Welcome - Overview of the Gamma Factory Study initiative -Yellow report where do we stand

CERN Gamma Factory group meeting

March 2019

Mieczyslaw Witold Krasny LPNHE, CNRS-IN2P3 and University Paris Sorbonne, CERN BE-ABP division,

Gamma Factory initiative (Sept. 2016)

E.G. Bessonov, Lebedev Physical Institute, Moscow, Russia; D. Budker[†], Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany; K. Cassou, K. Dupraz, A. Martens, F. Zomer, LAL Orsay, France; P. Czodrowski, Department of Physics, University of Alberta, Edmonton, Canada; O. Dadoun, M. W. Krasny^{*}, LPNHE, University Paris VI et VII and CNRS–IN2P3, Paris, France; M. Kowalska, A. Petrenko, CERN, Geneva, Switzerland; W. Placzek, Jagellonian University, Krakow, Poland; Y. K. Wu, FEL Laboratory, Duke University, Durham, USA; M. S. Zolotorev[†], Center for Beam Physics, LBNL, Berkeley, USA.

[†] Initiative supporter

* Contact person: e-mail: krasny@lpnhe.in2p3.fr

Presented at the PBC Workshop, September 2016

by

Mieczyslaw Witold Krasny

LPNHE, Pierre et Marie Curie University – Paris

...for the executive summary see: e-Print: arXiv:1511.07794 [hep-ex]

Gamma Factory study group members (March 2019)

A. Abramov¹, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, H. Bartosik²,
E.G. Bessonov⁵, N. Biancacci², J. Bieroń⁶, A. Bogacz⁷, A. Bosco¹, R. Bruce², D. Budker⁸,
K. Cassou⁹, F. Castelli¹⁰, I. Chaikovska⁹, C. Curatolo¹¹, P. Czodrowski², A. Derevianko¹²,
K. Dupraz⁹, Y. Dutheil², K. Dzierżęga⁶, V. Fedosseev², N. Fuster Martinez², S. M. Gibson¹,
B. Goddard², A. Gorzawski^{13,2}, S. Hirlander², J.M. Jowett², R. Kersevan², M. Kowalska²,
M.W. Krasny^{14,2}, F. Kroeger¹⁵, D. Kuchler², M. Lamont², T. Lefevre², D. Manglunki², B. Marsh²,
A. Martens⁹, J. Molson², D. Nutarelli⁹, L. J. Nevay¹, A. Petrenko², V. Petrillo¹⁰, W. Płaczek⁶,
S. Redaelli², S. Pustelny⁶, S. Rochester⁸, M. Sapinski¹⁶, M. Schaumann², M. Scrivens², L. Serafini¹⁰,
V.P. Shevelko⁵, T. Stoehlker¹⁵, A. Surzhikov¹⁷ I. Tolstikhina⁵, F. Velotti², G. Weber¹⁵, Y.K. Wu¹⁸,
C. Yin-Vallgren², M. Zanetti^{19,11}, F. Zimmermann², M.S. Zolotorev²⁰ and F. Zomer⁹

- ⁷ Center for Advanced Studies of Accelerators, Jefferson Lab, USA
- ⁸ Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany
- ⁹ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
- ¹⁰ Department of Physics, INFN-Milan and University of Milan, Milan, Italy

¹² University of Nevada, Reno, Nevada 89557, USA

- ¹⁴ LPNHE, University Paris Sorbonne, CNRS-IN2P3, Paris, France
- ¹⁵ HI Jena, IOQ FSU Jena and GSI Darmstadt, Germany
- ¹⁶ GSI, Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- ¹⁷ Braunschweig University of Technology and Physikalisch-Technische Bundesanstalt, Germany
- ¹⁸ FEL Laboratory, Duke University, Durham, USA
- ¹⁹ University of Padua, Padua, Italy
- ²⁰ Center for Beam Physics, LBNL, Berkeley, USA

Today: 64 scientists 20 institutes 9 countries

GF study group is open to everyone willing to contribute to this initiative!

3

¹ Royal Holloway University of London Egham, Surrey, TW20 0EX, United Kingdom

² CERN, Geneva, Switzerland

³ Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia

⁴ A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia

⁵ P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

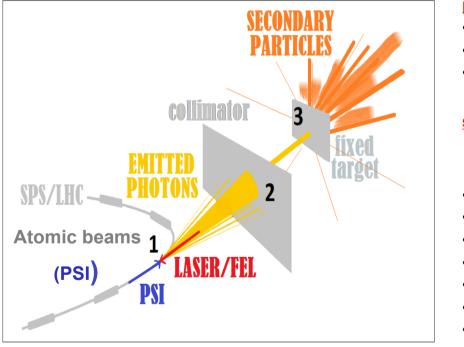
⁶ Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

¹¹ INFN-Padua, Padua, Italy

¹³ University of Malta, Malta

Three principal domains of activities and their coordination

As we have passed the threshold of 50 group members (November 2018), it became natural to segment our on-going activities into the three already well defined and well established domains, and into several on-going "incubator phase" studies.


Reyes Alemany Fernandez is coordinating all the activities of the preparation and running of PSI beams at CERN and the analysis of their results — including the implementation of the new stripper(s), beam collimation aspects, storage ring vacuum conditions, etc...

Brennan Goddard is coordinating the Conceptual Design Studies for our PoP experiment, and the preparation of the LOI for the SPSC.

Alexey Petrenko is coordinating the development of the Gamma Factory software, in both its beam dynamics and cooling aspect, and the gamma beam production aspects

... they have organised and will chair the corresponding sessions of this meeting...

Gamma Factory research tools: primary and secondary beams

primary beams:

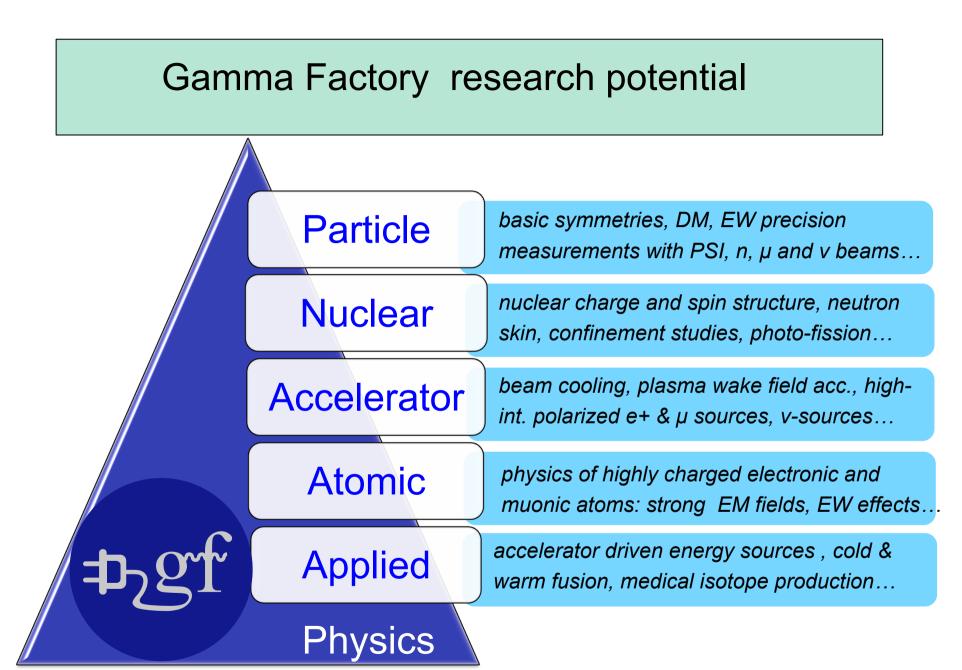
- partially stripped ions
- electron beam (for LHC)
- gamma rays

secondary beam sources:

- polarised electrons,
- polarised positrons
- polarised muons
- neutrinos
- neutrons
- vector mesons
- radioactive nuclei

collider schemes:

γ–γ <mark>collisions</mark>, E_{CM} = 0.1 – 800 MeV

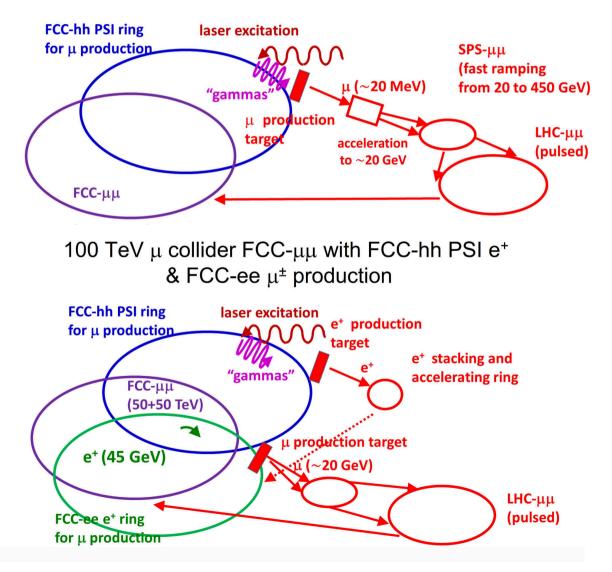

 $\gamma - \gamma_L$ collisions, E_{CM} = 1 - 100 keV

A leap in production efficiency, intensity and purity

Gamma Factory beam intensity targets

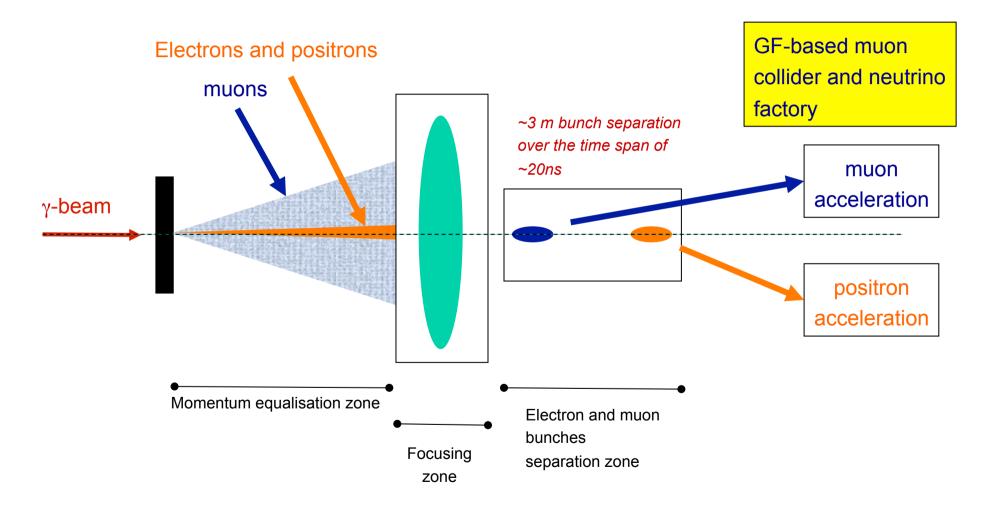
- Highly-ionised, highly-charged atoms new at relativistic energies.
- <u>Photons</u> up to factor of 10⁷ gain in intensity w.r.t. present gamma sources.
- <u>Polarised positrons</u> up to factor of **10**⁴ gain in intensity w.r.t. KEK positron source.
- Polarised muons up to factor 10³ gain in intensity w.r.t. to PSI muon source (low emittance beams → muon collider, high purity neutrino beams).
- <u>Neutrons</u> up to factor of **10**⁴ in flux of primary neutrons per 1 kW of driver beam power.
- <u>Radioactive ions</u> up to a factor **10**⁴ gain in intensity w.r.t. to e.g.
 ALTO.

Diverse and exciting research programme in many branches of science


Three examples illustrating the Gamma Factory research potential:

- Low emittance lepton source for muon collider and muon beam based neutrino factory
- Precision EW physics at the LHC with isoscalar beam
- An applied physics example

F. Zimmermann – Muon collider workshop, 2018 - Padova


100 TeV μ collider FCC- $\mu\mu$ with FCC-hh PSI μ^{\pm} production


9

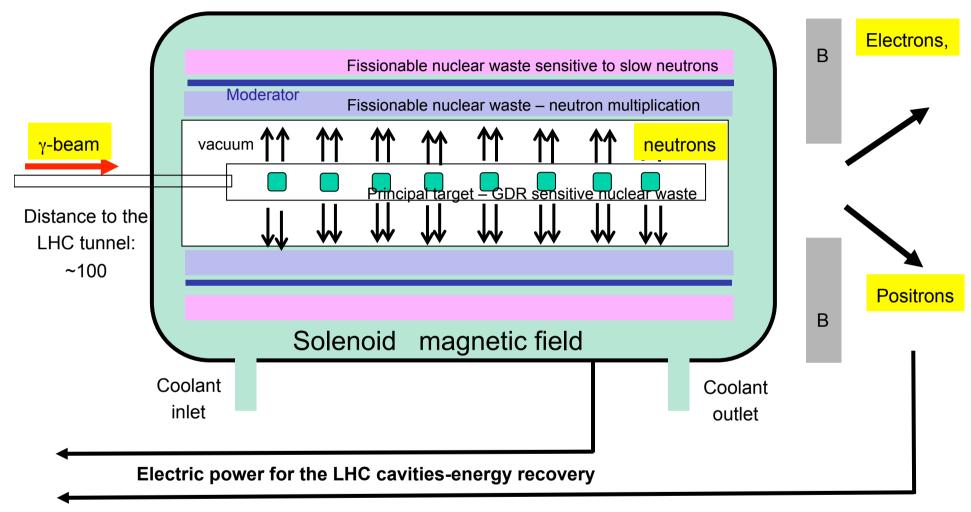
initial ideas...

software tools are being developed -- talk of V. Ivantchenko at this meeting)

Propagation of transversely and longitudinally (Higgs modes) polarized W-bosons in vacuum and matter

Luminosity requirements for precision EW physics at the LHC

• $L_{AA} \sim 0.1 L_{pp}/A^2$


already sufficient for a large fraction of the precision measurement programme with isoscalar beams (e.g. for the M_W measurement).

Example: L_{CaCa} ~0.6 x10³⁰ [1/(cm²s)] – feasible for 2x10⁹ Ca ions/bunch at the SPS exit? (D. Manglunki et al Proceedings of IPAC2016, Busan, Korea)

How to achieve such a goal:

Laser Doppler cooling of isoscalar PSI at the SPS followed by an electron stripping in the SPS-LHC transfer line and (if necessary) optical stochastic cooling at the LHC

... an idea of the secondary positron beam producing station with sustainable research -- the electric power and cost recovery

High intensity electron and positron beams – cost recovery

A path from the GF initial ideas to the GF research project -- three constraints --

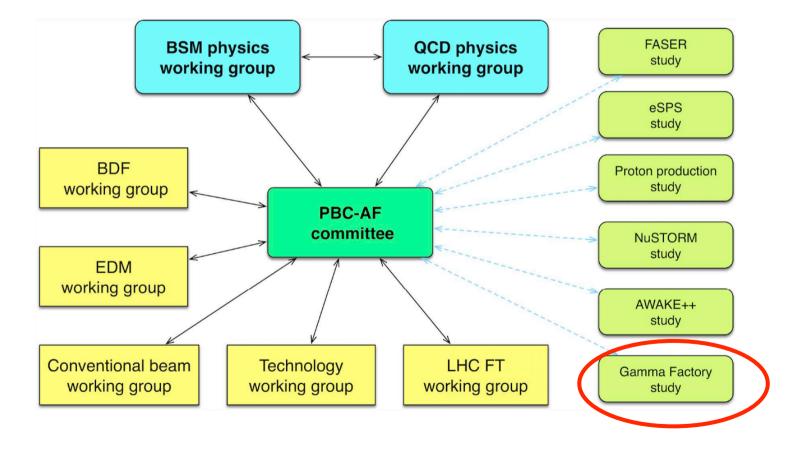
- □ The GF programme can be realised at CERN by using its present accelerator complex infrastructure, including the LHC it must fit to the long term plans of of CERN.
- □ The GF programme can only be realized as an interdisciplinary project (collaboration of accelerator, particle physics, nuclear physics, atomic physics and applied physics communities) first ever attempt going in this direction.
- We (the Gamma Factory study group) have to demonstrate, quantitatively, based on detailed simulations and the dedicated R&D studies, its research potential.

LHC run schedule

The opportunity window for the Gamma Factory research programme

- □ The **next** CERN **high-energy frontier** project may take **long time** to be approved, financed and built.
- If the present LHC research programme reaches earlier its discovery saturation (no further physics gain by extending its running time), a strong need will arise for a novel programme which could re-use ("co-use") the existing CERN facilities (including the LHC) in ways and at levels that were not necessarily thought of when the machines were designed.
- Gamma Factory research programme could potentially fulfil such a role. It could exploit the existing, world unique opportunities offered by the CERN accelerator complex and its scientific infrastructure (not available elsewhere).
- It requires an extensive R&D to prove its feasibility. The R&D timeline is tight to be ready, at the time when such a need arises...

PBC as a "start-up cradle" for the Gamma Factory study group activities


The Gamma Factory initiative (arXiv:1511.07794 [hep-ex]) was endorsed by the CERN management by creating (February 2017) the Gamma Factory study group, embedded within the Physics Beyond Colliders (PBC) studies framework:

Mandate of the "Physics Beyond Colliders" Study Group

Conveners: J. Jaeckel, M. Lamont, C. Vallee

CERN Management wishes to launch an exploratory study aimed at exploiting the full scientific potential of its accelerator complex and other scientific infrastructure through projects complementary to the LHC and HL-LHC and to possible future colliders (HE-LHC, CLIC, FCC). These projects would target fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that require different types of beams and experiments.

The PBC groups

Funding profile

It is expected that the group will continue its activity throughout the ESPP process, which will be completed in May 2020, so as to follow up the development of the various studies and provide any additional input the ESPP may need.

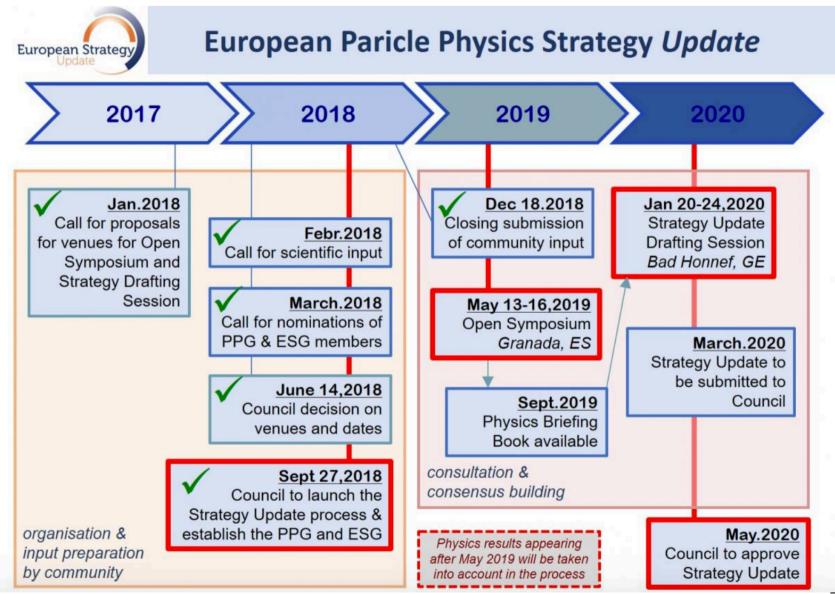
(in MCHF, 2018 prices, rounded off to 0.1 MCHF until 2023, 1 MCHF thereafter)	Revised 2018 Budget	2019	2020	2021	2022	2023	Total 2018- 2023	2024 2025	2026	2027	2028	Total 2018-2028
Preparation for the future	39,1	27.0	35.2	40.5	35.5	36.0	213	35 36	39	97	106	527
Linear collider studies (CLIC, ILC, detector R&D)	16.2	15.3	33.2	40.5	55.5	50.0	31	55 50	33		100	31
Future Circular Collider study	16.8	8.1					25					25
High-energy frontier	10.0	0.7	21.6	28.0	28.0	28.0	106	28 28	28	80	90	360
Proton-driven plasma wakefield acceleration (AWAKE)	41	26	14	10	0.7	0.7	10	0 0	0	0	0	11
Physics Beyond Colliders study	21	1.0	1.0	1.0	1.0	1.0	7	1 2	5	10	10	35
R&D for future detectors			11.2	10.4	5.8	6.3	34	6 6	6	6	6	65
Scientific diversity activities	33.1	28.1	28.2	22.4	21.3	20.9	154	20 20	20	19	19	251
CERN Neutrino Platform	12.4	13.3	12.1	6.7	6.6	6.6	58	7 6	6	7	7	90
R&D (incl. EU support) for accelerators	20.7	14.8	16.2	15.6	14.7	14.3	96	13 13	13	12	12	161

Mike Lamont

The EPPSU context

The European Particle Physics Strategy Update (EPPSU) is the process by which every \sim 7 Years the European particle physics community updates the priorities and strategy of the field.

First ESPP in 2006; first update in 2013; next update 2020.


Bottom-up process involving the community. Driven by physics, with awareness of financial and technical feasibility.

Scientific input includes: physics results from current facilities from all over the world; physics motivations, **design studies and technical feasibility of future projects**; results of R&D work.

The Strategy is adopted by the CERN Council. Individual (major) projects require dedicated approval: e.g. HL-LHC

from Fabiola Gianotti's presentation

Process

Gamma Factory group EPPSU contributions

Gamma Factory for CERN

EPPSU COMPREHENSIVE OVERVIEW

Abstract

This contribution discusses the possibility of creating novel research tools at CERN by producing and storing highly relativistic atomic beams in its high-energy storage rings, and by exciting their atomic degrees of freedom by lasers to produce high-energy photon beams. Their intensity would be, by several orders of magnitude, higher than those of the presently operating light sources, in the particularly interesting gamma-ray energy domain reaching up to 400 MeV. In this energy domain, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. The atomic beams, the photon beams and the above secondary beams are the principal research tools of the proposed Gamma Factory. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme.

Gamma Factory for CERN

EPPSU ADDENDUM

Submitted December. 2019

The Gamma Factory study group milestones

- **1.** *Production, acceleration* and *storage* of *"atomic beams"* at CERN accelerator complex.
- 2. Proof-of-Principle (PoP) experiment in the SPS tunnel.
- 3. Development "ab nihilo" the requisite Gamma Factory software tools.

- 4. Realistic assessment of Gamma Factory performance figures.
- 5. Physics highlights of Gamma Factory based research programme.
- 6. Gamma Factory **TDR**.

News

Xenon beams light path to gamma factory

On 14 September, CERN injected a beam of partially ionised xenon atoms into the Super Proton Synchrotron (SPS) and kept it circulating for a short period. The successful demonstration, carried out by the SPS operations and radio-frequency teams, is the first of a series of experimental steps to explore the feasibility of a gamma-ray source with an intensity several orders of magnitude higher that those currently in operation.

Earlier this year, CERN's accelerator complex demonstrated its flexibility by producing a beam of fully ionised xenon atoms for the fixed-target experiment NA61, which studies the physics of strong interactions. Profiting from this achievement, the gamma-factory study group – which is part of CERN's Physics Beyond Colliders study – requested dedicated beam tests with partially ionised xenon atoms in the SPS. The beam was composed of xenon nuclei carrying 15 out of the 54 electrons present in the

The SPS, pictured during a recent technical stop, was loaded with beams of partially ionised xenon atoms in September.

July 2018: Birth of Atomic Physics research at CERN

Symmetry dimensions of particle physics

follow +

Q

A joint Fermilab/SLAC publication

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

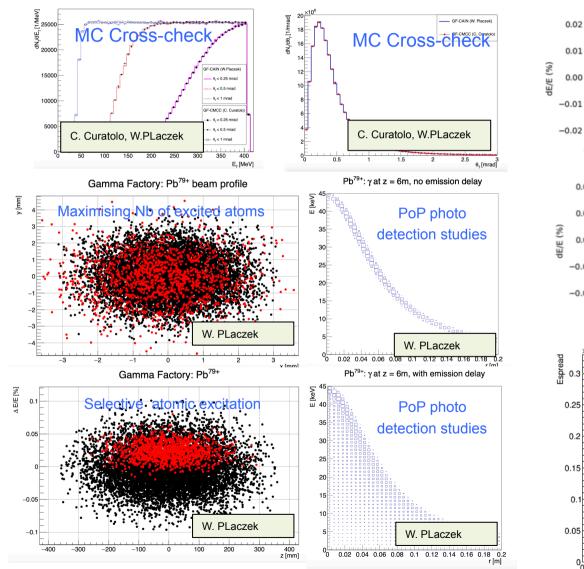
Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

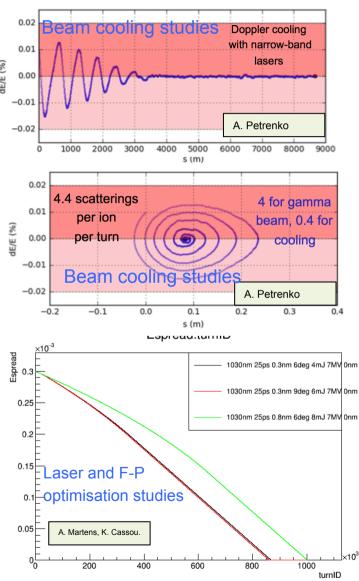
https://www.sciencealert.com/we-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meriameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/ #36db60ae5cb4 https://www.livescience.com/63211-lhc-atoms-with-electrons-light-speed.html https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms https://www.sciencenews.org/article/physicists-accelerate-atoms-large-hadron-collider-first-time/ https://insights.globalspec.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms

https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html https://www.symmetrymagazine.org/article/lhc-accelerates-us-tirst-atoms

Acknowledgement:

The successful **Gamma Factory** beam tests, with the Xe+39, Pb+80 and Pb+81 beams, over the year 2017 and 2018 involved dedicated work of the operation tams of the: Ion source, Linac, PS, SPS, LHC, the BE, EN groups responsible for the installations of the GF strippers, vacuum teams, RFexperts and numerous other individuals.

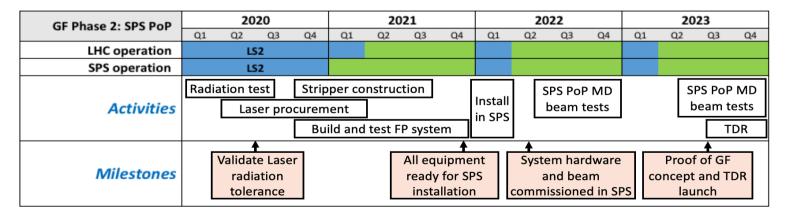

We (GF-group) acknowledge high quality of their work and and their enthusiasm in making these tests a success story!


What we want to learn/demonstrate with the GF Proof-of-Principle (PoP) experiment at the SPS?

- 1. How to **integrate** the **laser and Fabry–Perot** cavity system into the **storage ring** of hadronic beam? (radiation hardness of the laser system, IP for high beam magnetic rigidity beam, beam impedance, vacuum, etc...)
- 2. How to maximise the rate of atomic excitations?
- **3**. How to **extract** *γ***-rays** from the **collision** zone?
- **4**. How to **collimate** the γ**-ray beam**?
- 5. How to **monitor/measure** the flux of outgoing **photons**?

6. Demonstrate new cooling method of hadronic beams (Doppler Cooling).7. Atomic Physics measurement programme.

GF software development


rum numper

The Gamma Factory studies timeline (as specified in the GF EPPSU document)

Phase 1 -- Initial beam tests and PoP experiment design

GF Phase 1: Initial Study		2016				20	17		2018				2019				
Gi Flase I. Initial Study	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
LHC operation														Ľ	52		
SPS operation										LS2							
Activities	Xe ³⁵					e ³⁹⁺ in	Pb ⁸¹⁺ in LHC					PoP Design					
Milestones				▲ GF Study Ip formed			Atomic beams accelerated an stored in SPS & I			ted an	d		sal for perim n SPS				

Phase 2 -- SPS PoP experiment and GF performance studies

The Gamma Factory group Yellow Report

- **1.** *Production, acceleration* and *storage* of *"atomic beams"* at CERN accelerator complex.
- 2. Proof-of-Principle (PoP) experiment in the SPS tunnel.
- 3. Development "ab nihilo" the requisite Gamma Factory software tools.

- 4. Realistic assessment of Gamma (a) tory performance figures.
- 5. Physics highlights of a narrow based research programme.
- 6. Gamma Factory **TDR**.

CERN-2019-00?-M

Gamma Factory for CERN

Vol. 1

Editors:

R. Alemany Fernandez

B. Goddard

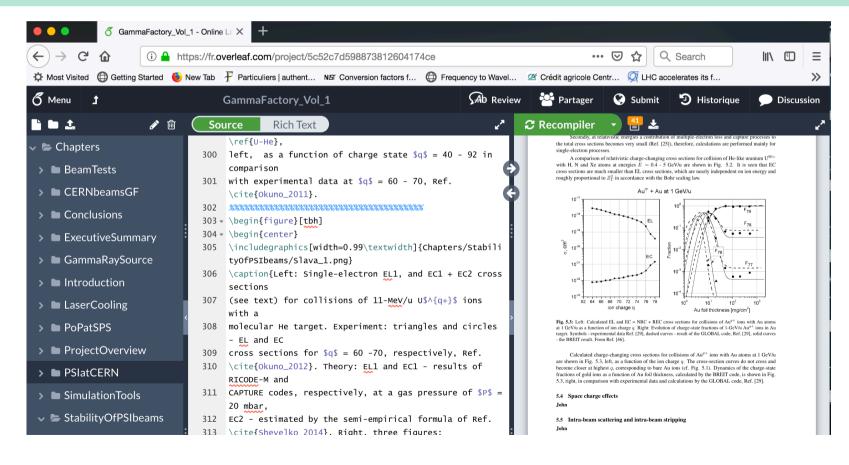
M. W. Krasny

A. Petrenko

W. Płaczek

Authors

A. Abramov¹, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, H. Bartosik²,
E.G. Bessonov⁵, N. Biancacci², J. Bieroń⁶, A. Bogacz⁷, A. Bosco¹, R. Bruce², D. Budker⁸,
K. Cassou⁹, F. Castelli¹⁰, I. Chaikovska⁹, C. Curatolo¹¹, P. Czodrowski², A. Derevianko¹²,
K. Dupraz⁹, Y. Dutheil², K. Dzierżęga⁶, V. Fedosseev², N. Fuster Martinez², S. M. Gibson¹,
B. Goddard², A. Gorzawski^{13,2}, S. Hirlander², J.M. Jowett², R. Kersevan², M. Kowalska²,
M.W. Krasny^{14,2}, F. Kroeger¹⁵, D. Kuchler², M. Lamont², T. Lefevre², D. Manglunki², B. Marsh²,
A. Martens⁹, J. Molson², D. Nutarelli⁹, L. J. Nevay¹, A. Petrenko², V. Petrillo¹⁰, W. Ptaczek⁶,
S. Redaelli², S. Pustelny⁶, S. Rochester⁸, M. Sapinski¹⁶, M. Schaumann², M. Scrivens², L. Serafini¹⁰,
V.P. Shevelko⁵, T. Stoehlker¹⁵, A. Surzhikov¹⁷ I. Tolstikhina⁵, F. Velotti², G. Weber¹⁵, Y.K. Wu¹⁸,
C. Yin-Vallgren², M. Zanetti^{19,11}, F. Zimmermann², M.S. Zolotorev²⁰ and F. Zomer⁹


¹ Royal Holloway University of London Egham, Surrey, TW20 0EX, United Kingdom ² CERN, Geneva, Switzerland

- ³ Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia
- ⁴ A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia
- ⁵ P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
- ⁶ Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- ⁷ Center for Advanced Studies of Accelerators, Jefferson Lab, USA
- ⁸ Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany
- ⁹ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
- ¹⁰ Department of Physics, INFN-Milan and University of Milan, Milan, Italy
- ¹¹ INFN-Padua, Padua, Italy
- ¹² University of Nevada, Reno, Nevada 89557, USA
- ¹³ University of Malta, Malta
- ¹⁴ LPNHE, University Paris Sorbonne, CNRS-IN2P3, Paris, France
- ¹⁵ HI Jena, IOQ FSU Jena and GSI Darmstadt, Germany
- ¹⁶ GSI, Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- ¹⁷ Braunschweig University of Technology and Physikalisch-Technische Bundesanstalt, Germany
- ¹⁸ FEL Laboratory, Duke University, Durham, USA
- ¹⁹ University of Padua, Padua, Italy
- ²⁰ Center for Beam Physics, LBNL, Berkeley, USA

Overleaf framework

https//fr.overleaf.com/project/5c52c7d598873812604174ce

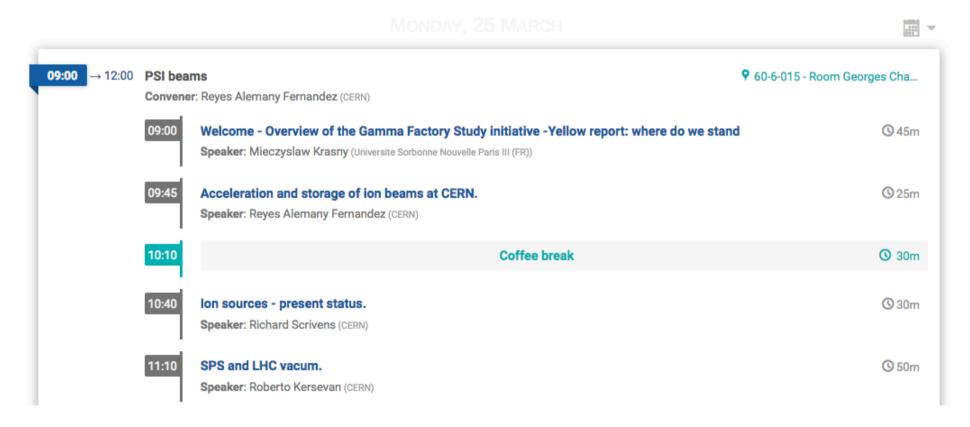
Contents	5.3 Collisions with the storage ring residual gas	22
	5.3.1 Charge-changing cross sections	23
1 Executive Summary	5.3.2 Examples of collisions of heavy ions with gaseous and solid targets	24
I.I Key principles	5.4 Space charge effects	26
1.2 Objectives – research tools	5.5 Intra-beam scattering and intra-beam stripping	26
I.2. Atomic beams	6 Machine studies with Partially Stripped Ion beams in CERN accelerator complex	27
1.2.2 Photon beams	6.1 Introductory remarks	
1.2.3 Gamma-driven secondary beams	6.2 Preparatory studies.	
1.3 Readiness and expected challenges	6.2.1 Lifetime of Xe and Pb beams in the SPS	27
1.4 Project milestones, status and way forward		21
1.4.1 Project milestones	6.2.2 Stripping strategy	31
1.4.2 Tests of production, acceleration and storage of atomic beams at CERN	6.3 Xe+39 SPS test runs	31
1.4.3 Development of software tools	6.3.1 Lifetime measurements	32
I.4.4 SPS proof-of-principle experiment	6.3.2 Life time data analysis and their interpretation	32
1.5 Conclusions	6.3.3 Extrapolations	33
2 Introduction	6.3.4 Conclusion	34
	6.4 Pb+80 and Pb+81 SPS test runs	34
3 Project overview	6.4.1 Stripper foil set up.	35
3.1 Scientific context	6.4.2 Analysis of the stripping transmission efficiency	35
3.2 CERN PBC framework	6.4.3 Analysis of the ${}^{208}Pb{}^{81+}$ and ${}^{208}Pb{}^{80+}$ lifetimes in SPS	35
3.3 Study group structure and resources	6.5 Pb+81 LHC test runs	36
3.4 Milestones and feasibility proof	6.6 Summary of results and outlook	36
3.4.1 Phase 1: Initial Studies		41
3.4.2 Phase 2: SPS Proof of Principle Experiment	7 Partially Stripped Ion Beams – Gamma Factory requirements	41
3.4.3 Phase 3: LHC Demonstrator Application	7.1 Introductory remarks	41
3.5 Project costs – Phase 1 and 2	7.2 Ion sources for GF	41
A seclarity and taxage fin home in CEDN and sector complex	7.3 Ion Stripping Infrastructure	41
4 Acceleration and storage of ion beams in CERN accelerator complex	<u>7.4</u> Vacuum	41
4.1 Overview of CERN accelerator complex 4.1.1 Ion sources	<u>7.4.1 SPS</u>	41
4.1.1 Ion sources	7.4.2 LHC	41
4.1.3 SPS	7.5 Beam collimation	41
4.1.4 LHC	7.6 Operational aspects	41
4.2 Beam diagnostics	8 Gamma-ray source	43
4.2.1 Beam Position Monitors	8.1 Overview of present and future gamma-ray sources	
4.2.2 Beam Loss Monitors	8.2 PSI driven gamma-ray sources — fundamentals	43
4.2.3 Vacuum diagnostics	8.3 Laser + F–P cavity driven gamma source	13
4.3 Operation Aspects	8.4 FEL option	43
		43
5 Stability aspects of PSI beams	8.4.1 Introduction 8.4.2 FEL scheme and performance	45
5.1 Introductory remarks	8.4.2 FEL scheme and performance.	44
5.2 The field ionization due to Stark effect	<u>0.4.7 Naulauoli IIIIX</u>	40
	9 Laser cooling of PSI beams	49
vii		

9.1 Laser cooling of Atoms	11.3.7 Calculations
	11.3.8 Energies and r
9.2 Laser cooling of PSI bunches	11.3.9 Li-like Pb
10 Software tools – development status	11.4 Optical system
10.1 PSI collisions with gas molecules	11.4.1 Single pass op
10.1.1 RICODE-M code	11.4.2 Optical resona
10.1.2 DEPOSIT code	11.4.3 Radiation asp
	11.4.4 Generalities
	11.4.5 Laser system
10.2 Beam Background simulation tools	11.4.6 Single bunch
10.3 Stripper optimization	11.4.7 Optical resona
10.4 Beam dynamics	11.4.8 Integration co
10.5 Collisions of PSI bunches with photon pulses	11.5 Simulations
10.5.1 GF-CMCC code	11.5.1 Basic assumpt
10.5.2 GF-CAIN code	11.5.2 Simulation me
10.5.3 RH codel	11.5.3 Benchmarking
10.5.4 AP Monte-Carlo simulation toolkit.	11.5.4 Absorption rat
10.5.5 Benchmarking and comparisons	11.5.5 Photon fluxes
10.6 Generators for secondary beam production	11.5.6 Beam dynami
10.6.1 Polarised charged lepton beams	11.5.7 Cooling
	11.6 Observables and
11 Proof-of-Principle (PoP) experiment at SPS	11.6.1 Photon detect
11.1 Overall concept B.Goddard, Y.Dutheil, A.Martens, S.Gibson, V.Fedosseev et al.	11.6.2 Ion beam inst
11.1.1 Single pass and optical resonator options	11.7 Experimental Se
11.1.2 Key experimental parameters	11.7.1 Timing and sy
11.1.3 Summary of subsystems	11.7.2 Proposed expe
11.1.4 Experimental stages and procedure	11.7.3 Impedance co
11.2 SPS Accelerator B. Goddard, R.Alemany, F. Velotti, Y.Dutheil, T.Lefevre	11.8 Experimental Pr
11.2.1 Overview	11.8.1 Intro/Protocol
11.2.2 Available ion beam performance and bunch characteristics	11.8.2 Phase 1 reson
11.2.3 Operational scenarios and time sharing	11.8.3 Phase 2 Photo
11.2.4 Optical lattice parameters at IR in half cell 616	11.8.4 Phase 3 – Coo
11.2.5 Aperture constraints	11.8.5 Atomic Physic
11.2.6 Available diagnostics (resolution, accuracy, dynamic range)	11.9 Schedule
11.2.7 Uncertainties, reproducibility, ripple and noise	11.10 Resources
11.3 Ion and transition choice	11.10.1 Budget
11.3.1 Introduction	11.10.2 Manpower .
11.3.2 Review of options and literature	11.11 Summary
11.3.3 Quantum mechanical calculations (methodology, comparison of approaches	12 Canalusian
11.3.4 Kesults, including precision evaluation (tabulated?)	12 Conclusions
11.3.5 Introduction	13 Template
III 3.6 AND Database	

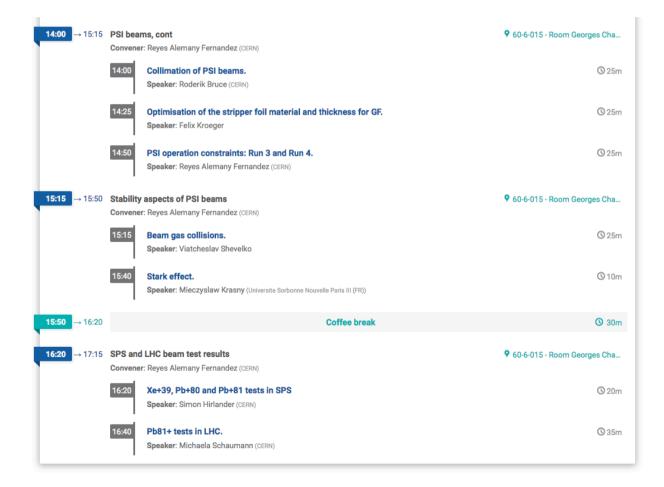
3.7 Calculations	
	71
8.8 Energies and rates	71
<u>.9 Li-like Pb</u>	74
	75
1.1 Single pass option	76
.2 Optical resonator option	76
.3 Radiation aspects	76
	76
	77
6.6 Single bunch option	77
	77
<u>0</u>	78
	80
	81
	81
	81
	81
	81
6.6 Beam dynamics considerations (instability, space-charge, IBS, incoherent emittance growth	81
.7 Cooling	81
Observables and instrumentation	81
b. Photon detectors	82
	82
Experimental Setup	82
1 Timing and synchronisation	82
	82 82
2. Proposed experiment layout and implementation	
Proposed experiment layout and implementation .3 Impedance considerations	82
Impedance considerations Implementation Experimental Procedure	82 82
.2 Proposed experiment layout and implementation . . .3 Impedance considerations . . .3 Experimental Procedure . . .1 Intro/Protocols in phase 1-2-3 . .	82 82 83
1.2 Proposed experiment layout and implementation	82 82 83 83
1.2 Proposed experiment layout and implementation 1.3 Impedance considerations 2.5 Experimental Procedure 3.1 Intro/Protocols in phase 1-2-3 3.2 Phase 1 resonance finding 3.3 Phase 2 Photon flux optimization	82 82 83 83 83
2 Proposed experiment layout and implementation 3 Impedance considerations 4 Experimental Procedure 5 Experimental Procedure 6 1 6 1 7 Phase 1 resonance finding 8 2 8 2 9 Phase 2 Photon flux optimization 8 4 9 Phase 3 -Cooling	82 82 83 83 83 83
2 Proposed experiment layout and implementation 3 Impedance considerations 4 State in the second	82 82 83 83 83 83 83 84
2 Proposed experiment layout and implementation 3 Impedance considerations 4 Phase 3 - Cooling 5 Atomic Physics Experimental precision	82 82 83 83 83 83 83 84 84
1 Proposed experiment layout and implementation 1 Impedance considerations 2 Experimental Procedure 3 Intro/Protocols in phase 1-2-3 4 Phase 1 resonance finding 5 Phase 2 Photon flux optimization 5 Atomic Physics Experimental precision 5 Schedule 0 Resources	82 82 83 83 83 83 83 83 84 84 84
1 Proposed experiment layout and implementation 1 Impedance considerations 2 Experimental Procedure 3 Intro/Protocols in phase 1-2-3 3 Phase 1 resonance finding 3 Phase 2 Photon flux optimization 3 Phase 3 -Cooling 3 Schedule 0 Resources 0 Resources	82 82 83 83 83 83 83 84 84 84 84
1.2 Proposed experiment layout and implementation 1.3 Impedance considerations 2.5 Experimental Procedure 3.1 Intro/Protocols in phase 1-2-3 3.2 Phase 1 resonance finding 3.3 Phase 2 Photon flux optimization 3.4 Phase 3 -Cooling 3.5 Atomic Physics Experimental precision 9 Schedule 10 Resources 10.1 Budget	82 82 83 83 83 83 84 84 84 84 84

89

The principal goal of this meeting


- Over the last 2 years the Gamma Factory initial ideas have been transformed into well-defined R&D activities
- We have passed the first and most important milestone: the proof that one can produce, accelerate and store atomic beams in the CERN accelerator complex...
- ... and entered its second phase: (1) developing the requisite software tools and (2) designing a GF Proof-of-Principle experiment at the CERN SPS.
- We have submitted two documents (Comprehensive overview and Addendum) to the European Particle Physics Strategy Update 2018–2020 and hope that the Gamma Factory will be retained as a possible future research programme for CERN.

The principal goal of the meeting


- Given the the EPPSU timing our main priority now is to document the work which has already been done by the GF study group, e.g. in a form of a CERN Yellow Report
- This a very crucial step on our path from the "GF initiative" to the "GF project" stage.
- Such a reference document will be of of help while: (1) applying for grants, (2) preparing conference contributions, (3) preparing the LoI for the GF proof-of-principle experiment and finally (4) for the visibility of our progress - a "sine qua non" condition to trigger the quantitative studies of the GF research goals
- The structure of the document and the assignments of the authors of the sections and chapters has been made... initial drafts of several contributions have been written ② (...111 pages as of today...) 36

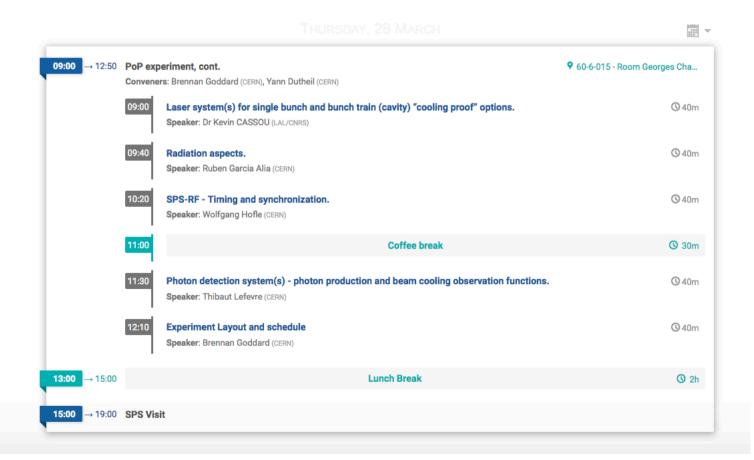
One of the principal goal of his meeting is to review were do we stand with the GF YR writing... the agenda of this meeting reflects closely the structure of sections and chapters of the YR.

Monday morning – PSI beams session chaired by Reyes

Monday afternoon – PSI beams session cont. – chaired by Reyes

Tuesday afternoon – gamma ray source session. – chaired by Andrey software tools development session chaired by Alexey

09:00 → 12:00	Discussion session (Room 4-S-030)	♥ 4-S-030
12:00 → 14:00	Lunch Break	③ 2h
14:00 → 17:30	Gamma Ray source Convener: Andrey Surzhikov	9 60-6-015 - Room Georges Cha
	14:00 Overview of the gamma-ray sources. Speaker: Luca Serafini (INFN-Milan)	© 35m
	14:35 Atomic Physics aspects of the GF software. Speaker: Simon Rochester	③ 35m
	15:10 Spatiotemporal and spectral optimisation of the Laser+F-P photon fluxes Speaker: Aurelien Martens (LAL/IN2P3/CNRS)	③ 30m
	15:40 Gamma Factory ion beam dynamics Speaker: Alexey Petrenko (Budker Institute of Nuclear Physics (RUJ))	© 20m
	16:00 Coffee break	③ 30m
	16:30 Spatiotemporal and spectral optimisation of FEL photon fluxes. Speaker: Vittoria Petrillo	© 30m
17:30 → 18:35	Software tools development Convener: Alexey Petrenko (Budker Institute of Nuclear Physics (RU))	♥ 60-6-015 - Room Georges Cha
	17:30 Overview and plans Speaker: Alexey Petrenko (Budker Institute of Nuclear Physics (RU))	© 30m
	18:00 PSI driven gamma source – fundamentals. Speaker: Dimitry Budker (Mainz University)	© 30m
18:35 → 20:35	Dinner	() 2h


Wednesday morning – software tools development session chaired by Alexey

09:00 → 12:00		e tools development, cont. r: Alexey Petrenko (Budker Institute of Nuclear Physics (RU))	9 60-6-015 - Room Georges Cha
	09:00	Semi-Analytical calculations. Speaker: Aurelien Martens (Centre National de la Recherche Scientifique (FR))	3 25m
	09:25	GF-CMCC. Speaker: Camilla Curatolo (INFN - National Institute for Nuclear Physics)	③ 25m
	09:50	GF-Cain. Speaker: Wiesiek Placzek (Jagiellonian University)	③ 25m
	10:15	Coffee break	O 30m
	10:45	RH code for photon-PSI collisions. Speaker: Siobhan Alden	© 20m
	11:05	Muon pair production Monte Carlo. Speaker: Vladimir Ivantchenko (CERN)	③ 30m
	11:35	Discussion on the way forward in the GF software development Speaker: Alexey Petrenko (Budker Institute of Nuclear Physics (RU))	© 25m

Wednesday afternoon – PoP experiment session chaired by Bren and Yann

14:00 → 18:00	PoP exp Convener	riment rs: Brennan Goddard (CERN), Yann Dutheil (CERN)	♥ 60-6-015 - Room Georges Cha
	14:00	Overall concept, stages and procedure. Speaker: Brennan Goddard (CERN)	© 40m
	14:40	SPS accelerator aspects. Speaker: Yann Dutheil (CERN)	Q 20m
	15:00	Ion transition parameters and their present uncertainties. Speaker: Andrey Surzhikov	© 20m
	15:20	Photon flux simulations. Speaker: Camilla Curatolo (INFN - National Institute for Nuclear Physics)	© 20m
	15:40	Coffee break	③ 30m
	16:10	Impedance guidelines for the SPS Speaker: Aaron Farricker (CERN)	©1h
	17:10	Bunch dynamic. ¶ Speaker: Alexey Petrenko (Budker Institute of Nuclear Physics (RU))	© 30m
	17:40	Laser system for single bunch, "photon production" option. Speaker: Stephen Gibson (Royal Holloway, University of London)	() 20m

Thursday morning – PoP experiment session chaired by Bren and Yann (SPS tunnel visit organised by Reyes)

Tuesday dinner

ÔBrasseur

 Site Web
 Itinéraire
 Enregistrer

 4,2 ★★★★ 1 171 avis Google

 €€ · Microbrasserie

Cette microbrasserie au cadre boisé propose des bières brassées sur place et des spécialités alsaciennes.

Adresse : 45 Rue de Genève, 01630 Saint-Genis-Pouilly

Horaires : Ouvert · Ferme à 01:00 ▼

Téléphone : 04 50 42 49 88

Suggérer une modification

A table for 12 was reserved in the O'Brasseur bar for Tuesday dinner (8 PM) (8 people inscribed in the Meeting registration form) - please let me know if you did not inscribe and want to join... the bar is within a walking distance from CERN

Welcome, and looking forward to a fruitful GF meeting!