
Andrey Surzhykov

Technische Universität Braunschweig /
Physikalisch-Technische Bundesanstalt (PTB) 

Ion transition parameters 
and their present uncertainties:

Electronic structure of Li-like Pb ions

In close collaboration with Jacek Bieron, Robert Müller, and Vladimir Yerokhin



Transition energies in Pb79+ ions

The knowledge about 2s-2p1/2 (and 2s-2p3/2) transition energies is crucial
for the Gamma Factory PoP experiment.

A number of calculations have been performed since 1990 (table from
Jacek Bieron’s contribution to YR).

How shall we understand this table? Can we trust to some calculations
more than to others?



Hydrogen atom: Well-known solutions

We all have studied in the quantum mechanics course the
Schrödinger equation for a one-electron atom:

We know analytical solutions of this equation!
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Energy:

Wave function: 𝜓𝑛𝑙𝑚 𝒓 = 𝑅𝑛𝑙 𝑟 𝑌𝑙𝑚(𝜃, 𝜑)

Three quantum numbers describe the system:

n = 1, 2, 3… (principal)
l = 0, … n-1 (orbital)
m = -l, …. +l (magnetic)



(nuclear size)

R ~ 10-14 m 

One can estimate the electron
“velocity” in the ground state:

Electron is exposed to huge fields
(of microscopic) dimensions.(for U91+)

(electron orbit)

r ~ 10-13 – 10-12 m 
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What is so special about multiply-
charged, heavy ions?

These ions are natural “laboratories” for studying
simple atomic systems under critical conditions.

Heavy multiply-charged ions



Dirac equation: Hydrogen-like ions

𝐸𝑛𝑗 =
𝑚𝑒𝑐
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Dirac equation is the relativistic wave equation
for a ½-spin electron in the nuclear field:

Energy solutions of the Dirac equation for
point-like, infinitely heavy nucleus:

−𝑖ℏ𝑐𝜶 ∙ ෡𝜵 + 𝑉 𝒓 +𝑚𝑒𝑐
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Schrödinger energy Leading relativistic term



Nuclear effects

Is the electron-nucleus interaction just an
interaction of two point-like charges, one
of which (nucleus) is infinitely heavy?

𝑉 𝑟 = −
𝑍𝑒2

𝑟

Field shift
due to non-zero charge radii

r

V(r)

𝑟2 ≠ 0

Mass shift
due to finite nuclear mass

𝑀𝑁 𝑚𝑒

Both corrections lead only to shift (not splitting!) of energy levels.

𝑀𝑁 ≠ 0



Nuclear recoil correction

Mass shift
due to finite nuclear mass

𝑀𝑁 𝑚𝑒

Mass shift has been discussed already in non-
relativistic quantum mechanics.

In the non-relativistic approach, for single-
electron ions, we have just to introduce the
reduced mass:

𝑚𝑒 →
𝑚𝑒𝑀𝑁

𝑚𝑒 +𝑀𝑁

Accurate relativistic treatment is possible only
within the framework of quantum electrodynamics:



Finite nuclear size effect

The potential induced by the nuclear charge distribution 
𝜌 𝑟 is defined as:

𝜌 𝑟

𝑉𝑁 𝒓 = 4𝜋𝛼𝑍න
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−𝑖ℏ𝑐𝜶 ∙ ෡𝜵 + 𝑉 𝒓 +𝑚𝑒𝑐
2𝛽 𝜓 𝒓 = 𝐸 𝜓 𝒓

And can be plugged in the Dirac equation

Solution of the Dirac equation
is most conveniently written in
the bi-spinor form:

𝜓𝑛𝑗𝜇𝑗 𝑟 =
1

𝑟

𝑔𝑛𝑗 𝑟 Ω𝑙𝑗𝜇𝑗
ො𝒓

𝑖 𝑓𝑛𝑗 𝑟 Ω𝑙′𝑗𝜇𝑗
ො𝒓

We can re-write Dirac equation for the radial components!



Finite nuclear size: Relativistic treatment

r

V(r)

𝑟2 𝐴 > 0

We need to choose proper charge distribution
and plug it in Dirac equation:

𝑑𝑓𝑛𝑗 𝑟
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One can find the relativistic correction (Shabaev 1993)

where 𝛾 = 1 − 𝛼𝑍 2Nuclear radii are „input data“ fo us! Uncertainty in 
nuclear data leads to uncertainty of our calculations.



QED effects

+ -

+
-

+
-

+-

We can for a short time to
“borrow” energy from vacuum
and to create electron-
positron pairs.

Electron can also emit and absorb a
virtual photon. We can see this process as
interaction of electron with ist own
electromagnetic field.

Self-energy                                      Vacuum polarization



One-loop self-energy correction

The zero- and first-order terms are both divergent. These two terms
should be renormalized together with the mass-counter term and are
calculated within the momentum representation.

The remaining higher-order term is convergent and usually is
calculated in the coordinate space by using a partial-wave
decomposition for the electron propagators.

K.T. Cheng, W.R. Johnson, and J. Sapirstein, PRA, 1993
V.A. Yerokhin and V.M. Shabaev, PRA, 1999
A. Artemyev et al., PRA, 2013



One-loop vacuum-polarization correction

The one-loop vacuum polarization diagram can be computed in the
traditional approach by a decomposition of the vacuum loop electron
propagator in powers of the external potential. In this expansion, the
first (also called the Uehling) term contains either one interaction with
the full effective potential:



Two-loop QED corrections

Two-loop self-energy yields the dominant theoretical uncertainty for 
the Lamb shift in hydrogen and light hydrogen-like ions.



Uncertainty budget: Lamb shift

Picture from Vladimir Shabaev

Example: 1s Lambshift in hydrogen-like uranium ,in eV



Many-electron ions: Theory

In quantum theory, states of an atom are described
by their energy values and by wave-functions:

𝐸𝑛 , Ψ 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁

The wave function is a function of 3N coordinates,
where N is the number of electrons! How to deal
with this huge dimension?

𝒓2
𝒓1

𝒓3

𝒓4

Hamiltonians of individual electrons
e-e interactions 

For heavy ions like Pb the starting point is the Dirac equation:

෡𝐻 =෍

𝑖

−𝑖ℏ𝑐𝜶𝑖 ∙ ෠𝛻𝑖 + 𝑉(𝒓𝑖) + 𝑚𝑒𝑐
2𝛾0 +෍

𝑖<𝑗

𝑉( 𝒓𝑖 − 𝒓𝑗 )

How to describe e-e interactions?



Relativistic corrections to e-e interaction

Breit interaction:
Retardation + magnetic interaction

𝑉𝑒𝑒 = 𝑉𝐶 + 𝑉𝐵

=
1

𝑟12
+ −𝜶1 ∙ 𝜶2

cos𝜔𝑟12
𝑟12

+ 𝜶1 ∙ 𝜵1 𝜶2 ∙ 𝜵2
cos𝜔𝑟12 − 1

𝜔2𝑟12

How do electrons interact with each other? Is it just
Coulomb interaction of two static charges?

The relativistic electron-electron interaction is not
anymore just Coulomb-type interaction 1/𝑟12. It contains
magnetic and retardation terms.



Theory of many-electron systems

𝒓2
𝒓1

𝒓3

𝒓4

The Hamiltonian of many-electron atoms reads as:

෡𝐻 =෍

𝑖

−𝑖ℏ𝑐𝜶𝑖 ∙ ෠𝛻𝑖 + 𝑉(𝒓𝑖) + 𝑚𝑒𝑐
2𝛾0 +෍

𝑖<𝑗

𝑉( 𝒓𝑖 − 𝒓𝑗 )

Hamiltonians of individual electrons e-e interactions 

We can easily construct the many-electron wavefunctions and energies if we
neglect the electron-electron interaction term:

Where 𝜑𝑖 𝑟𝑖 are solutions of individual Hamiltonians:

−𝑖ℏ𝑐𝜶𝑖 ∙ ෠𝛻𝑖 + 𝑉(𝒓𝑖) + 𝑚𝑒𝑐
2𝛾0 𝜑𝑖 𝑟𝑖 = 𝜀𝑖𝜑𝑖 𝑟𝑖

Ψ 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁 = σ𝑠 𝑑𝑠

𝜑1 𝑟1 … 𝜑𝑁 𝑟1
⋮ ⋱ ⋮

𝜑1 𝑟𝑁 … 𝜑𝑁 𝑟𝑁

Which potential to use here?



Theory of many-electron systems

𝒓2
𝒓1

𝒓3

𝒓4

We can construct the many-electron wavefunctions as:

Where 𝜑𝑖 𝑟𝑖 are solutions of individual Hamiltonians:

−𝑖ℏ𝑐𝜶𝑖 ∙ ෠𝛻𝑖 + 𝑉𝑒𝑓𝑓(𝒓𝑖) + 𝑚𝑒𝑐
2𝛾0 𝜑𝑖 𝑟𝑖 = 𝜀𝑖𝜑𝑖 𝑟𝑖

Ψ 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁 = σ𝑠 𝑑𝑠

𝜑1 𝑟1 … 𝜑𝑁 𝑟1
⋮ ⋱ ⋮

𝜑1 𝑟𝑁 … 𝜑𝑁 𝑟𝑁

Just Coulomb electron-
nucleus interaction?

Too rough! We need to
account for e-e interactions

𝑉𝑒𝑓𝑓 𝒓𝑖 = −
𝑍𝑒2

𝑟

It is usually convenient to include a part of the
e-e interaction already in the one-electron
orbitals by introducing a screening potential

But… We need to account for the rest of 
e-e interactions! 



Configuration interaction method

𝒓2
𝒓1

𝒓3

𝒓4

State of particular symmetry ȁ𝛾𝑟 𝐽
𝑃 ۧ𝑀

Ψ 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁 = σ𝑟 𝑐𝑟 σ𝑠 𝑑𝑠

𝜑1 𝑟1 … 𝜑𝑁 𝑟1
⋮ ⋱ ⋮

𝜑1 𝑟𝑁 … 𝜑𝑁 𝑟𝑁

Summation over configurations

We can use CSF as basis functions to construct
more accurate wavefunction

Ground state =                            +                       +                      + …

of Li-like ion

1𝑠22𝑠: 𝐽 = 1/2+ 1𝑠23𝑠: 𝐽 = 1/2+ 1s2𝑠2: 𝐽 = 1/2+
In the CI method, the energy levels of the system and the mixing
coefficients cr are obtained by solving the secular equation

In present calculations the 𝑉( 𝒓𝑖 − 𝒓𝑗 ) usually accounts for (frequency-

dependent) Breit interaction corrections.

𝑑𝑒𝑡 𝛾𝑟𝐽
𝑃𝑀 σ𝑖

෠ℎ𝑖 +σ𝑖<𝑗 𝑉( 𝒓𝑖 − 𝒓𝑗 ) 𝛾𝑠𝐽
𝑃𝑀 − 𝐸𝑟𝛿𝑟𝑠 = 0



Configuration interaction method

V. A. Yerokhin and A. Surzhykov, Phys. Rev. A 86 (2012) 042507

Ψ 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁

= σ𝑟 𝑐𝑟 σ𝑠 𝑑𝑠

𝜑1 𝑟1 … 𝜑𝑁 𝑟1
⋮ ⋱ ⋮

𝜑1 𝑟𝑁 … 𝜑𝑁 𝑟𝑁

The summation over configurations can
not be infinite. The finite size of the
basis is one of the sources of theoretical
uncertainty.

One can control the convergence by
enhancing the basis in a clear way.



Transition energies in Pb79+ ions

V. A. Yerokhin and A. Surzhykov, Journal of Physical and Chemical Reference Data  47 (2018) 023105



Transition energies in Pb79+ ions

The knowledge about 2s-2p1/2 (and 2s-2p3/2) transition energies is crucial
for the Gamma Factory PoP experiment.

A number of calculations have been performed since 1990 (table from
Jacek Bieron’s contribution to YR).



Transition probabilities in Pb79+ ions

𝐴 2𝑝1/2 → 2𝑠 = 1.306 × 1010 𝑠−1

𝐴 2𝑝3/2 → 2𝑠 = 2.368 × 1013 𝑠−1

W. R. Johnson, K. T. Cheng, and J. Sapirstein, 
At. Data Nucl. Data Tables 64 (1996) 279.

𝐴v 2𝑝1/2 → 2𝑠 = 1.50 × 1010 𝑠−1

𝐴l 2𝑝1/2 → 2𝑠 = 1.37 × 1010 𝑠−1

𝐴v 2𝑝3/2 → 2𝑠 = 2.46 × 1013 𝑠−1

𝐴l 2𝑝3/2 → 2𝑠 = 2.45 × 1013 𝑠−1


