

SPS aspects

Gamma Factory meeting March 2019

Y. Dutheil, B. Goddard, F. Velotti

Layout

- SPS operational considerations
- Phase 1 : resonance finding
- Phase 2 : photon flux optimization
- Phase 3 : cooling demonstration
- Accurate resonant energy measurement
- Conclusion

Operational considerations

- The SPS may run in two different modes
 - Coasting mode where the beam is injected, accelerated and maintained for any length of time
 - A cycled mode where the beam is maintained for up to 10/20s
- Cycled operation is favored as it allows multiple user to use the SPS in parallel
 - Cycles (up to 10/20s) with a repetition rate of 30/60s
 - Phase 1 resonance finding could make best use of cycled operation
- Coasting mode imposes the dedication of the SPS to the experiment
 - Allocated in shifts of 8/10 hours for up to maybe 3 shifts per year
 - Considered for end of phase 2 + phase 3

Phase 1, resonance finding

- Multiple dimension overlap required to achieve excitation
 - Horizontal & vertical positions matching
 - Energy matching
 - Time matching
- All dimensions need simultaneous overlap to induce ion excitation and observe the emitted photons
 - Ion-laser interaction off the resonance cannot be observed

Phase 1, resonance finding : procedure

- Use a cycled SPS
 - Relaxed time constraints as it is operated in parallel with other users
 - SPS systems functions are preloaded Beam shape (optics) and position cannot be changed during the cycle based on observations (feedback)
- Systematic scanning in 4 dimensions of the parameters space
 - Fully automatized, from parameter set to beam and instrumentation recording. Intrinsically possible to be done with the SPS control but requires development time

Phase 1, resonance finding : beam position

- Beam position accuracy is dominated by BPMs and quadrupole misalignment while reproducibility is limited by magnet field an current changes
 - Preliminary estimations place the beam position accuracy to ~0.5mm in both planes and its reproducibility to less than ~0.2mm/0.05mm for horizontal and vertical planes.
 - Initial resonance finding may require a scan of the ion beam position by up to 2.5mm or 5 steps of 0.5mm in each plane for a total of 25 positions.
- Beam position may be changed within 10ms allowing the space to be scanned within 0.25s
- Once the maximum overlap position is identified the reproducibility should have a small, but non negligible, effect

Phase 1, resonance finding : ion beam energy

- Beam energy accuracy is dominated by the uncertainty on the integrated dipole field along the beam trajectory
 - Accounting for ion beam energy accuracy, stability and interaction angle preliminary estimation places the upper bound of the uncertainty at 0.1%
 - Reproducibility of the energy should be better than 0.03%, small compared with the laser bandwidth of 0.1%
- Energy of the beam may be changed Constant-Optics scaling
 - was recently developed for slow extraction and allows energy change independent from beam optics or position
 - We consider a scanning of the energy over a range of $\pm 0.1\%$, in 10 steps
 - Each energy step could take 10ms so the complete energy scan may take 0.1s

Phase 1, resonance finding : ion bunch timing

- Laser pulse is up to 100ps at 40MHz and Ion bunch is 210ps, at most at 13MHz
 - Initial overlap cannot be known but reproducibility should be very good and much lower than the ion bunch length of 210ps
- Systematics scanning of the timing will be needed for initial resonance finding
 - Specifics and procedure to be discussed as it depends on the approach agreed to synchronize the laser to the ion bunch

Phase 1, resonance finding : scanning plan

- Scanning if 4 dimension
 - 25 steps in transverse beam position
 - 10 steps in energy
 - For instance 10 steps in timing
 - Total of 2500 sets, possibly explored in as little as 25s if we consider 10ms per setting
- Cycled operation would make even such large number of machine settings easily explored
 - Will require a full automation of the machine setting generation and clean recorded data storage
 - Photon detection system capable of measuring ~0.1% of maximum flux within 10ms

Table 11.2: Parameters, scanning ranges and steps for resonance finding stage

Parameter	Unit	Value	Spread/error	Scan steps	Step size
Laser pulse phase	ns	0	-	50	0.5
SPS γ_R		96.3	± 0.05	10	0.02
Laser wavelength	nm	1034	± 0.5	-	-
H/V beam position	mm	0	± 2.5	5	0.5

Phase 1, resonance finding : dilution plan

- In addition or instead of systematic scanning one could consider beam dilution to achieve the first ion excitation
 - In the transverse plane the existing damper could be used to increase the transverse beam size up to the machine acceptance of ~42x18mm at the IR
 - In the time dimension, the voltage could be reduced to increase the bunch length up to the bucket length of 5ns
- This technique is limited by the instrumentation, in particular the photon detection system
 - Details and limits will can only be discussed once the photon detection system will have been decided

Phase 2 : optimizing the photon flux

- Phase 2 aims at optimizing the ion beam excitation and photon production
 - To maintain resonant conditions for arbitrary long times
 - To reliably reproduce optimum resonant conditions
 - To reliably target specific parts of the beam in energy
- In practice phase 1 will produce one set of optimum machine settings
 - Systematic scanning near this set will provide the optimum machine setting
 - Continuous measurement will provide information on stability and reproducibility
- Switch to coasting SPS operation
 - Do we expect more stability and reproducibility issues ?
 - Do we need to consider a live feedback system (on ion momentum, timing and position) to maintain the resonant condition?

Phase 3 : cooling demonstration

- Using coasting operation and long flat-top times (~100s)
- We could consider using the existing wall current monitor to observe the longitudinal cooling. It has a resolution of 5ps and enough sensitivity to detect the ion beam
- Can we consider observing cooling with cycled SPS operation and up to 20/30s flat-top?

Accurate transition energy measurement

- The accurate measurement of the resonant energy mainly depend on the understanding of all the systematics influencing the ion beam energy
- No specific steps is foreseen but much of the work will be carried on in parallel such as energy calibration using two different partially striped ion species.

Cycled/coasting operation decision tree (disregarding laser considerations) Phase 3 with cycled SPS Yes Can cooling No need for feedback be detected res within ~30s Photon production 16 stable over 30s flattop operation? Need Phase 3 needs No coasting SPS feedback system *Machine parameters cannot be changed in cycled operations

SPS parameters

- Continuously updated
 parameter table available on
 the SharePoint Workspace
 - <u>https://espace.cern.ch/PBC-acc-</u> <u>GammaFactory/default.aspx</u>
 - <u>https://espace.cern.ch/PBC-acc-</u> <u>GammaFactory/Documents%20t</u> <u>racked/PoP_parameters_table.xl</u> <u>sx?Web=1</u>
 - Version controlled so anyone can change it directly

Category	Parameter	Unit	Value
Geometry	Laser-beam angle	deg	2.60E+00
	Cavity length	m	
	IR S-location	m	
Beam parameters	Energy	GeV	18652.59
	Rigidity	T.m	787.53
	Equivalent proton energy	GeV	251.63
	Intensity	ions/bunch	2.00E+08
	H/V normalized emittance	mm.mrad	1.5
	Momentum spread rms		2.00E-04
	Bunch length σ	ps	210.00
	σχ	mm	0.990
	σγ	mm	0.946
SPS paramters	Revolution time	S	2.30E-05
	RF voltage	V	7.00E+06
	Harmonic number		4.62E+03
	Transition energy	GeV protons	2.28E+01
Lattice paramters at IR in LSS6 616	alphaX	rad	1.2915
	betaX	m	62.4
	alphaY	rad	-1.205
	betaY	m	57.5
	Dx	m	-0.4445
	D'x	rad	-7.85E-04
	Dy	m	0
	D'v	rad	0

Conclusion

- A path to the PoP experiment is proposed and so far no show-stopper has been identified
 - Work on the controls, data logging and operational software can start now for tests after the shutdown, in 2021
- Next steps :
 - Detailed specifications of the controls and operational software capabilities
 - Precisely quantify beam position and energy accuracy and reproducibility. Some measurements with beam can be done in 2021

Thank you

