Laser-beam and Fabry-Perot Cavity parameters For PSI cooling

Aurélien MARTENS, LAL

Introduction

The models used to perform the optimization will be discussed tomorrow, along with the relatd assumptions

Several parameters need to be optimized:

- Laser beam transverse sizes @ the collision point
- Laser beam pulse duration
- Laser beam Spectrum
- Crossing angle

But constraints do exist and must be acounted for:

- Fabry-Perot cavity (FPC) geometry
- Laser system parameters/flexibility
- Geometrical footprint

Could in principle optimize everything accounting for constraints with a Monte Carlo procedure (needed for a 4-mirror FPC) but it is not necessary in the case of a 2-mirror FPC.

See Kevin's presentation for the motivation of a 2-mirror FPC

Assumptions in a few words

The model used is an average model that account for :

- Spectral overlap of the laser and ion beams
- Spatial overlap of the laser beam and ion beams assuming cylindrical beams
- Saturation effect of the excitation probability
- Only longitudinal dynamic effects are simulated

See Simulation session for details

Use spatial ion beam parameters corresponding to LSS6-616 (Proof of principle experiment)

The ion beam longitudinal length (duration) is linearly related to energy spread

$$\sigma_{i,z} = cT_{\rm c} \sqrt{\frac{\eta \gamma_{\rm i} M_{\rm i}}{2\pi H (Z - N_{\rm e}) V_{\rm RF}}} \frac{\Delta E_{\rm i}}{E_{\rm i}}.$$

Assume a fixed time bandwidth product for the longitudinal laser beam shape

- \rightarrow Fourier Limited laser pulse
- ightarrow see simulation session for details

Parameters

Description	Parameter name	Value	=
Number of ions per bunch	n_{I}	$2 \cdot 10^8$	—
Betatron function at the IP	eta^*	53 m	
Normalized emittance	ϵ	$1.5\cdot 10^{-6}$ m	
Transition energy	$E_{ m t}$	230.76 eV	
Excited state lifetime	au	76 ps	
Ion rest mass	$M_{ m i}c^2$	193.687 GeV	7
Bunch spacing related frequency	$F_{ m rep}$	5 MHz	
SPS revolution time	$T_{ m c}$	$23 \ \mu s$	
Initial ion-beam energy spread	$\Delta E_{ m i}/E_{ m i}$	$3\cdot 10^{-4}$	
RF voltage magnitude	$V_{ m RF}$	7 MV	
Ion atomic number	Z	82	
Number of remaining electrons in ion	$N_{ m e}$	3	
Harmonic number in SPS	H	4620	
SPS transition energy	$\gamma_t M_{ m i} c^2$	22.8 GeV	
Laser-beam waist (horizontal plane)	$w_{ m o,h}$	1.5mm	Cylindrical beam to ease
Laser-beam waist (vertical plane)	$w_{\mathrm{o,v}}$	1.5mm	discussions
Laser-beam central wavelength	λ_0	1030 nm	
Laser beam pulse energy Laser/ion beams crossing angle		5 mJ 2.6°	Minimal acceptable value according to geometrical contraints

Overal optimum fraction of intercepted ions

FPC design options

2-mirror FPC

- ③ Simple geometry
- ☺ simple alignment
- Of Minimizes crossing angle
- Caser beam polarisation driven by polarisation of the laser.

☺ Circular polarisation at percent level

© Ellipsometry technics do exist to calibrate it at sub-percent level

4-mirror FPC

- ⊖ More involved geometry: 3D
- ☺ more difficult alignment (vacuum ?)
- ⊖ Crossing angle slightly increased
- Laser-beam polarization driven by FPC geometry
- ⇒ High finesse cavity → resonance frequencies of 2 circular polarizations are split
- © Theoretically extremely small opposite circular polarization
- \bigcirc But how to quantify ?

Ideal for Proof of principle experiment

Ideal for physics ? Longer term plans

FPC design 2-mirror cavity: geometry

2D-distribution for 400 ps ion bunch duration

2D-distribution for 400 ps ion bunch duration

2D-distribution for 117 ps ion bunch duration

2D-distribution for 117 ps ion bunch duration

2D-distribution for 10 ps ion bunch duration

2D-distribution for 10 ps ion bunch duration

Motivation for a dynamical study

Interaction probability heavily depends on where the ion is located in the bunch phase-space...

Dynamical aspects: 1-sigma particle

Dynamical aspects: 2-sigma particles

Tolerancing the laser spectrum

In reality there will be some energy leakage into the lower part of the spectrum

Tolerancing the laser spectrum

Conclusions

excitation probablity varies from 7% to 20% (including saturation effects) for ion bunch durations from 400ps to 10ps.

Ideal laser bunch transverse size is unfortunately out of reach in the case of a FPC

Ideal laser bunch duration increases with decreasing ion bunch duration (i.e. while cooling occurs)

>63% of the particles can be 'cooled' wihtin a minute
>95% of the particles see 30% reduction of energy spread within a minute if the laser pulse duration is reduced

Design a laser-system, including a FPC, with 1.5mm to 2mm waist at interaction point

Allow for tuning of the lasaer-beam duration between 2 and 12 ps (RMS gaussian)

1% energy leakage in the lower part of the spectrum is not an issue