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Collimation of the PSI beams
during the PSI MD



Collimation performance with PS| beams in the LHC

* The first experience of PSI beam

102 Betatron B1H FT 2018-07-25 20:24:36

collimation was acquired during _ 1o — Warm
MD3284 [1] ;.-, 10° = )(zoRlllaimator
= 101
e Loss map measurements were =107
performed for injection and flat ot | b el o
to E 10~ il Ml A il
: R MN i
* The highest losses in both cases 10775 5000 onbe - (115000 20000
were recorded in cell 11. -
* Severe losses were observed in the 10% Betatron BLH ET 2018-07-25 20:24:36 %Lg/
cold magnets of the dispersion E 100 - e saoe
suppressor of IR7 for flat top. L — , _—
* With 24 low-intensity bunches a E S
dump was triggered after only 2 E10 ‘ T | 1
minutes at flat top. “10-c l \ ” “ ' |

"53460‘"ﬂi*20600
N. Fuster-Martinez

1994 19800

* Loss map was taken with only 6

low-intensity bunches.

4
[1] M. Schaumann, https://indico.cern.ch/event/781222/



https://indico.cern.ch/event/781222/

Understanding the losses
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Mitigation strategies

* With the current collimation configuration the losses greatly limit the possible
intensity reach. Mitigation strategies considered include:




Mitigation strategies - TCLD

* The plan is to install a dispersion suppressor collimator (TCLD) during LS2.

* The location of the TCLD was changed from cell 8 to cell 9 in December 2018.

* In cell 8 the collimator wasn’t expected to intercept the losses, but in cell 9 it there is a

good outlook that it will.

e At present, without energy deposition studies, it is not possible to quantify the intensity
limit with the TCLD in as the load on the collimator will likely be very high.
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More detailed studies
later in Fluka results...




Mitigation strategies - other

* Crystal collimation
= Another potential strategy is to use crystal collimators.

" |tis theorized that both partially stripped and fully stripped ions can be channeled
onto an absorber before they leave the warm collimation insertion.

= |n addition to this, the channeling is expected to suppress the interaction
cross-sections.

= MD4166 was approved to test this concept, but never took place due to technical
problems.

* Orbit bump

= Orbit bumps are used to move cold losses from BFPP in the DS of experimental
insertions to a more favorable location like the connection cryostat.

= Such a bump can be considered for the DS of IR7.
= May not be needed if the TCLD is found to be effective.



Simulations

Tools and first quantitative results



Simulation methods

* Due to the bound electrons and additional physics interactions involved,
it is not currently possible to perform direct collimation cleaning
efficiency studies for PSI beams.

* As a start, attempt to recreate the measured loss maps as accurately as
possible using available tools and some assumptions, e.g. all beam ions
fully stripped by the primary collimator.

* In addition, work towards integrating support for PSI tracking and physics
interactions to existing radiation transport frameworks.
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SixTrack — FLUKA active coupling

« The SixTrack-FLUKA coupling combines tracking in SixTrack and Monte Carlo
simulation of physics interaction inside the collimators in FLUKA.

« One of the trusted standard frameworks for collimation studies.

« Supports arbitrary ions species.

 Available immediately.

- Does not currently support partially stripped ions, but there are some ideas of
extending it.

« The plan is to perform studies using off-rigidity fully-stripped ions starting at the
primary collimator, similar to the MADX studies.

SixTrack-FLUKA coupling |

Connection via
flukaio library

SixTrack
accelerator

tracking

FLUKA physics

and geometry
in collimators




Sixtrack — Fluka Simulation setup

* Optics for Beam1 Horizontal at Flat Top (worst cleaning inefficiency...)
* Run2 LHC optics (as the one used for the PSI MD test in 2018) at 6.5 TeV
 HL-LHC v1.2 (with TCLD in cell 9) at 7 TeV

* Sixtrack:
* Machine setup for 208/81+ at 6.5TeV/7 TeV
e Initial particle distribution 208/82+ but with an energy of 81+
* Tracking start at the front of the horizontal TCP

* Fluka
* Energy cuts ~100GeV
* With Electro-magnetic Dissociation enabled for IONs
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Sixtrack — Fluka Simulation results (1)
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Sixtrack — Fluka Simulation results (2)
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e Beam1 LHC / HLLHC (with TCLD out) :

* Reproduced the measured loss map | BEAM1

* Highest peak identified in around the interconnection
between SC dipole and DS (s=20413m)

* Great agreement with the measurement and simple
MADX trajectory estimate!

* Beam2 LHC

* No measurement available

* Loss peak localized downstream wrt to Beaml, into the
other end of the DS (cell 11)

» Slight difference in optics (dispersion)!
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Sixtrack — Fluka Simulation results (3)

.- | I Ill ||I ] | 1 ] | 1 11 1 1 11 I_I 1 II,H ull
I | ] LL I I ILLI I 1 1 I ]
10°

mm Cold
- Warm
-

11111

BEAM1 HL-LHC OPTICS,
TCLD IN

Beam1/2 HL-LHC with TCLD inserted:

* Local cleaning efficiency restored (cell 11)

* Dramatic suppression of losses on cold
i H— - tH—H— - o|lements in the DS.

* High losses on the TCLD - quench limits
for 11T dipoles?
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Geant4 / BDSIM

Geant4 natively supports the definition of ions with non-zero electron
occupancy, but no relevant charge-changing physics processes are currently
available.

A stripping physics process and the other necessary physics configurations are
being implemented in BDSIM and can later be integrated into a new Geant4
release.

Can tie in with other processes like crystal channeling for ions and PSI laser
excitation and de-excitation being developed for BDISM/Geant4.

It is possible to couple Geant4/BDSIM to SixTrack and utilize those processes on a
per-element basis.

Visualisation of an
example particle
interaction in BDSIM

16



Sixtrack — Geant4

Beam1 LHC, first preliminary results:
Qualitative agreement with measurements and Fluka-Sixtrack.

* First look with the same energy cuts and particles transported back to Sixtrack
* More benchmarking needed — on more standard cases!

J. Molson

Cleaning ineffiency (1/m

Sixtrack — Geant4
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Sixtrack — Fluka
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Intensity limits



Quench limits for the 11T dipoles

* VERY Preliminary estimation!

* for7ZTeV, 5x107 mJ/cm3 deposed in the 11T magnet per ONE ion (Z>80)
interacting with TCLD

* Fluka calculation A.Lechner et al. for normal lead cleaning for HLLHC
* For the GF the impact distribution may differ resulting in different value

* Quench limit for 11T dipoles assumed to be 70mW/cm3.
* Assuming a minimum beam life time of 12 mins (HLLHC base line).

* We come with an estimate for the max beam intensity about 3x10!!ions.
* More than HL-LHC baseline beam -> hope for no intensity limit (wrt 11T magnets).

* Energy deposition on TCLD collimator still to be investigated
* Preliminarily ~10kW expected, probably no showstopper but to be studied.

* For better understanding — dedicated Fluka studies in the TCLD region
needed!
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Summary

* In the first test with PSl in the LHC the collimation cleaning
performance was observed to be prohibitively low for operation
with high-intensity beams.

* Analysis of the measured loss maps and simulations have helped
identify the reason for the inadequate cleaning — the stripping action
of the primary collimators.

* Several mitigation strategies are being investigated — TCLD collimator,
crystal collimation and an orbit bump.

* First, preliminary estimates on the losses on the 11T dipoles indicate
no additional intensity limits (wrt to the HL-LHC baseline)
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Appendix - Injection B1V
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Appendlx Flat top B1V
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