Camilla Curatolo

INFN Padova, Italy

camilla.curatolo@pd.infn.it

Gamma Factory meeting at CERN March 27, 2019

GAMMA FACTORY

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

GAMMA FACTORY: PSI-LASER COLLISION

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

GAMMA FACTORY: PSI-LASER COLLISION

- Laser photon energy in PSI frame $E'_L \simeq 2\gamma E_L$
- Resonance cross section \sim Mbarn (6-7 orders higher ICS off e^-)
- High energy photons emitted by spontaneous emission: isotropic emission

• Max energy of the emitted photons $E_{\gamma}^{max}=4\gamma^{2}E_{L}=2\gamma E_{L}^{\prime}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

CMCC event generator modified for PSI-Laser collisions: GF-CMCC

 v1: Resonant absorption as Compton scattering: no time delay of the emission, no stimulated emission. No collision angle, monochromatic laser.
Total number of photons calculation based on the luminosity formula and total cross section from Bessonov's paper [1].

CMCC event generator modified for PSI-Laser collisions: GF-CMCC

 v1: Resonant absorption as Compton scattering: no time delay of the emission, no stimulated emission. No collision angle, monochromatic laser.
Total number of photons calculation based on the luminosity formula and total cross section from Bessonov's paper [1].

v2: Proper resonant absorption with time delay of the spontaneus emission, no stimulated emission. Collision angle, gaussian distribution of laser frequencies, width of the resonance.

Monte Carlo simulation (MC) and calculation based on the luminosity formula (LUM) with total cross section calculated.

CMCC event generator modified for PSI-Laser collisions: GF-CMCC

 v1: Resonant absorption as Compton scattering: no time delay of the emission, no stimulated emission. No collision angle, monochromatic laser.
Total number of photons calculation based on the luminosity formula and total cross section from Bessonov's paper [1].

v2: Proper resonant absorption with time delay of the spontaneus emission, no stimulated emission. Collision angle, gaussian distribution of laser frequencies, width of the resonance.

Monte Carlo simulation (MC) and calculation based on the luminosity formula (LUM) with total cross section calculated.

v3: Stimulated emission inserted (excited ion can absorb a second photon and it emits in the same direction as the incoming laser photon - at low energy) for the Monte Carlo simulation (MC).

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

SPS AND LHC EXAMPLES

Two examples for SPS and LHC respectively from Bessonov's paper: Xe^{39+} and $Pb^{81+}\mbox{-laser collisions}.$

PSI Beam	Xe ³⁹⁺	Pb^{81+}	
<i>M_i</i> ion mass	120 GeV/ <i>c</i> ²	193 GeV/ <i>c</i> ²	
E_i ion energy	4.19 TeV	579 TeV	
$\gamma_i = E_i / M_i$	34.66	3000	
N _i ions per bunch	$2\cdot 10^9$	$9.4 \cdot 10^7$	
$\Delta\gamma_i/\gamma_i$ rel. en. spread	$3 \cdot 10^{-4}$	0	
ϵ^n norm. trans. emitt.	2 mm mrad	9 mm mrad	
$\beta_x = \beta_y$ beta function	50 m	0.5 m	
σ_x rms trans. size	1.7 mm	38.7 μ m	
σ_z rms bunch length	12 cm	15 cm	
Laser	Green	FEL	
λ_L wavelength (E_L photon energy)	532 nm (2.33 eV)	108.28 nm (11.45 eV)	
N _L photons per pulse	$8.73\cdot 10^{14}$	$3 \cdot 10^{13}$	
U_L pulse energy	0.33 mJ	56 µJ	
<i>P_L</i> mean power (rep. rate 40 MHz)	13.2 kW	2.24 kW	
w_0 waist at IP (2 σ_L)	3.4 mm	50.84 μ m	
R _L Rayleigh length	68.23 m	7.5 cm	
σ_t rms pulse length	1 m	15 cm	
γ photons			
$E_{res} = E'_L$ resonance energy	161.5 eV	68.7 keV	
E_{γ}^{max} maximum photon energy	11.2 keV	412 MeV	

 Xe^{39+} and Pb^{81+}

Features of secondary photons emitted by Xe^{39+} -laser collision first row and Pb^{81+} -FEL second row, simulation with GF-CMCC. First column: angular distribution of full emitted photon beam and $1/\gamma_i$ value reported. Second column: energy as function of the emission angle, colours represent different collimation angles. Third column: energy distribution for three possible collimated beams.

 Pb^{81+}

GF-CAIN and GF-CMCC results comparison in Pb^{81+} -FEL collision. Top: angular distribution of full photon beam. Bottom: spectrum of emitted photon beam collimated at $\theta_{\gamma} = 0.25, 0.5, 1$ mrad. Normalized to GF-CMCC total photons.

200

Э

 Pb^{81+}

Luminosity formula with $\bar{\sigma}$ from Bessonov's [1] gives an OVERESTIMATION of the number of photons per ion:

$$N_{\gamma} = \frac{N_L}{2\pi(\sigma_x^2 + \sigma_L^2)}\bar{\sigma} = \frac{3 \cdot 10^{13}}{2\pi((38.7 \cdot 10^{-6})^2 + (25.42 \cdot 10^{-6})^2)} 3.32 \cdot 10^{-22} = 0.739$$

GF-CMCC results (to be controlled - very long pulses, laser far from diffraction

limited):

laser at resonance

Cross section (Mbarn)	0.	58235900503299087		
Photons per ion	MC	8.8930999999999996E-002	LUM	0.13087509924513643
Real photons per shot	(10^7) MC	0.83595140000000001	LUM	1.2302259329042824

laser 2 sigma below resonance

Cross section (Mbarn)	0.	51154185036851507		
Photons per ion	MC	7.828300000000005E-002	LUM	0.11496017036986919
Real photons per shot (10^7	') MC	0.73586019999999996	LUM	1.0806256014767706

POP EXAMPLE

Proof of principle experiment parameters:

2000000	<pre>!nions num of macroparticles</pre>
193.687D+9	!mion ion mass in eV
18.68908D+12	!eionmed mean ion energy
0.0003	<pre>!relenspreadrel energy spread</pre>
0.001051	!sigx in m
0.001171	!sigy in m
0.12	!sigz in m
1.5D-6	!emitt_n
2.D+8	<pre>!n_ionnum ion per bunch</pre>
230.76	!rismed resonance energy in eV
0.0051	!U_L energy laser in J
0.00015	delas relative energy spread laser!
2.D-3	!sigl rms transverse size laser in m
3.7D-12	!sigt laser length in s
2.6672D+16	!n_phnum laser photons
0	<pre>!ncmcut 1=selection in angle in CM/ 0=no sel</pre>
74.D-12	<pre>!tau0 mean lifetime spont emission in s</pre>
6.	!dscreen screen distance in m
1.	<pre>!reprepetition rate collisione</pre>
2.	!g1
2.	!g2
2.	!angcoll in deg

POP GF-CMCC V2

Total cross section, number of emitted photons per ion per shot and real photons per shot in PoP case. Maximum one interaction per ion with laser at resonance, 1 σ below resonance, 2 σ below resonance. Without stimulated emission.

Cross section (Mbarn) Photons per ion Real photons per shot (3.3087673668321855 MC 0.1991935000000000 10^7) MC 3.9838700000000000	LUM 0.20177807875131243 LUM 4.0355615750262483
Cross section (Mbarn) Photons per ion Real photons per shot	2.9957602550832885 MC 0.1804490000000000 (10^7) MC 3.60897999999999999	LUM 0.18269001160907825 LUM 3.6538002321815646
Cross section (Mbarn) Photons per ion Real photons per shot	2.2165737618689119 MC 0.13336750000000000 (10^7) MC 2.6673499999999999	LUM 0.13517299510903011 LUM 2.7034599021806023

POP GF-CMCC V2: EMISSION TIME DELAY

Mean lifetime τ_0 of the ion in the excite state (mean time of the spontaneus emission) quite long: line width of resonance modelled by a lorentian much narrower then the laser bandwidth

POP GF-CMCC V2: EMISSION TIME DELAY

Big difference without and with time delay (re-emission time). Top row: number of emitted photon generation (1 if the ion interacts only once with the laser, 2 if the ion has already emitted one photon, 3 if the ion has already emitted 2 photons, ...). Bottom row: distance from IP at which the photon is emitted (m).

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Flat screen perpendicular to z axis (of propagation) @ 0.01 m from IP

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Flat screen perpendicular to z axis (of propagation) @ 5 m from IP

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Flat screen perpendicular to z axis (of propagation) @ 10 m from IP

Flat screen perpendicular to z axis (of propagation) @ 15 m from IP

Flat screen perpendicular to z axis (of propagation) @ 20 m from IP

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Flat screen perpendicular to z axis (of propagation) @ 0.01 m from IP

Flat screen perpendicular to z axis (of propagation) @ 5 m from IP

Flat screen perpendicular to z axis (of propagation) @ 10 m from IP

Flat screen perpendicular to z axis (of propagation) @ 15 m from IP

Flat screen perpendicular to z axis (of propagation) @ 20 m from IP

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Flat screen perpendicular to z axis (of propagation) @ 0.01 m from IP

Flat screen perpendicular to z axis (of propagation) @ 5 m from IP

Flat screen perpendicular to z axis (of propagation) @ 10 m from IP

Flat screen perpendicular to z axis (of propagation) @ 15 m from IP

Flat screen perpendicular to z axis (of propagation) @ 20 m from IP

PoP case simualted by GF-CMCC v3 (with stimulated emission):

Code	GF-CMCC		
Simulation method	MC	LUM	
N_{γ} per ion laser at resonance	0.199	0.201	
with stimulated emission	0.137		
N_{γ} per ion laser 1 σ below resonance	0.180	0.182	
with stimulated emission	0.124		
N_{γ} per ion laser 2 σ below resonance	0.133	0.135	
with stimulated emission	0.093		

POP GF-CMCC V3: NO STIMULATED EMISSION

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP.

POP GF-CMCC V3: WITH STIMULATED EMISSION

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 5, 10, 15, 20 m from IP without (top) and with (bottom) stimulated emission.

Laser 2 σ below resonance, emitted photons features on a screen perpendicular to z axis @ 0.01, 0.5, 1, 1.5, 2 m from IP with stimulated emission.

(日) (四) (三) (三) (三)

E

CONCLUSIONS

- Benchmark accurately GF-CMCC with the other codes: validate reliability range
 - Perform a complete optimization to define input parameters for PoP
 - Generation of stimulated emitted photons

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

CONCLUSIONS

- Benchmark accurately GF-CMCC with the other codes: validate reliability range
 - Perform a complete optimization to define input parameters for PoP
 - Generation of stimulated emitted photons

Thank you for your attention!

- E. G. Bessonov, Fundamentals of gamma-Ray Light Sources (Gamma-Factory) based on backward resonance scattering of laser beam photons by cold relativistic ion beams
- E. G. Bessonov, *Light sources based on relativistic ion beams*, Nucl. Instr. Meth. Phys. Res. B 309 (2013) 92–94
- M. W. Krasny, The Gamma Factory proposal for CERN, arxiv:1511.07794 (2015)
- M. W. Krasny et al., The CERN Gamma Factory initiative: an ultra-high intensity gamma source in Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, BC, Canada, WEYGBD3 (2018)

C. Curatolo, W. Placzek, L. Serafini, and M. W. Krasny, *New simulation programs for partially stripped ions - laser light collisions* in *Proc. 9th Int. Particle Accelerator Conf. (IPAC'18)*, Vancouver, BC, Canada, THPMF076 (2018)