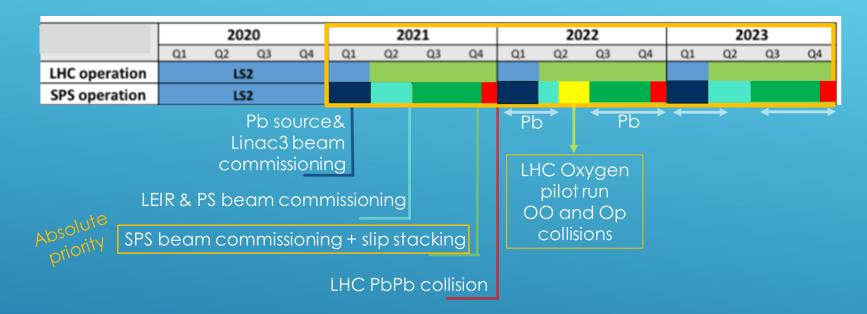
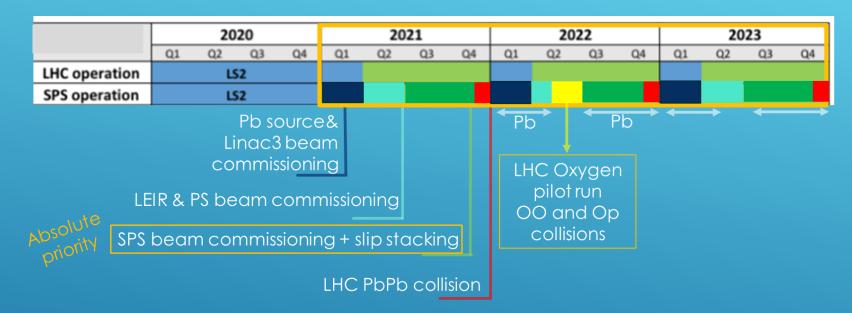

PARTIALLY STRIP ION OPERATION CONSTRAINTS: RUN3 AND RUN4

R. Alemany Fernandez BE/OP-SPS


PRELIMINARY SCHEDULE OF IONS IN RUN 3 (SCHEDULE NOT APPROVED YET!!)

Difficulties in RUN 3:

- Strong competition with the proton commissioning → LHC Injector Upgrade → many new hardware to be commissioned for the first time
- Strong competition with the ion commissioning \rightarrow slip stacking in SPS is a priority


PRELIMINARY SCHEDULE OF IONS IN RUN 3 (SCHEDULE NOT APPROVED YET!!)

PSI in 2021 → STRONG COMPETITION WITH SPS SLIP STACKING COMMISSIONING:

- 1. If needed, installation during LS2 of a stripper foil in a BTV optimized for Pb79+
- 2. Machine studies will be requested to study in SPS Pb79+:
 - Setting up of the Pb79+ cycle \rightarrow ready for 2022
 - Stripping efficiency and life time studies

PRELIMINARY SCHEDULE OF IONS IN RUN 3 (SCHEDULE NOT APPROVED YET!!)

PSI in 2022/2023 → STRONG COMPETITION WITH LHC OXYGEN & LEAD RUN :

- 1. Machine studies will be requested for the proof of principle experiment in SPS Pb79+,
 - Setting up of the Pb79+ cycle \rightarrow if not done in 2021
 - Stripping efficiency and life time studies → if not done in 2021
 - Gamma production and detection
 - Possibly beam cooling demonstration

GAMMA FACTORY ACTIVITIES SCHEDULE VS ION OPERATION IN THE CERN COMPLEX

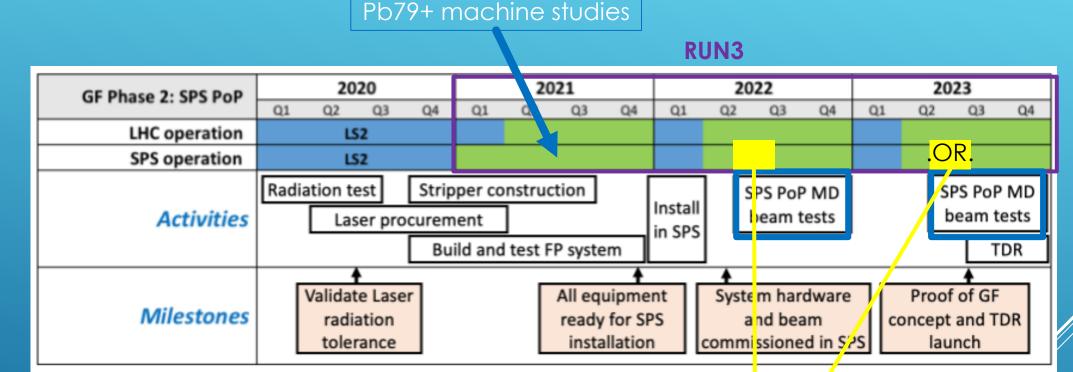
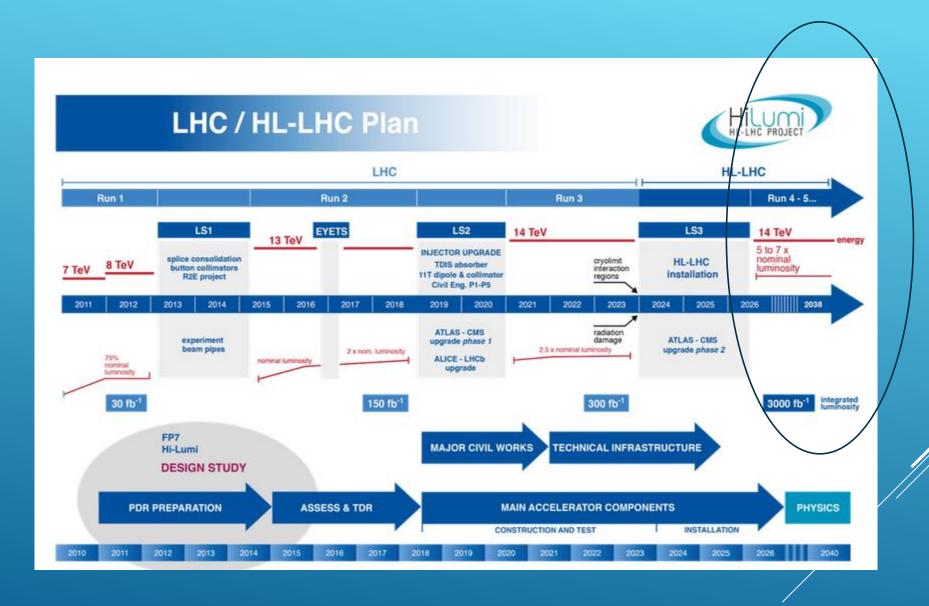
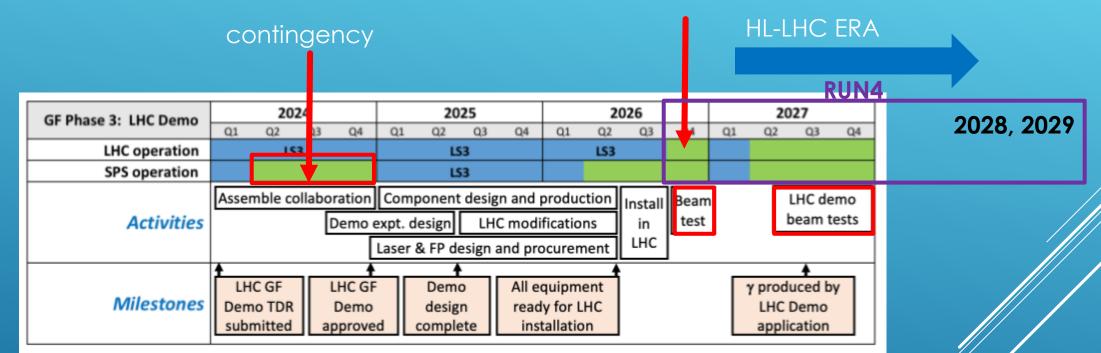


Fig. 3.2: The timeline of the Gamma Factory SPS PoP experiment, Phase 2 activities – years 2020–2023.



GAMMA FACTORY ACTIVITIES SCHEDULE VS ION OPERATION IN THE CERN COMPLEX


RUN4

e 3: LHC Demo	2024				2025			2026				2027							
e 5. Ene benno	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	2028,	2020	
LHC operation	LS3			LS3		LS3							2	JZO,	2027				
SPS operation						Ľ	53												

- Contingency year. o LHC running other experiments get more study time
- In case of issues in RUN3 (delays, not enough machine studies time, ...) we could use 2024
- RUN 4:
 - STRONG COMPETITION WITH COMMISSION OF LHC AS HL-LHC MACHINE, this risk is not negligible.

GAMMA FACTORY ACTIVITIES SCHEDULE VS ION OPERATION IN THE CERN COMPLEX

No LHC ion run requested

Fig. 3.3: A potential timeline of a Gamma Factory LHC Demonstrator Application, Phase 3 activities – years 2024–2027.

IONS BEYOND RUN4

- HL/HE-LHC physics workshop has considered lighter species for beyond Run 4
 - ► Full intensity, 1-month runs, eg, Ar-Ar
 - Good opportunity for Gamma Factory to find synergies in terms of species requested to share expenses or profit from LHC investment.

HL/HE-LHC physics workshop

Proposed Run Schedule

	Year	Systems, time, L _{int}	Total per Run (3 and 4)						
R U	2021 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.2/nb ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE O-O: 500/µb p-O: 200/µb						
N 3	2022 (6 weeks)	p-O + O-O 7 TeV, 1 week (after EYETS?) Pb-Pb 5.5 TeV, 5 weeks							
	2023 (4 weeks)	pp 8.8 TeV, few days p-Pb 8.8 TeV, 3.x weeks							
	LS3	ATLAS/CMS upgrades, ALICE: ITS3? FoCal?							
R U N 4	2027 (4 weeks)	Pb-Pb 5.5 TeV, 3 weeks pp 5.5 TeV, 1 week	Pb-Pb: 6.8/nb, ALICE/ATLAS/CMS, 1/nb LHCb p-Pb: 0.6/pb ATLAS/CMS, 0.3/pb ALICE/LHCb						
	2028 (6 weeks)	Pb-Pb 5.5 TeV, 2 weeks p-Pb 8.8 TeV, 3.x weeks pp 8.8 TeV, few days	pp 5.5: 300/pb ATLAS/CMS, 25/pb LHCb, 3/pb ALICE pp 8.8: 100/pb ATLAS/CMS/LHCb, 1.5/pb ALICE						
	2029 (4 weeks)	Pb-Pb 5.5 TeV, 4 weeks							
	LS4								
RI	U N 5	Intermediate A-A, 11 weeks pp reference, 1 week	E.g. Ar-Ar 3-9/pb (optimal species to be defined)						

https://indico.cern.ch/event/783141/contribution s/3310069/attachments/1804693/2945230/run5_H E_LHC_Milhano.pdf

This is a proposal agreed in WGS and reflects the physics discussed in the YR. The final run schedule is decided by the LHCC upon discussion with the experiment

FUTURE LHC FULL INTENSITY RUNS: PLAUSIBLE SCALING (P=1.5)

	¹⁶ 0 ⁸⁺	⁴⁰ Ar ¹⁸⁺	⁴⁰ Ca ²⁰⁺	⁷⁸ Kr ³⁶⁺	⁸⁴ Kr ³⁶⁺	¹²⁹ Xe ⁵⁴⁺	²⁰⁸ Pb ⁸²⁺
Y	3760.	3390.	3760.	3470.	3220.	3150.	2960.
√s _{NN} /TeV	7.	6.3	7.	6.46	6.	5.86	5.52
σ_{had}/b	1.41	2.6	2.6	4.06	4.26	5.67	7.8
σ_{tot}/b	1.48	3.85	4.18	17.1	18.3	72.5	508.
N _b	6.24×10 ⁹	1.85×10^{9}	1.58×10^{9}	6.53×10^{8}	6.53×10^{8}	3.56×10 ⁸	1.9×10^{8}
∈ _{xn} /μm	2.	1.8	2.	1.85	1.71	1.67	1.58
f _{IBS} /(m Hz)	0.0662	0.0894	0.105	0.13	0.12	0.144	0.167
W _b /MJ	68.9	45.9	43.6	32.5	32.5	26.5	21.5
$L_{AA0}/cm^{-2}s^{-1}$	1.46×10 ³¹	1.29×10^{30}	9.38×10 ²	1.61×10^{29}	1.61×10^{29}	4.76×10^{28}	1.36×10^{28}
$L_{\rm NN0}/\rm cm^{-2} \rm s^{-1}$	3.75×10 ³³	2.06×10^{33}	1.5×10 ³	9.79×10^{32}	1.14×10^{33}	7.93×10^{32}	5.88×10^{32}
P _{BFPP} /W	0.0031	0.179	0.303	5.72	5.72	43.4	350.
P _{EMD1} /W	4.98	16.5	16.9	40.5	43.7	76.7	141.
τ _{L0} /h	16.4	21.3	23.	13.5	12.7	5.87	1.57
T _{opt} /h	9.04	10.3	10.7	8.23	7.96	5.42	2.8
$\langle L_{AA} \rangle / cm^{-2} s^{-1}$	8.99×10 ³⁰	8.34×10 ²⁹	6.17×10^{2}	9.46×10^{28}	9.32×10^{28}	2.23×10^{28}	3.8×10 ²⁷
$\langle L_{NN} \rangle / cm^{-2} s^{-1}$	2.3×10 ³³	1.33×10 ³³	9.87×10 ³³	5.76×10^{32}	6.57×10^{32}	3.71×10^{32}	1.64×10^{32}
$\int_{month} L_{AA} dt/nb^{-1}$	11700.	1080.	799.	123.	121.	28.9	4.92
$\int_{month} L_{NN} dt/pb^{-1}$	2980.	1730.	1280.	746.	852.	481.	213.
R _{had} / kHz	20700.	3340.	2440.	653.	686.	270.	106.
μ	1.64	0.266	0.194	0.0518	0.0544	0.0215	0.00842

By J.M. Jowett, O-O p-O meeting 20/03/2019