

WIESŁAW PŁACZEK

Gamma Factory Meeting "Towards the GF Yellow Report" CERN, 25–28 March 2019

(日)

Outline

2 MC simulations of laser-photon–PSI collisions

Numerical results for PoP beam-cooling 3

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

CAIN

- Stand-alone Monte Carlo program for simulations of beam-beam interactions involving high-energy electrons, positrons and photons.
 - → Includes interactions of high-energy electron beam with laser field.
- Written by K. Yokoya et al., KEK, Japan, 1984–2011.
- Code is a mixture of FORTRAN 77 and FORTRAN 90/95, \sim 45 000 lines in \sim 400 files

 \rightarrow not well documented, comments in code scarce.

Dedicated, elaborate meta-language for defining Input (65 pages of description in User Manual).

GF-CAIN: Modification of routines for linear Compton

Scattering probability in time step Δt:

 $P(\vec{r},\vec{p},\vec{k},t) = \sigma_{\text{tot}}(\vec{p},\vec{k}) \left(1 - \vec{\beta} \cdot \vec{k}/|\vec{k}|\right) n_{p}(x,y,z,k,t) c \Delta t,$

where: \vec{k} - photon wave vector, \vec{p} – PSI momentum, $n_p(x, y, z, k, t)$ – local density of laser-photon beam, $\sigma_{tot}(\vec{p}, \vec{k})$ – total cross section for photon–PSI scattering.

- Monte Carlo generation two stages:
 - According to probability $P(\vec{r}, \vec{p}, \vec{k}, t)$ scattering event is sampled using von Neumann rejection method.
 - When scattering event occurs emitted photon is generated, i.e. its energy and angles are generated in PSI rest-frame according to differential cross section, and then event is Lorentz-transformed to LAB frame.
 - ▷ The above is repeated for **each macroparticle**, and then generation moves to the **next** time moment, i.e. $t + \Delta t$,

GF-CAIN: Modification of routines for linear Compton

Total photon–PSI scattering cross section [Bessonov&Kim]:

$$\sigma_{\rm tot}(\vec{p},\vec{k}) = \frac{2\pi r_e c f \Gamma}{[\gamma \omega (1-\beta \cos \psi) - \omega_0]^2 + \Gamma^2},$$

 r_e – classical electron radius, f – oscilator strength, γ, β – relativistic factor and velocity of PSI, ω – incoming photon frequency, ψ – angle between incoming photon and PSI, ω_0 – PSI transition frequency between states 1 and 2, $\Gamma = \omega_0^2 r_e fg_1/(cg_2)$ – spontaneous emission half-linewidth, where $g_{1,2}$ – degeneracy factors of states 1 and 2, resp.

GF-CAIN: Modification of routines for linear Compton

- MC generation of emitted photon in PSI rest-frame ⇒ Unpolarised case so far!
 - azimuthal angle ϕ :

 $\phi \in \mathcal{U}(0, 1),$

where \mathcal{U} denotes **Uniform** distribution,

2 polar angle θ :

 $\cos \theta \in \mathcal{U}(-1, 1),$

③ angular frequency ω' (→ energy E' = ħω'):

$$\omega' \in \mathcal{L}(\omega'_{\min}, \omega'_{\max}),$$

where \mathcal{L} – Lorentzian distribution with prob. density funct.:

$$\rho_{\omega_0,\Gamma}(\omega';\omega'_{\min},\omega'_{\max}) = \mathcal{N} \frac{\Gamma}{(\omega'-\omega_0)^2 + \Gamma^2},$$

with $\mathcal{N}^{-1} = \arctan([\omega'_{\max} - \omega_0]/\Gamma) - \arctan([\omega'_{\min} - \omega_0]/\Gamma)$.

GF-CAIN: H-like and Li-like Pb atoms

- PSI's cannot be defined by **CAIN** input they are implemented in **CAIN** routine LNCPGN:
 - Lithium-like Pb⁷⁹⁺ in file Incpgn-Pb_Li-like.f
 - Hydrogen-like Pb⁸¹⁺ in file Incpgn-Pb_H-like.f
- They are copied into the CAIN file Incpgn.f with the help of Makefile when the corresponding PSI-run is chosen by a make command, e.g.
 - make run-PbLi
 - make run-PbH

and then an appropriate input file is read-in.

- Included time-delay between photon absorption and spontaneous emission plus stimulated emission.
 - \rightarrow appropriate modifications of CAIN event record as well as drift routines were necessary.
- Other PSI's can be implemented in a similar way not elegant, but easier than modifying complicated CAIN input!

GF-CAIN input

• Main PSI beam bunch input parameters:

- Number of real particles and number of macroparticles (each macroparticle represents some number of real particles),
- Energy and its relative r.m.s. spread,
- Twiss parameters $(\alpha_{x,y}, \beta_{x,y})$, r.m.s. geometric emittance (ϵ_x, ϵ_y) and r.m.s. bunch length σ_t .
- Main laser-pulse input parameters:
 - Wavelenght λ_L ,
 - Peak power density *P*₀₀ [Watt/m²].
 - Time profile: Gaussian (r.m.s. time length) or trapezoidal (total pulse length),
 - Spatial profile: Gaussian (Rayleigh length) or donut-shape,
 - Two unit vectors: parallel and perpendicular to laser beam,
 - Stokes parameters for polarisation.
 - ► Laser in CAIN is monochromatic → energy spread added in PSI-defining routines!

Lithium-like Pb ion for PoP (beam-cooling mode)

• **PSI beam:** $^{207}_{82}$ Pb⁷⁹⁺ \rightarrow mass $M_i = 193.687 \, \text{GeV}/c^2$

- transition energy and lifetime: $\hbar\omega_0 = 230.76 \,\mathrm{eV}, \ \tau_0 = 74 \,\mathrm{ps}$
- ion energy: *E_i* = 18.68908 TeV
- ion energy relative spread: σ_E = 3 · 10⁻⁴
- relativistic Lorentz factor: $\gamma_i = 96.491$
- number of ions per bunch $N_i = 2 \cdot 10^8$
- r.m.s transverse beam size: $\sigma_x = 1.051 \text{ mm}, \sigma_y = 1.171 \text{ mm}$

- r.m.s. bunch length $\sigma_z = 12 \text{ cm}$
- normalised emittance: $\epsilon_n = 2 \cdot 10^{-6} \text{ m} \cdot \text{rad}$
- Laser: Gaussian profiles, energy 2σ below resonance
 - angle between laser and PSI beams: 2°
 - photon energy: $E_{\gamma} = 1.195795 \,\mathrm{eV}$,
 - photon energy relative spread: $\sigma_{\omega} = 1.5 \cdot 10^{-4}$
 - photon wavelength: $\lambda_{\gamma} = 1036.84 \, \text{nm}$
 - pulse energy: $W_l = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \text{ mJ}$
 - beam waist: $w_0 = \{1, 2, 3, 4, 5, 6\}$ mm
 - r.m.s. puls length: $I_l = 1.1092 \, \text{mm}$

Doppler cooling of PSI beam

• Laser energy lowered by $2\sigma_{\omega}$ w.r.t. resonance energy

• excited ions • other ions

Alexey's talk, GF meeting at CERN, 26 Feb. 2019

- Perfect agreement between programs of Alexey Petrenko and Camilla Curatolo (both based on balance equation)!
- \rightarrow What about **GF-CAIN**?

GF-CAIN: fraction of excited ions - table

Excited ions [%]	Laser-beam waist w ₀ [mm]					
Pulse energy [mJ]	1	2	3	4	5	6
1	3.52	3.94	3.18	2.43	1.89	1.45
2	4.99	6.56	5.73	4.52	3.58	2.83
3	6.00	8.47	7.82	6.39	5.14	4.10
4	6.71	9.90	9.53	8.03	6.53	5.24
5	7.23	11.08	11.00	9.48	7.79	6.36
6	7.70	12.00	12.24	10.71	8.98	7.41
7	8.04	12.84	13.28	11.91	10.06	8.41
8	8.35	13.59	14.27	12.91	11.09	9.22
9	8.72	14.19	14.99	13.87	11.97	10.09
10	8.97	14.79	15.81	14.67	12.85	10.98

GF-CAIN: fraction of excited ions – plot

≣⇒

Comparisons with Alexey's and Camilla's codes

- \rightarrow **Good agreement** for **lower** pulse energy (< 5 mJ).
- → For higher pulse energy and smaller beam waist more excited ions from GF-CAIN (differences within 1%).

Summary

- CAIN Monte Carlo program debugged and adapted to laser-photon pulse collisions with PSI beams of Pb⁸¹⁺ and Pb⁷⁹⁺ (Gamma Factory) ⇒ GF-CAIN.
- Spontaneous emission delay and stimulated emission implemented → important for PoP experiment.
- Good agreement for number of excited ions with Alexey's and Camilla's codes for lower laser-pulse energy (< 5 mJ), while for higher laser-pulse energy and smaller beam-waist GF-CAIN gives slightly higher rates.
- → FYI: I had a presentation on Gamma Factory at the XXV Cracow Epiphany Conference, 8–11 Jan. 2019, and submitted a contribution to proceedings (to appear in Acta Physica Polonica B); arXiv:1903.09032 [physics.acc-ph] (authors list taken from our current YR draft).