Beam-gas collisions at SPS and LHC

I. Tolstikhina and V.P. Shevelko

Lebedev Physical Institute, Moscow

CERN - LPI Moscow March 25, 2019

CONTENTS

- 1. Charge-changing atomic processes due to interaction of PSI with the rest-gas atoms.
- 2. The role of electron-loss processes at relativistic energies. The RICODE-M computer code.
- 3. Ion-bean lifetimes and vacuum conditions.
- 4. Comparison of calculated ion-beam lifetimes with measured ones at SPS and LHC accelerators.

Conclusion

P.N. Lebedev Physical Institute (LPI), Moscow, since 1934

Theoretical group in Laboratory for spectroscopy since 1961. Theoretical group in 2018:

The main research topic -Physics of Highly Charged Ions:

- 1. X-ray and VUV spectra of HCI
- 2. Electronic and atomic collisions
- 3. Charge-exchange processes and isotopic effects in cold plasmas
- 4. Diagnostics of laser-produced plasmas
- Interaction of fast heavy ions with gases, solids and plasmas
- 6. Dynamics of charge-state fractions in accelerators and storage rings

and others

MAIN COMPUTER CODES:

- **n** ATOM (L.A.Vainshtein: 1955) interaction with electrons and photons
- **n CAPTURE** (I.Tolstikhina, V.Shevelko: 2000) capture processes
- n ARSENY (E.Soloviev: 2001) capture and ionization at very low energies
- **n** FAC (M.F.Gu: 2003) interaction with electrons and photons
- **n** CDW (D. Belkic: 2005) capture processes at low and intermediate energies
- n DEPOSIT (M.Litsarev, V.Shevelko: 2008 2010) mutiple-electron ionization of heavy ions at low and intermediate energies
- n RICODE-M (I.Tolstikhina, I.Tupitsyn, V.Shevelko, S.N. Andreev: 2016) relativistic ionization with relativistic w.f. and interaction
- **n BREIT** (N. Winckler, A. Rybalchenko, V. Shevelko, M. Al-Turany, T. Kollegger, Th. Stöhlker: 2017) charge-state fractions of heavy-ion beams in matter

INTERACTION OF FAST HEAVY IONS WITH MATTER

- Heavy ions: Ar, Xe, Bi, Au, U at energies E > 1 MeV/u Superheavy ions up to Z = 120 (!).
- Atomic physics approach: based on knowledge of atomic charge-changing cross sections and balance rate equations for charge-state fractions.

3. Min interests:

- 1. Ion beam lifetime and vacum conditions
- 2. Dynamics of charge-state fractions as a function of the target thickness.

Main charge-changing processes in gas/solid targets:

1. multiple-electron ionization of projectiles (loss EL):

 X^{q+} + A à $X^{(q+m)+}$ + ΣA + me, m ≥ 1

2. multiple-electron non-radiative capture (NRC):

 $\begin{array}{l} X^{q+} + A \stackrel{}{a} X^{(q-k)+} + A^{+}, \ k \geq 1 \\ \hline \textbf{3. single-electron radiative capture (REC):} \\ X^{q+} + A \stackrel{}{a} X^{(q-1)+} + A^{+} + \hbar \omega \\ \sigma_{TOT}(EC) = \sigma(NRC) + \sigma(REC) \end{array}$

Asymptotic behavior of EL and EC cross sections in fast non-relativistic collisions:

 $S_{EL} \sim Z_T^2 \ln E / (q^2 E)$ $S_{NRC} \sim q^5 Z_T^5 / E^{5.5}$ $\boldsymbol{S}_{REC} \sim q^4 Z_T / E^2$

Exp.: GSI, Darmstadt and Texas University Theory: VPS et al., NIMB 269 (2011) 1455

Relativistic collisions

At relativistic energies only single-electron loss processes play a role because electron-capture cross sections decrease very rapidly.

RELATIVISTIC EL CROSS SECTIONS

$$M_{fi} = \langle f | (1 - \beta \alpha_z) e^{i\mathbf{qr}} | i \rangle,$$

$$\beta \alpha_z \sim \frac{v}{c} \frac{\langle p_e \rangle}{m_e c} \sim \frac{v}{c} \frac{v_e}{c}$$

The influence of magnetic interaction is very large if both the ion velocity v and projectile-electron velocity v_e are close to the speed of light *c*.

$$s_{EL} \sim const \sim Z_T^2 I_P^{-0.0q}$$
 by neutrals (semi-empirical estimate)
 $s_{EL} \sim Z_i^2 \ln g$ by ions, g – the relativistic Lorentz factor
 $s_{EC} \ll s_{EL}$ (very important!)

The RICODE-M code for calculation single-electron relativistic EL cross sections X^{q+}(nI, N_{nI}, I_{nI}) + A à X^{(q+1)+} + A + e⁻(ε, λ)

$$\sigma_{\rm ion}(v) = \frac{8\pi}{(\beta c)^2} \sum_{nl} N_{nl} \sum_{\lambda} \int_{0}^{\infty} d\varepsilon \int_{Q_0}^{\infty} \frac{dQ}{Q^3} \left[Z_T^2(Q) F_{nl}^2(Q) + Z_T^2(Q') \frac{\beta^2 (1 - Q_0^2/Q^2)}{(1 - \beta^2 Q_0^2/Q^2)^2} G_{nl}^2(Q) \right]$$

$$Q_0 = \frac{I_{nl} + \varepsilon}{V}, \quad Q' = \sqrt{Q^2 - \beta^2 Q_0^2}$$

F_{nl}(Q): 'usual' Born form-factor, Q: momentum transfer

RICODE-M: I. Tolstikhina et al., JETP, 1 (2014) 5

Influence of relativistic effects on EL cross sections

I. Tolstikhina et al., JETP (2014)

Examples:

For molecular targets, the Bragg's additivity rule is used, e.g., $\sigma(H2) = 2\sigma(H)$.

Recommended charge-changing cross sections

Exp: GSI and Texas A&M Cyclotron Theory: NIMB 269 (2011) 1455

G. Weber et al. 2015

TOTAL PROJECTILE ELECTRON LOSS ...

LOSS cross sections for HESR/GSI project

VPS et al., NIMB 421 (2018) 45-49

Ion-beam lifetimes due to interaction with the rest gas.

$$I(t) = I_0(t) \cdot e^{-t/t_0}$$

$$t_0[s] = \left[rbc \ \Sigma_T [Y_T S_{EC} + Y_T S_{EL}] \right]^{-1}$$

 $v_{ion} = \beta c$, relativistic ion velocity in cm/s c speed of light, ~ 3 x 10¹⁰ cm/s sEC and s EL charge-changing cross sections Vacuum conditions: rest-gas density, part/cm⁻³ Y_T rest-gas fractions:

$$\Sigma_{T}Y_{T} = 1$$

Examples

L. Bozyk et al. NIMB 372 (2016) 102

Ion-beam lifetimes for HESR/GSI project

VPS et al., NIMB 421 (2018) 45-49

The rest-gas fractions used for HESR/GSI project

Atom, molecule	Concentration	Atom, molecule	Concentration
Н	0.223	0 ₂	0.0773
H_2	0.188	CO	0.00208
HO	0.0437	CO_2	0.0229
H_2O	0.0833	CO/N_2	0.0583
С	0.0385	F	0.0229
N	0.0219	Ar	0.00106
0	0.216	Xe	0.00106

VPS et al., NIMB 421 (2018) 45-49

Calculations for the GF project EL cross sections for Xe and Pb ions

RICODE-M code

RICODE-M code

Beam lifetimes for collisions of Xe ions with the residual gas in the SPS accelerator

τ (Xe39+) exp = 2.550 ± 0.085 s

Beam lifetimes for collisions of Pb ions with the residual gas in the SPS accelerator

 τ (Pb80+) exp = 350 ± 50 s t(Pb81+) exp = 660 ± 30 s

Lifetimes of Pb81 + ions in LHC at high vacuum

t(Pb81+) exp = 38 h

Conclusion

- 1. The observed in SPS and LHC lifetimes of Xe39+, Pb81+ and Pb80+ beams at energies E = 1 10 GeV/u are in a good agreement with calculated by the RICODE-M program values within the uncertainty of the density and molecular composition of the residual gas accelerators.
- 2. The ion losses at relativistic energies are mainly caused by ionization of projectiles by the rest-gas molecules. The estimated ion-beam lifetimes are nearly independent on ion energy in the range of E = 1 200 GeV/u because of influence of the relativistic effects on the electron-loss cross sections.
- 3. A good agreement between theory and experiment for the first time **confurms indirectly** a quasi-constant behavior of the loss cross sections in the relativistic domain, predicted by the relativistic theory.

Our recent publications

Physics-Uspekhi 61 (3) 247-279 (2018)

© 2018 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 34.10. +x, 34.50.Fa, 34.70. +e

Influence of atomic processes on charge states and fractions of fast heavy ions passing through gaseous, solid, and plasma targets

I Yu Tolstikhina, V P Shevelko

DOI: https://doi.org/10.3367/UFNe.2017.02.038071

Contents

1.	Introduction. Role of atomic interactions in the passage of ions through targets	247
	1.1 Gaseous targets; 1.2 Solid targets (foils); 1.3 Plasma targets; 1.4 Liquid targets	
2.	Characteristics of ion beams interacting with the medium	249
	2.1 Kinetic energy loss; 2.2 Angular straggling. Radiation length; 2.3 Penetration depth (ion range)	
3.	Stopping power of matter	251
	3.1 Definition of stopping power; 3.2 Effective charge of an incident ion. Stopping power tables; 3.3 Dependence of	
	the mass stopping power on ion energy; 3.4 Bragg peak; 3.5 Stopping power in plasmas; 3.6 Influence of the target-	
	density effect on the stopping power	
4.	Equations of charge state balance	255
	4.1 Charge-state balance equations in the passage of ions through matter. Average charge state and equilibrium	

2018

Springer Series on Atomic, Optical, and Plasma Physics 98

Inga Tolstikhina Makoto Imai Nicolas Winckler Viacheslav Shevelko

Basic Atomic Interactions of Accelerated Heavy Ions in Matter

Atomic Interactions of Heavy lons

We would like to thank Dr. Witold Krasny for his activity and help

Spasibo !

Lebedev Physical Institute, Moscow

Emails: tolstikhinaiy@lebedev.ru shevelkovp@lebedev.ru v.chevelko@gsi.de