \square SCET describes well the measured R_{AA} in central collisions - ➤ The improved precision of the R_{AA} measurement can allow us to set important constraints to models # $\overline{D^0}$ -tagged jet R_{AA} in Pb-Pb collisions # Charged jets containing a D⁰ meson with $p_T > 3 \text{ GeV/}c$ □ D⁰-tagged jet R_{AA} exhibits similar trends as D mesons vs p_T - Strong suppression ($R_{AA} \sim 0.2$) in $5 < p_{T, ch. jet} < 20 \text{ GeV/}c$ - ☐ Hint of smaller suppression for charged jets with $p_T > 50 \text{ GeV/}c$ - ☐ Longer lifetime for beauty hadrons compared to other sources - \triangleright Larger DCA (d_0) to the primary vertex - MC templates fitted to data to separate the electron sources - Strong suppression of e ← b yields due to energy loss in the QGP - \square Low p_T : hint for R_{AA} (e \leftarrow b) > R_{AA} (e \leftarrow c+ b) - □ High p_T : similar R_{AA} as $e \leftarrow c$, b ($e \leftarrow b$ dominates over $e \leftarrow c$ in pp collisions) - \square R_{AA} (e \leftarrow b) described by transport models PHSD: Phys. Rev C 93 (2016) 034906; MC@sHQ+EPOS2: Phys. Rev. C 89 (2014) 014905; Djordjevic: Phys. Rev. C 92 (2015) 024918 # Strange-D mesons in Pb-Pb collisions $$D^+_s \rightarrow \Phi \pi^+ \rightarrow K^+K^-\pi^+$$ #### Study of hadronisation mechanisms and strangeness enhancement inside the QGP - \square Similar pattern for strange and non-strange D-meson R_{AA} - ☐ Smaller suppression for strange D mesons than non-strange D mesons - > Enhancement of strangeness in the QGP as expected - ☐ Increase of the D⁺_s R_{AA} w.r.t. non-strange D mesons predicted by three transport models # Charmed baryons in Pb-Pb collisions $$\Lambda^+_c \rightarrow K^0_s p \rightarrow \pi^+ \pi^- p$$ ### Important tool to study hadronisation mechanisms inside the QGP - \Box Hint for a larger suppression (smaller R_{AA}) in central than in semi-central Pb-Pb collisions - ☐ Good agreement with Catania model with a scenario where both coalescence and fragmentation are present in Pb-Pb and pp collisions Catania: Eur. Phys. J. C (2018) 78; statitstical hadronisation model: arXiv:1901.09200 # Where do we stand with R_{AA} hierarchy? $\Delta E(\pi^{\pm}) > \Delta E(D) > \Delta E(B) \rightarrow R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$? as naively expected from colour-charge and quark-mass depend energy loss - \square D mesons less suppressed than charged particles at low p_T : interplay of different p_T shapes & fragmentation functions, flow, colour-charge dependence - \square e \leftarrow b less suppressed than e \leftarrow b, c at low p_T : quark-mass ordering - lacktriangle Hint for less suppression for D^+_s and Λ^+_c compared to D mesons, difficult to conclude for D^+_s - ightharpoonup Hint of hierarchy observed at low p_T : $R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$ # Open heavy-flavour R_{AA} vs. √s_{NN} #### HF-e, mid-rapidity - Similar R_{AA} at 5.02 TeV and at 2.76 TeV within uncertainties in central collisions for muons and electrons from heavy-flavour hadron decays at forward rapidity and mid-rapidity, respectively - Does not imply same energy loss at both energies: - interplay of energy loss and spectra shapes [м. Djordjevic, arXiv: 1505.04316] - possible different fractions of charm and beauty # Open heavy-flavour R_{AA} in Xe-Xe collisions - Investigate the system size dependence of heavy-quark in-medium energy loss - ☐ Study initial-state effects on heavy-quark production - ☐ Further characterize the hot and dense medium created in heavy-ion collisions and provide new constraints on model predictions - Is Similar trends $vs. p_T$ and centrality as in Pb-Pb collisions for leptons (muons at forward rapidity and electrons at mid-rapidity) from heavy-flavour hadron decays - > Strong suppression of a factor of about 2 2.5 for $3 < p_T < 6$ GeV/c in central Xe-Xe collisions # Open heavy-flavour R_{AA} in Xe-Xe and Pb-Pb #### HF-μ, forward rapidity - □ Similar R_{AA} observed in Xe-Xe and Pb-Pb collisions for $\mu \leftarrow c$, b when compared at similar average charged-particle multiplicity density < dN/d η> - A bit of tension for PHSD model to reproduce the scaling observed at forward rapidity PHSD: Phys. Rev C 93 (2016) 034906 # Strange and non-strange v_2 in Pb-Pb collisions - \square Non-zero elliptic flow (v_2) for D mesons - Participation of charm quarks in the QGP collective expansion - □ Non-strange D-meson v_2 compatible with $v_2(D_s^+)$ within uncertainties, down to $p_T = 3 \text{ GeV}/c$ - \square Low p_T : $V_2(J/\psi) < V_2(D) < V_2(\pi^{\pm})$ - \triangleright Light quarks contribute to v_2 (D) - \square High p_T : similar v_2 for different particles within uncertainties - In-medium path-length dependent energy loss effects # Beauty v_2 in Pb-Pb collisions - Non-zero v_2 measured for beauty electrons, significance 3.49 σ in 1.3 < p_T < 4 GeV/c - Hint that b quarks participate in the collective expansion of the medium - v_2 (e \leftarrow b) compatible with v2 (e \leftarrow b, c) within uncertainties - \square Similar v_2 measured at forward rapidity for $\mu \leftarrow b$, c - Participation of heavy quarks, mainly charm quarks, in the collective expansion of the system # D-meson R_{AA} and v_2 vs. models - \Box Data precision constrains the description of charm interaction and diffusion in the medium at low p_{T} - ☐ Interplay of CNM (shadowing), collisional and radiative energy loss, coalescence and realistic medium evolution required to describe data # D-meson v_2 with Event-Shape Engineering #### ☐ Fluctuations in the initial state and event eccentricity - \triangleright Event-by-event variation of v_2 at a given centrality class - \triangleright Studied by measuring v_2 for different 2nd order reduced q-vector (q_2) values $$\langle q_2^2 \rangle = 1 + \langle M - 1 \rangle \langle v_2^2 - \delta_2 \rangle$$ δ_2 : non-flow effect - \square D-meson v_2 with large q_2 > D-meson v_2 with small q_2 - ☐ Clear difference of D-meson v_2 in events (30-50% centrality class) with small and large q_2 - Charm sensitive to collectivity of light-hadron bulk and even-by-event fluctuations in the initial state - \Box Hint of separation also with q_2^{VOA} (backup) # D-meson directed flow v_1 in Pb-Pb collisions - \square Quantify the charge-dependent v_1 due to the presence of a strong electromagnetic field, generated by the movement of proton spectators - ☐ Charm quarks produced when the magnetic field is maximum - Good probe to study the charge-dependent v₁ - \square Indication of opposite trend of v_1 as a function of η for D^0 and $\overline{D^0}$ mesons - \square Positive slope for D^0 mesons with a 2.7 σ significance - □ Larger slope for D⁰ mesons than charged particles [and than theoretical predictions, not shown] # Open heavy-flavour prospects for run 3-4 - \Box High precision measurements of rare probes down to the low p_T region - \rightarrow x 100 larger minimum-bias sample (~10¹¹ events) and x 10 larger sample for rare probes at forward rapidity compared to Run 2 (Pb-Pb: Lint > 10 nb⁻¹) - ☐ Increase readout rate to 50 kHz, presently limited to ~1 kHz - ☐ Improvement of pointing resolution at mid-rapidity (UITS) and heavy-flavour vertices also forward rapidity (MUON + MFT) - \Box D⁺_s: can be measured down to low p_T with a good accuracy - ☐ Beauty measurements via several channels at both mid and forward rapidity 0.15 0.05 ■ Elliptic flow measurements for charmed mesons and baryons (Λ^+_c), and beauty down to low p_T with high precision $J/\psi(\rightarrow e^+e^-)$ from B, 10-40% centr. $B^+ \to D^0 \pi^+$, 20-40% centr. # Selected performance studies with MFT-MUON High pointing accuracy in the transverse plane after matching □ Charm and beauty measurements at forward rapidity (2.5 < y < 3.6) down to low p_T with high precision via single muons (c, b) and non-prompt J/ ψ (b) ### Conclusion - ☐ Strong suppression of open heavy flavours over a wide rapidity interval - Heavy-quark energy loss - Indication of less suppression for beauty - Mass ordering? - ☐ Charmed baryons and strange D mesons less suppressed than non-strange D mesons - > Coalescence? - Non-zero elliptic flow of open heavy flavours and also observed for beauty electrons - Participation of charm and beauty quarks in the collective expansion of the medium #### More to come soon - ☐ Ongoing analyses with the 2018 Pb-Pb sample - QM2019 in November - □ ALICE upgrade - Fist data taking in 2021 # D-meson v_2 with Event-Shape Engineering - ☐ Fluctuations in the initial state and event eccentricity - \triangleright Event-by-event variation of v_2 at a given centrality class - \triangleright Studied by measuring v_2 for different 2nd order reduced q-vector (q_2) values $$q_2 = \frac{|Q_2|}{\sqrt{M}}$$ δ_2 : non-flow effect - \square D-meson v_2 with large q_2 > D-meson v_2 with small q_2 - \square Clear difference of D-meson v_2 in events (30-50%) centrality class) with small and large q_2 - Charm sensitive to collectivity of light-hadron bulk and even-by-event fluctuations in the initial state - \Box Hint of separation also with q_2^{V0A} (backup) 30 # Charmed baryons in Pb-Pb collisions $$\Lambda^+_c \rightarrow K^0_s p \rightarrow \pi^+ \pi^- p$$ ### Important tool to study hadronisation mechanisms inside the QGP - Hint of a larger $\Lambda^+_{\mathbb{C}}/\mathbb{D}^0$ ratio in Pb-Pb collisions than in pp collisions at intermediate $p_{\mathbb{T}}$, in particular - \Box Larger Λ^+_c/D^0 ratio in central than in semi-central Pb-Pb collisions - \Box Hint for a larger suppression (smaller R_{AA}) in central than in semi-central Pb-Pb collisions - lacktriangled Good agreement of $\Lambda^+_{\text{C}}/\text{D}^0$ ratio with statistical hadronisation model and Catania model with a scenario where both coalescence and fragmentation are present ### Strange-D mesons in Pb-Pb collisions $$D_s^+ \rightarrow \Phi \pi^+ \rightarrow K^+ K^- \pi^+$$ #### Study of hadronisation mechanisms and strangeness enhancement inside the QGP - ☐ Hint of enhancement of D+_s/D⁰ ratio in Pb-Pb collisions w.r.t. pp collisions - ☐ Similar pattern for strange and non-strange D-meson R_{AA} - Smaller suppression for strange D mesons than non-strange D mesons - Enhancement of strangeness in the QGP as expected - □ Increase of the $D_s^+ R_{AA}$ w.r.t. non-strange D mesons predicted by three transport models PHSD: Phys. Rev C 93 (2016) 034906; TAMU: Phys. Lett. B 735 (2014) 445; Catania: Eur. Phys. J. C (2018) 78 ### Open heavy-flavour R_{AA} in Xe-Xe and Pb-Pb - Similar R_{AA} observed in Xe-Xe and Pb-Pb collisions for μ ← c, b when compared at similar average charged-particle multiplicity density <dN/dη> - A bit of tension for PHSD model to reproduce the scaling observed at forward rapidity PHSD: Phys. Rev C 93 (2016) 034906 # ALICE upgrade - Major upgrade currently in preparation for LHC Run3 (2021-2023) - Ongoing R&D, construction and installation during the second Long Shutdown - New conditions with Run 3: Pb-Pb interaction may reach 50kHz (now ~ 8 kHz) - ☐ Goals of ALICE Run 3: - High precision measurements of rare probes with main focus on the low p_T region \rightarrow x 100 larger minimum-bias sample compared to Run 2 (~10¹¹ events) - Increase readout rate to 50 kHz, presently limited to ~1 kHz - Improvement of pointing resolution at both central and forward rapidity - ☐ New Inner Tracking System (ITS) - Improved pointing resolution, reduced material budget, faster readout - New Forward Muon Tracker (MFT) - New Silicon tracker, heavy-flavour vertices also at forward rapidity - New TPC readout chambers based on GEM - □ Upgraded readout for many detectors, Integrated Online-Offline (O²) system, New Fast Integration Trigger detector (FIT) # Muons from heavy-flavour hadron decays at $\sqrt{s_{NN}}$ = 2.76 TeV: comparison with models - \square R_{AA} in central collisions and v_2 in semi-central collisions reasonably described by models including energy loss in the QGP but not in details - > Further constraints to models: comparison with Run 2 measurements MC@ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; BAMPS: Phys. Lett. B 717 (2012) 430; TAMU: Phys. Lett. B 735 (2014) 445 # Heavy-flavour decay muons: R_{pPb} vs p_T - \square R_{pPb} at forward rapidity is consistent with unity and, at backward rapidity is slightly larger than unity in $2 < p_T < 4 \text{ GeV}/c$ and close to unity at higher p_T - Cold nuclear matter effects are small - R_{pPb} described by perturbative QCD calculations implementing cold nuclear matter effects pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 R. Sharma et al., Phys. Rev. C 80 (2009) 054902; Z.B. Kang et al., Phys. Lett. B 740 (2015) 23