Probing New Physics and the Nature of the Higgs boson at ATLAS

Lailin Xu Brookhaven National Laboratory Fermilab Topic of the Week Seminar, Mar 5, 2019

Outline

- Introduction
- Overview of Higgs measurements
- Higgs couplings measurements and New Physics constraints
 - Couplings to different particles
 - Couplings at different scales
 - Self coupling
- Prospects of Higgs physics at future colliders
- Summary

Why Higgs boson matters?

The Big-Bang

• Almost all particles massless at the early Universe

The Higgs mechanism

 Massive elementary particles acquired masses during the electroweak phase transition → electroweak symmetry breaking

• With Higgs mass known, SM predicts everything else!

Higgs frontier

- Higgs precision era since July 2012
 - Rapid development in both experiment and theory community
- Big questions on the Higgs sector in SM
 - Are all the production mechanisms as expected?
 - Is the Higgs boson solely responsible for EWSB?
 - How electroweak phase transition (EWPT) happened?
 - Higgs at high scale: fate of EW vacuum stability

Not the whole story

- Many other open issues in Universe
 - Calling for physics beyond the SM

Higgs and BSM

- Crisis?
 - No new physics at TeV found at the LHC yet
 - Absence of detection of dark matter
- "Absence of evidence is not evidence of absence" PDG(2018)
- Higgs physics: No-lose theorem?
 - Deep mysteries of EWSB remain unanswered
 - An invaluable portal to new physics

Measurements: Mass, width, Spin, CP Couplings Differential cross sections

 $H^{\mathbf{0}}$

Tool for discovery Portal to Dark Matter Portal to Hidden Sectors Exotic decays

The Higgs Portrait: Overview of latest Higgs results at the LHC

LHC and ATLAS at Run 2

- 140 fb⁻¹ pp collision @ 13 TeV collected in 2015-18
 - ~8M Higgs boson produced ($σ_{pp → H} ~ 60 \text{ pb}$)
 - Available results: 36 ~ 80 fb⁻¹

What we have learnt

• Mass: M_H = 125.09 ± 0.24 GeV

ATLAS+CMS: PRL 114 (2015) 191803

- Spin/Parity: 0⁺
- ATLAS: EPJC 75 (2015) 476 CMS: PRD 92 (2015) 012004

CMS: JHEP11(2017)047

- Width:
 - < 1 GeV (direct)</pre>
 - < 14 MeV (indirect) ATLAS: PLB786(2018)223 CMS:CMS-PAS-HIG-18-002
- Observed direct coupling to:
 - Vector bosons ATLAS: PLB 716 (2012) 1-29 CMS: PLB 716 (2012) 30
 - τ leptons ATLAS: arXiv:1811.08856 CMS: PLB 779 (2018) 283
 - Top quarks
 ATLAS: PLB 784 (2018) 173

 CMS:
 PRL 120 (2018) 231801

 ATLAS: PLB 786 (2018) 59

 Bottom quarks
 CMS:
 PRL 121 (2018)121801

Probing New Physics and the Nature of the Higgs boson with $H \rightarrow ZZ^* \rightarrow 4I$

H→ZZ*→4I

- "The golden channel"
 - Fully reconstructed fourlepton final states
 - High S/B ~ 2

- Event selection:
 - Lepton $p_{\rm T}$ (20,15,10, 5/7)GeV for μ/e
- Background estimation:
 - ZZ^{*}→4I: Monte Carlo (MC)
 - Mis-identified leptons (Z+jets, tt): data driven

115 GeV< m_{41} < 130 GeV, 80 fb⁻¹ data **195** events observed **112 ± 5** expected H \rightarrow ZZ* \rightarrow 4l events

How to characterize Higgs properties

• To connect Experiment and Theory

Measurements of the Higgs boson properties: On-shell couplings Off-shell couplings Self-couplings

Measurements of production modes

- Event categorization to probe Higgs production modes:
 - 11 bins, based on p_T^H and jet activities (N_{jet} , p_T^j , etc)
 - For example:

Higgs couplings – the κ framework

• Define coupling modifiers: $\kappa_i = \frac{g_i}{g_{i,SM}}$

 $\sigma_{\rm VBF} = (0.73\kappa_W^2 + 0.27\kappa_Z^2)\sigma_{\rm VBF}^{SM}$

1) SM couplings modifiers: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu$ 2) Allow BSM couplings modifiers: κ_g, κ_γ 3) Allow BSM Higgs decay: B_{BSM}

$$\Gamma_{\rm H} = \frac{\kappa_H^2 \Gamma_H^{SM}}{1 - B_{BSM}}$$

Results in the κ framework

Couplings from combined measurements

 $\kappa_F = 1.05_{-0.09} \ (\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$ Precision 4~9 % BSM decay: $B_{BSM} < 26\% @ 95\% CL$ Direct invisible Higgs search: $B_{BSM} < 26\%$ (Run1+2 combined) <u>ATLAS-CONF-2018-054</u>

Constraints on BSM

- Using measured Higgs couplings to constrain new physics
 - Two-Higgs-Doublet model (2HDM)
 - Simplified Minimal Supersymmetric Standard Model (hMSSM)

Complementary to direct searches

Higgs portal to Dark Matter

- Assuming dark matter interact SM particles via Higgs portal
 - Translating the limit on $B_{BSM} \rightarrow H\chi\chi$ coupling
 - \rightarrow DM-nucleon scattering
 - Unique sensitivity to light dark matter particles

Probing CP nature of the Higgs boson

- Why still interesting to measure CP properties
 - Still room for anomalous couplings due to CP violation
 - Electroweak Bayrogensis needs large CPV (Sakharov's criteria)
- Effective Lagrangian with CP-even and CP-odd operators
 - $\quad \kappa_{SM} \text{ and } \kappa_{Hgg} \text{ modify SM interactions (== 1 for SM)}$
 - BSM couplings: CP-even κ_{HZZ} , CP-odd: κ_{AZZ} , κ_{Agg}

CP measurements

Constraints on CP-mixing and CP-violation

JHEP 03 (2018) 095

Using event rates

Sensitivity can be further improved by using event kinematic information

Measurements of the Higgs boson properties: On-shell couplings → Off-shell couplings Self-couplings

Higgs boson width

- How wide the Higgs boson is? - $\Gamma_H^{SM} = 4.1 \text{ MeV} @ m_H = 125 \text{ GeV}$
- Two implications:

Degeneracy: Invariant if $g \to g\varepsilon$, $\Gamma_H \to \Gamma_H \varepsilon^4$

- Can we measure it at the LHC?

• Seems impossible due to detector resolution

Off-shell Higgs

- Off-shell Higgs
 - A unique phase space
 - Characterize Higgs couplings at high scale
 - Sensitive to new physics

Bounding the Higgs width

Off-shell effect makes Higgs width measurement possible

$$\frac{d\sigma_{gg \to H \to VV}}{dM_{VV}^2} \propto \frac{g_{Hgg}^2 g_{HVV}^2}{\left(M_{VV}^2 - M_H^2\right)^2 + M_H^2 \Gamma_H^2}$$

on-shell: $m_{4l} \sim m_H$ $\sigma_{gg \rightarrow H \rightarrow ZZ}^{\text{on-shell}} \sim \frac{\kappa_{g,on}^2 * \kappa_{V,on}^2}{\Gamma_H / \Gamma_{SM}} = \mu_{\text{on-shell}}$

off-shell: m_{4l} - $m_{H} >> \Gamma_{H} \sigma_{gg \rightarrow H \rightarrow ZZ}^{off-shell} \sim \kappa_{g,off}^{2} * \kappa_{V,off}^{2} = \mu_{off-shell}$

Breaks the degeneracy!

- Assuming $\kappa_{g,on} = \kappa_{g,off}$ and $\kappa_{V,on} = \kappa_{V,off}$ $\mu_{off-shell} = \mu_{on-shell} \cdot \Gamma_{H} / \Gamma_{H}^{SM}$
 - Measuring both on- and off-shell production could constrain Higgs width

F. Caola, K. Melnikov PRD88(2013)054024

Going off-shell

- More challenging to go beyond the Higgs peak region
 - Higher background events from $qq \rightarrow ZZ$
 - Negative interference between $gg \rightarrow H^* \rightarrow ZZ$ and $gg \rightarrow ZZ$ continuum

How to measure $\mu_{off-shell}$

- Using high mass ZZ events ($m_{ZZ} > 2m_Z$)
- $H^* \rightarrow ZZ \rightarrow 2I2v$ viable

Results

- Measurements of off-shell production
 - Off-shell: H*→ZZ→4I, H*→ZZ→2I2v
- and Higgs width
 - On-shell: H→ZZ*→4I

 $\mu_{\text{off-shell}} = \mu_{\text{on-shell}} \cdot \Gamma_{H} / \Gamma_{H}^{SM}$

Constraints on BSM

- Off-shell Higgs has unique sensitivity to new physics
 - BSM contribution grows with $\hat{s} \rightarrow$ high energy bins become important

Assuming new physics enters the loop, with effective couplings c_t , c_g for $gg \rightarrow H$

$$\mathcal{L} = -c_t \frac{m_t}{v} \bar{t}th + \frac{g_s^2}{48\pi^2} c_g \frac{h}{v} G_{\mu\nu} G^{\mu\nu},$$

On-shell Higgs production $\sigma \sim |c_t + c_g|^2$

- To break the degeneracy
 - ttH production
 - − Boosted Higgs via $pp \rightarrow H+jets$
 - Off-shell Higgs

C. Grojean et al, <u>JHEP05(2014)022</u> C. Grojean et al, <u>JETP120(2015)354</u>

Di-Higgs production

S. Dawson et al, PRD91(2015)115008

Constraints on BSM (2)

- Off-shell Higgs to constrain C_t, C_q
- Using unfolded m4l spectrum C. Grojean et al, <u>JETP120(2015)354</u> $\frac{d\sigma(c_t, c_g)}{dm_{4\ell}} = F_0 + F_1 \left(c_t + c_g \frac{F_\Delta(\infty)}{\operatorname{Re} F_\Delta(m_t)} \right)^2 + F_3 \left(c_t + c_g \frac{F_\Delta(\infty)}{\operatorname{Re} F_\Delta(m_t)} \right) + F_2 c_t^2 + F_4 c_t \,,$ gg→4l arXiv:1902.05892 10arXiv:1902.05892 dσ/dm₄l [fb/GeV] ATLAS ഗ 1 = 13 TeV, 36.1 fb⁻¹ Expected 95% CL ATLAS Observed 95% CL ± **1**σ √s= 13 TeV, 36.1 fb⁻¹ $\pm 2\sigma$ 10 SM value 10⁻² Data Prediction / Observation 10^{-3} Matrix fixed-order NNLO 1.5 _10<u></u>____10 -5 5 10 n 0.5 C, "Higgs Couplings at High Scales", T. Han et al 80 100 200 300 400 500 1000

m₄₁ [GeV]

PRD.98(2018)015023 "Off-shell Higgs Probe to Naturalness", T. Han et al PRL120(2018)111801

Lailin Xu

pp→4l

Measurements of the Higgs boson properties: On-shell couplings Off-shell couplings → Self-couplings

DiHiggs production

- Direct probe of Higgs self-coupling and Higgs potential
 - Challenging due to low rate, $\frac{\sigma_{gg \rightarrow H}}{\sigma_{gg \rightarrow HH}} \sim 1500$
 - Sensitive to new physics → implication on EW Phase Transition

Similar to off-shell, measuring deficit in data

Prospects at the HL-LHC and Future Colliders

Prospects for Higgs properties measurements

HYS-PUB-2015-024

2

μ

Ldt = 3000 fb⁻¹ \s=14 TeV

Norm+shape systematics

No systematics

Norm systematics

Current measurements are statistically limited

- 4l, 80 fb⁻¹: $\mu = 1.19 \pm 0.12(stat.) \pm 0.06(exp.)^{+0.08}_{-0.07}(th.)$

- High luminosity LHC: ۲
 - Limited by the large theory uncertainties

Higgs self-coupling

• DiHiggs: flagship physics for HL-LHC

 κ_{λ} ; precision of O(10) now, O(1) at HL-LHC

Conclusion

- Higgs couplings measurement: crucial to probe the nature of EWSB and New Physics
 - On-shell couplings: precision era O(0.1)
 - Off-shell couplings: Higgs at high scale, O(3)
 - Self-coupling: benchmark for HL-LHC, O(10)

"Improved precision equates to discovery potential" FCC CDR

Improved theoretical predictions are essential, especially for HL-LHC

 New ideas and New colliders essential to continue exploring the unknown

How to make a Higgs boson

 $\sigma_{pp \rightarrow H} = 55.7 \pm 2.5 \text{ pb} @ 13 \text{ TeV}$

How to see a Higgs boson

Theory predictions

- High accuracy in QCD (+EW) predictions is crucial
- ggF:
 - Total cross section: N³LO QCD + NLO EW (<u>LHCXSWG</u>)
 - NNLOPS
 - MG5_aMC@NLO 0,1,2 jets @NLO with FxFx merging
 - HRes 2.3
- VBF, VH: NNLO QCD
 PowhegBox
- ttH, bbH: NLO QCD
 MG5_aMC@NLO

XH = VBF + VH + ttH + bbH

LHCXSWG,

Experimental explorations

• Production modes and decays studied in ATLAS

Systematic uncertainties

Table 4: Estimated theoretical uncertainties from missing higher orders.

Partial width	QCD	electroweak	total
$H \to b \overline{b}/c \overline{c}$	$\sim 0.2\%$	$\sim 0.5\%$ for $M_{\rm H} < 500~{\rm GeV}$	$\sim 0.5\%$
${\rm H} \rightarrow \tau^+ \tau^- / \mu^+ \mu^-$		$\sim 0.5\%$ for $M_{\rm H} < 500~{\rm GeV}$	$\sim 0.5\%$
$H \to t \bar{t}$	$\lesssim 5\%$	$\sim 0.5\%$ for $M_{\rm H} < 500~{\rm GeV}$	$\sim 5\%$
$\mathrm{H} \to \mathrm{gg}$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$
$\mathrm{H}\to\gamma\gamma$	< 1%	< 1%	$\sim 1\%$
$\mathrm{H} \to \mathrm{Z} \gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$\rm H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_{\rm H} < 500~{\rm GeV}$	$\sim 0.5\%$

Uncertainties on the branching ratio, LHCXS WG arxiv:1610.07922

PLB786(2018)223

Sustamatia uncortaintu	95% CL upper limit on $\mu_{\text{off-shell}}$			
Systematic uncertainty	$ZZ \to 4\ell$	$ZZ \to 2\ell 2\nu$	Combined	
QCD scale $q\bar{q} \to ZZ$	4.2	3.9	3.2	
QCD scale $gg \to (H^* \to)ZZ$	4.2	3.6	3.1	
Luminosity	4.1	3.5	3.1	
Remaining systematic uncertainties	4.1	3.5	3.0	
All systematic uncertainties	4.3	4.4	3.4	
No systematic uncertainties	4.0	3.4	3.0	

Systematic uncertainties (2)

	Experimental uncertainties [%]		Theory uncertainties [%]						
Measurement	Lum.	$e, \mu,$	Jets, flavour	Reducible	ZZ^*			Signal	
[-0.5ex]		pile-up	$\operatorname{tagging}$	backgr.	backgr.	PDF	QCD scale	Parton Shower	Composition
Fiducial cross section									
	2.8	4.3	< 0.1	0.3	1.6	0.6	0.5	0.4	0.1
Per decay channel fiducial cross sections									
-4μ	2.8	3.9	< 0.1	0.3	1.6	0.6	0.4	0.6	0.2
4e	2.8	9.0	< 0.1	1.0	1.6	0.6	0.8	0.5	0.1
$2\mu 2e$	2.7	8.6	< 0.1	0.9	1.5	0.6	0.7	0.5	0.1
$2e2\mu$	2.8	3.6	< 0.1	0.4	1.8	0.6	0.7	0.5	0.2
Stage-0 production bin cross sections									
ggF	2.9	3.9	1.3	0.7	2.3	0.4	2.1	0.7	-
VBF	1.7	1.5	10.5	0.5	2.3	2.3	9.5	5.1	-
VH	2.0	1.7	7.8	1.8	5.6	2.1	14.9	3.1	-
<i>ttH</i>	2.5	1.9	3.9	1.5	1.9	0.3	8.8	9.6	-

Uncertainties on H4I measured fiducial xsec, ATLAS-CONF-2018-018

Constrains on BSM

Using the framework of pseudo-observables (PO)

h

 μ^+

U-

$$F_1^{ff'}(q_1^2, q_2^2) = \kappa_{ZZ} \frac{g_Z^f g_Z^{f'}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Zf}}{m_Z^2} \frac{g_Z^{f'}}{P_Z(q_2^2)} + \frac{\epsilon_{Zf'}}{m_Z^2} \frac{g_Z^f}{P_Z(q_1^2)} + \Delta_1^{\text{SM}}(q_1^2, q_2^2)$$

PO κ_{zz} , $\varepsilon_{e_{LR}}$ change the both the decay rate and kinematics

CMS off-shell

CMS results (4I channel only):

arXiv:1901.00174

- Three categories: VBF, VH, others
- Combined run 1 and run 2 (80 fb⁻¹) results

Prospects for Higgs properties measurements

Ζ

- Prospects for future lepton collider
 - Much cleaner environment
 - Much smaller systematic uncertainties
 - Measure the Higgs decay Br model-independently
- CEPC 5ab⁻¹ can reach O(1%)
 - ~1M Higgs bosons

Coupling modifications by new physics

Generic size of Higgs coupling modifications from the Standard Model values when all new particles are $M \sim 1$ TeV and mixing angles satisfy precision electroweak fits.

Snowmass "Higgs working group report", arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Interference effect in $H \rightarrow \gamma \gamma$

- Interference between $gg \rightarrow H \rightarrow \gamma\gamma$ (on-shell) and $gg \rightarrow \gamma\gamma$
 - Imaginary part: 2% reduction in the overall rate
 - Real part: mass shift

d\sigma'/dm_{\gamma\gamma\gamma} (pb/GeV)

 $gg \rightarrow h(125 \text{ GeV}) \rightarrow \gamma \gamma$

Dixon, M. Siu, PRL90(2003)252001

LHC 13 TeV

M4I

• Inclusive 4I invariant mass spectrum

ATLAS-CONF-2018-018

Leptons and jets			
eptons:	$p_{\rm T} > 5 { m ~GeV}, \ \eta < 2.7$		
ets:	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$		
move jets with:	$\Delta R(\mathrm{jet},\ell) < 0.1$		
Lepton selection and pairing			
epton kinematics:	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$		
eading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
ubleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection (at most one quadruplet per event)			
lass requirements:	50 GeV $< m_{12} < 106$ GeV and 12 GeV $< m_{34} < 115$ GeV		
epton separation:	$\Delta R(\ell_i, \ell_j) > 0.1$		
$/\psi$ veto:	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs		
lass window:	$115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$		
extra leptons with $p_{\rm T} > 12$ GeV:	Quadruplet with the largest ME		

DiHiggs

 Higgs self coupling changes both signal cross sections and kinematic shapes
 ATLAS-CONF-2018-043

Vacuum stability

