Laser system for single bunch, "photon production" option

Stephen Gibson, Siobhan Alden, Laurie Nevay

John Adams Institute for Accelerator Science Royal Holloway, University of London, UK

John Adams Institute for Accelerator Science

Overview

From Brennan's slides:

Main objectives

- Verify of simulations on rate of atomic excitation
- Demonstrate matching of characteristics of ion bunches to those of the laser bunches, match laser spectrum to width of the atomic excitation and achieve resonance for adequate fraction of ion population
- Measure of emitted X-rays, characterisation of flux and spectrum, and demonstration of photon extraction from the collision zone
- Demonstrate integration and operation of laser and Fabry-Perot cavity in a hadron storage ring
 Ambition/complexity/cost cut-off
 - Demonstrate laser cooling of relativistic beams and investigation of the different approaches
- Demonstrate feasibility of relativistic Atomic Physics measurements.

From Brennan's slides:

Single-pass or optical resonator option?

- An important concept to demonstrate is the FP cavity, since this is essential for an LHC application
- Highly desirable in the SPS PoP: **consider as baseline** since many aspects are contingent on this
- Adds extra complexity and potential R2E aspects for laser and cavity electronics
- Fallback solution of single pass to at least evaluate for performance and cost

Laser design for SPS Proof of principle experiment:

- Baseline design is a pulsed 1030nm laser that is remote controlled and tolerant to SPS radiation levels so can be installed underground, with free-space transport to a Fabry Perot (FP) cavity [optical resonator] to amplify the pulse energy by a factor >5000 at interaction point, and a repetition rate matched to every bunch in the train: 40 (20) MHz.
- -> see talk by Kevin Cassou.
- This talk: asked to consider a "*fall back solution* for a single pass laser in case the radiation issues for the laser + FP in the tunnel prove insurmountable."
- Aim to hit the same single bunch on each 23 µs turn:
 - SPS revolution frequency 43 kHz == repetition rate of laser.
 - Would like same laser pulse energy at IP, with much lower average energy.

SPS bunch timing

- SPS bunch structure for Pb ions:
 - Krakow meeting: "up to 30 ion bunches in SPS"...
 - At SPS f_{rev} = 43 kHz (23µs per turn), say 24 bunches at 100ns the laser pulses need only be present for 10% of the turn?

Summary of baseline laser + FP cavity

Parameters

Description	Parameter name	Value	
Number of ions per bunch	n_{I}	$2 \cdot 10^8$	
Betatron function at the IP	eta^*	53 m	
Normalized emittance	ϵ	$1.5\cdot 10^{-6}$ m	L
Transition energy	$E_{ m t}$	230.76 eV	
Excited state lifetime	au	76 ps	
Ion rest mass	$M_{ m i}c^2$	193.687 GeV	T
Bunch spacing related frequency	$F_{ m rep}$	5 MHz	
SPS revolution time	$T_{ m c}$	$23 \ \mu s$	
Initial ion-beam energy spread	$\Delta E_{ m i}/E_{ m i}$	$3\cdot 10^{-4}$	
RF voltage magnitude	$V_{ m RF}$	7 MV	
Ion atomic number	Z	82	
Number of remaining electrons in ion	$N_{ m e}$	3	
Harmonic number in SPS	H	4620	
SPS transition energy	$\gamma_t M_{ m i} c^2$	22.8 GeV	
Laser-beam waist (horizontal plane)	$w_{\mathrm{o,h}}$	1.5mm	Cylindrical beam to ease
Laser-beam waist (vertical plane)	$w_{\mathrm{o,v}}$	1.5mm	discussions
Laser-beam central wavelength	λ_0	1030 nm	
Laser beam pulse energy Laser/ion beams crossing angle		5 mJ 2.6°	Minimal acceptable valu according to geometrica contraints
F PoPe meeting, 26/03/3019	Aurélien MARTENS	5	

- Wavelength: 1030 nm
- Crossing angle: 2.6 deg
- Optical resonator used to amplify low pulse energy of laser source:
- Initial laser pulse energy: 1 µJ
- FP cavity gain: 5000
- Laser pulse energy at IP: 5 mJ

n Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Summary of baseline laser + FP cavity

- Initial ion beam:
- Relativistic gamma: 96.3
- Energy spread: 3.10⁻⁴
- Initial ion bunch length 400 ps
- Optimisation of excitation fraction implies constraints on laser pulse dimensions at IP:

Table on previous slide "waist": w_{o H,V} = 1.5 mm (0.361 σ) $\sigma_{L x,y}$ = 0.54 mm ?

 $\Delta t FWHM = 10 ps (2.355 \sigma)$ $\sigma_{Lz} = 1.275 mm == 4.25 ps ?$

Summary of baseline laser + FP cavity

<u>×1</u>0⁻³ Espread 0.3 1030nm 10ps 2.6deg 5mJ 7MV 0nm Initial ion beam: 1030nm 6ps 2.6deg 5mJ 7MV 0nm Relativistic gamma: 96.3 1030nm 8ps 2.6deg 5mJ 7MV 0nm 1030nm 9ps 2.6deg 5mJ 7MV 0nm 0.25 Energy spread: 3.10⁻⁴ 1030nm 10.5ps 2.6deg 5mJ 7MV 0nm 1030nm 11ps 2.6deg 5mJ 7MV 0nm Initial ion bunch length 400 ps 0.2 0.15 **Optimisation of excitation** Laser-beam 8 to 11 ps FWHM looks good enough Longer pulse duration is fraction implies constraints on (ideal: 10ps) worse at start but cooling 0.1 laser pulse dimensions at IP: gets faster once the ion bunch duration is Table on previous slide "waist": 0.05 sufficiently small $w_{o HV} = 1.5 \text{ mm} (0.361 \text{ } \sigma)$ $\sigma_{Lx,v}$ = 0.54 mm ? $\times 10^3$ 500 1000 1500 2000 2500 3000 turnID $\Delta t FWHM = 10ps (2.355 \sigma)$ $\sigma_{1,z}$ = 1.275 mm == 4.25 ps ?

Aurélien MARTENS

GF PoPe meeting, 26/03/3019

Single pass, single bunch laser requirements

Requirements from simulations:

- Repetition rate matched to SPS 43 kHz
- Pulse energy at IP: 5mJ
 - Implies an average power of 215 W:
 - Far less than power stored in an FP cavity at 5 20 MHz, however, still too much optical power to transport by fibre (even in photonic crystal fibre)
 - Laser layout options:
 - a) High pulse energy laser in tunnel near IP: would need same radiation tolerance as baseline.
 - b) High pulse energy laser away from radiation, with >10 m free-space beam transport.
 - c) Low pulse energy laser with fibre transport, with subsequent amplification in tunnel

Pulse duration: FWHM ~10 ps

Short pulse implies peak pulse power of 500 MW [again, far too much for fibre transport without option (c); even then, consider streched pulse in fibre and pulse compression in tunnel]

Single pass, single bunch laser options: activefiber

As suggested by Valentin Fedosseev at Krakow workshop

Free space beam output, up to 10 mJ

CUSTOMIZED kW- AND mJ-CLASS FEMTOSECOND LASER SYSTEMS

	HIGH REPETITION RATE	HIGH PULSE ENERGY				
Central wavelength	103	0 nm				
Repetition rate	50 kHz 100 MHz	10 kHz 20 MHz				
Pulse energy	up to 300 µJ	up to 10 mJ				
Peak power	up to 1 GW	up to 30 GW				
Average power	up to 1 kW	up to 1.5 kW				
Pulse duration	< 300 fs 10	< 300 fs 10 ps adjustable				
Polarization	lin	linear				
Beam quality	Close to diffraction	Close to diffraction-limited, M ² < 1.3				
Average-power stability	<0.5	<0.5% RMS				
Pulse-energy stability	<0.5	% RMS				
Beam-pointing stability	<5µrad RMS (<5%	o of nat. divergence)				
Additional features	Turnkey (no manual adjustment neces temperature-stabilize	ssary), completely software-controlled, d dust-sealed housings				
Options	OPA, SHG, THG, HHG, N	IC, BURST, FASTSWITCH				

Single pass, single bunch laser options: Trumpf DIRA

TRUMPF

Extremely high pulse energy achievable, up to 200 mJ

Pulse duration < 2 ps (bandwidth? / stretch pulse?)</pre>

DIRA: Disk Regenerative Amplifier

	Dira Series						
			Dira 200-100	Dira 200-5	Dira 200-1	Dira 500-10	Dira 750-5
	Wavelength	nm	1030	1030	1030	1030	1030
	Max. average power	W	200	200	200	500	750
	Max. pulse energy	mJ	2	40	200	50	150
	Pulse duration	ps	< 2	< 2	< 2	< 2	< 2
and a start of the	Repetition rate	kHz	≥ 100	1–100	1–100	10-100	5–100
Dira Series	Beam quality	M ²	< 1.2	< 1.3	< 1.4	< 1.4	< 1.4
			TRUMPE Scientific Lasers Dira 200-1				

ccelerator science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Single pass, single bunch laser options: Amplitude

High rep rate to 40 MHz:

Pulse duration to 10 ps Pulse energy only 500 µJ Factor ten less than required for cooling; good enough for photon production.

Tangor

Powerful, full-featured and versatile femtosecond laser

Tangor is a powerful femtosecond laser combining both high repetition rate (going up to 40 MHz and adjustable according to your needs) and high energy per pulse (going up to 500 μ J that can be splitted in several beams according to your production need).

Versatile and full-featured, Tangor femtosecond laser is equipped with: the customization function FemtoBurst™ (choose the number of pulses, their rhythms, time between each pulse between 25 to 100 ns, etc.), the trigger on demand for selecting individual pulses, SuperSync Control for getting more precise synchronization with a high speed scanning system. Tangor femtosecond laser is available with UV output going up to 30W.

Specifications	Tangor	Tangor HP			
Average Power	> 50 W	> 100 W			
Energy Per Pulse	> 300 µJ	> 500 μJ			
Pulse Width	< 500 fs t	o > 10 ps			
Repetition Rate	From single shot to 40 MHz				
Central Wavelength	1030 +/	- 5 nm			
Beam Circularity	> 87	7 %			
Beam Pointing Stability	<25 µr	ad/°C			
Long Term Mean Power Stability	< 1 % rms ov	er 100 hours			
Warm-up Time	< 30	min			

tor science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Single pass, single bunch laser options: Amplitude

High rep rate to 40 MHz:

Pulse duration to 10 ps Pulse energy only 150 µJ, Compatible with fibre coupling option in hollow core fibre: e.g. used for industrial engraving.

Satsuma

Versatile, full-featured and compact femtosecond laser

The Satsuma family of femtosecond laser offers versatility in the most compact aircooled laser platform on the market. Satsuma is a cost-efficient solution providing high repetition rate and high energy, up to 150 μ J.

Versatile and full-featured, Satsuma femtosecond lasers are equipped with: FemtoBurst™ (choose number of pulses, rhythms, time between each pulse from 25 to 100 ns); the trigger on demand for selecting individual pulses, and SuperSync Control for getting more precise synchronization with a high speed scanning system. Satsuma femtosecond laser is available with green, UV and deep UV outputs.

Specifications	Satsuma	Satsuma HP	Satsuma HP ²	Satsuma HP ³			
Average Power	> 5 W	> 10 W	> 20 W	> 50 W			
Energy Per Pulse	> 10 µJ	> 20 µJ	> 40 μJ / 150 μJ				
Pulse Width		< 350 fs to > 10 ps					
Repetition Rate	From single shot to 40 MHz						
Central Wavelength	1030 +/- 5 nm						
Beam Circularity	> 87 %						
Beam Pointing Stability	<25 µrad/°C						
Long Term Mean Power Stability	< 1 % rms over 100 hours						
Warm-up Time	< 30 min						

ohn Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Single pass, single bunch laser options: V-gen

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Fibre coupled: V-gen laser used for Linac4 laserwire Wavelength 1064nm – bit too high for SPS ion energy? Tuneable pulse duration: 3ns, linewidth < 0.1nm

IR short pulse MOPA (master oscillator power amplifier fibre laser

	VGEN-SP-NL-25-10	VGEN-SP-NL-25-20	VGEN-SP-NL-40-10	VGEN-SP-NL-40-20			
Operational Mode	Short Pulsed	nort Pulsed					
Wavelength	1064 nm	54 nm					
Average Output Power	10 W	20 W	10 W	20 W			
Repetition Rate	35–700 kHz	5–700 kHz					
Pulse Width (tunable)	<3 ns	3 ns					
Linewidth	<0.1 nm).1 nm					
Max Peak Power	25 kW 40 kW						
Max Pulse Energy	75 µJ		100 µJ				

H⁻ laserwire: Linac4 profile & emittance scanners

• Dual-station laserwire for operation at 160 MeV, measure stripped electrons and H⁰

- V-gen laser powers 4 laserwires in X and Y at two locations
- Up to 70 m transport fibres in LMA fibre, with upto ~10 kW peak powers.
- Low duty cycle; amplification matched to accelerator

- Note the ion bunch is rather circular in cross section, σ_x ~ σ_y and the laser pulse has transverse dimension slightly smaller than the ion bunch: the laser pulse moves longitudinally and transversely through the ion bunch.
- Fraction of ions excited depends on **spatial-temporal overlap** of the two beams.
- Probability of excitation depends on **photon flux** and **time spent by ion in laser** field.

$$P_s = 1 - exp^{-\sigma(\lambda)\rho(x,y,z)t}$$

Laser parameter

- Optimisations so far based on nearly head-on (2.6°) PSI-photons collisions using 1030nm (1.2 eV) laser, doppler shifted by γ =96.3 to the atomic transition energy (230.76 eV).
- Consider a radical change of wavelength and geometry:
- A green laser was previously ruled out for FP cavity scenario mainly because a frequency doubled laser (532nm) is has an inherent loss of pulse energy, and wavelength increases absorption at mirrors.
- For single pass design however, absorption is not critical, and the orthogonal geometry enables photon flux to be enhanced by squeezing the beam with focusing optics (see next slide).

Photon flux enhancement: laserwire configuration

Reduce geometrical overlap

• Orthogonal geometry gives narrow beam of photons (laserwire): this reduces the interaction volume and increases the photon flux for the ions that pass through this region.

Transverse (XY) views of ion bunch in blue

 $w_{o H,V}$ = 1.5 mm (0.361 σ) $\sigma_{L x,y}$ = 0.54 mm

1030 nm head on (2.6°) pulse, spreads over most of bunch in transverse plane Individual ions see less photon flux

532nm orthogonal pulse, focus photons in specific slice of ion bunch. Laserwire waist << 100um

Improves photon flux by factor ~100

Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

e-laserwires: ATF setup

 Light focused into interaction chamber through vacuum window required careful optics design to deliver beam with minimal aberrations:

FIG. 10. View of the interaction chamber with the laser exit side flange removed, showing the 45° screen/knife edge.

- S. Boogert et al: Micron-scale laser-wire scanner for the KEK Accelerator Test Facility extraction line Phys. Rev. Special Topics Accel. Beams, 13, 122801 (2010)
- Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system Phys. Rev. Special Topics Accel. Beams, 10, 112801 (2007), Issue 11

e-laserwires: ATF2 setup

ATF-II Extraction Line

- Goal: Sub-micron resolution
 laserwire using transmissive optics
- Demonstrate 1µm vertical profile
- Use mode-locked Nd:YAG laser
- $1x10^{10} e^{-}$ and $\sim 2GW$ peak power
- Cherenkov detector for γ-rays

A. Aryshev, S. Boogert L. Corner, D. Howell, P. Karataev, K. Kruchinin, **L. Nevay**, N. Terunuma, J. Urakawa, R. Walczak

ohn Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

e-laserwires: ATF2 laser beam characterisation

ohn Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Green fibre laser, folded geometry:

Ion bunch interaction

- Consider 532nm laser => 88° angle
- Long laser pulse (> ion bunch length) is folded between two mirrors on opposite sides of beam pipe (diameter ~ 130 mm)

- Consider 532nm laser => 88° angle
- Long laser pulse (> ion bunch length) is folded between two mirrors on opposite sides of beam pipe (diameter ~ 130 mm)
- Fast moving ion bunch passes through all photons

Similar to multi pass amplifier

Effectively amplifies by factor of number of reflections ~10 (minor mirror absorption)

For ~130mm between mirrors, want laser pulse length of 1.3m ~ 4ns

Dispersion and spatial targeting of most energetic ions

Reduce energy and spatial overlaps

- Instead of 1030 nm, 10ps pulse, with broad line width, spread over the full momentum range and spatial extent of the ion bunch, consider a 532nm long pulse, and narrow line width, targeting only the high energy ions in the bunch
- If laser is in high dispersive region, the correlation with transverse beam position x, can be used to target high energy ions required to be cooled.

Dispersion and spatial targeting of most energetic ions

Energy scans

- Target spatially the ion energies required to be cooled, in a dispersive region of the accelerator.
- As the phase space is cooled, move the laserwire laterally in x to cool to lower energies.
- Or could use multiple vertical laserwires to cover x.
- Spectral scans could alternatively be achieved by varying the incident angle / mirror chirp (or tuning the laser wavelength).

Multi pass, single bunch laser options: V-gen 532nm

Specifications¹

VGEN-G Green Fiber Lasers

The VGEN-G Advantage

- Up to 30 W average output power
- 3–50 ns (preset values) pulse width
- Single Shot 1500 kHz (tunable) repetition rate
- Up to 180 µJ pulse energy
- High beam quality (M²<1.2)
- Complies with the industry standard (RS232 and TTL interfaces)
- Air-cooled

	VGEN-G-10	VGEN-G-20	VGEN-G-HE-10	VGEN-G-HE-20	VGEN-G-HE-30		
Wavelength			532 nm				
Average Output Power	10 W	20 W	20 W 10 W 20 V		30 W		
Repetition Rate	Single shot to 600 kHz	Single shot to 1200 kHz	Single shot to 600 kHz	Single shot to 1200 kHz	Single shot to 1500 kHz		
Pulse Width	3–20 ns (pi	reset values)		3–50 ns (preset values)			
Pulse Energy (Max)	100	Lµ 0		180 µJ			
Peak Power			10 KW				
Pulse to Pulse Energy Instability ²		<2% RMS@250 kHz					
Polarization		Vertical					
General Characteristics							
Operational Voltage		24 VDC					
Operating Temperature		10−35 °C					
Laser Dimensions		105 x 195 x 283.14 mm 130 x 210 x 299 mm					
Output Head Dimensions		98.7 x 116.5	x 298.7 mm		135 x 145 x 283.7 mm		
Laser Unit Weight		6	kg		6.5 kg		
Conversion Head Weight	4 kg 4.5 kg						
Fiber Length		300 cm					
Output Beam Diameter	2 ±0.3 mm 3 ± 0.5mm (Typical 2.8r						
Output Beam Parameters		M ² <1.2					

- Single bunch option reduces repetition rate to 43kHz and eases average energy requirement to 215 W.
- Several commercial laser system identified with pulse energies, even up to 200mJ, suited for single pass option at 1030 nm at 43 kHz.
 - However such system would require free-space transport
- Commercial 1030nm systems with fibre based delivery appear limited to ~150uJ pulse energies. Maybe high enough for photon production, but not cooling.
- Rethinking geometry & wavelength for the single bunch option could enhance photon flux, if interested in demonstrating 'photon production'. Smaller source for photon diagnostics
- For potential cooling, targeting higher energy ions in a dispersive region with spatial scans angular incidence, may be an option: to be investigated with simulation.

Back up

John Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

JAI @ Royal Holloway, University of London

John Adams Institute:

Alessio Bosco

IAI

EO-BPM/laserwire

- A centre of excellence for Accelerator Science in the UK, formed between Royal Holloway, University of Oxford and Imperial College London.
- Strong research links with CERN, DESY, Diamond, KEK Japan, SLAC US, etc.

Stewart Boogert

Academics:

Stephen Gibson

ROYAL

Pavel Karataev

HOLLOWAY

UNIVERSITY OF LONDON

Post-doctoral researchers

JAI PhD students at Royal Holloway

ROYAL HOLLOWAY

UNIVERSITY OF LONDON

3

Advantages of remote laser system & beam transport

- Lasers are sensitive and can be temperamental; best to keep in a safe laser cabin, away from the accelerator tunnel:
 - Laser room a thermally stabilised environment and vibration free good for operation.
 - Personal can safely access the laser during beam operation, away from radiation.
 - Eliminates expensive commercial electronics from suffering irreparable radiation damage
 - Satisfies CERN safety: interlocked access control on laser cabin, shielding, googles, signs.
 - No need to wait for an accelerator shut down to alter laser settings; particularly important at SPS, with very limited technical stops per year.
- Must therefore transport the laser beam to the accelerator tunnel, two viable options:
 - Free space beam via series of mirrors, and tubes:
 - challenging beam pointing requirements, especially if tubes contain air, susceptible to refractive index change)
 - May be only option if very high power is required.
 - Transport in optical fibres:
 - Easy to install, limits on peak power / pulse duration due to non-linear effects in the fibre.

e⁻ laserwires: ATF2 results

Successful measurement of the 1.07 μ m profile electron beam!

A. Aryshev, S. Boogert L. Corner, D. Howell, P. Karataev, K. Kruchinin, L. Nevay, N. Terunuma, J. Urakawa, R. Walczak

L. Nevay et al: Laserwire at the Accelerator Test Facility 2 with submicrometer resolution Phys. Rev. Special Topics - Accel. Beams, 17, 072802 (2014)

FIG. 12. Calculated projected vertical sigma for the laser as well as the two axes of propagation at the LWIP. The distance is

14

12

10

8

6

 $\mathbf{2}$

-225

-150

-75

 $\sigma ~(\mu {\rm m})$

FIG. 19. Nonlinear step size laserwire scan with the smallest FIG. 20. The corresponding horizontal laserwire scan for the smallest vertical scan, which was required for the combined analysis.

ohn Adams Institute for Accelerator Science

Stephen Gibson – Laser for single bunch 'photon production' – Gamma Factory, 28 March2019

e⁻ laserwires: at PETRA-II & -III

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Chirp pulse amplification scheme as previously described

Vertical breadboard at beam pipe

Fibre amplified laser transport to tunnel in photonic crystal fibre – large area single spatial mode.

Beam delivery optics: NIM in Phys. Res. A 592(3):162-170 · July 2008

John Adams Institute for Accelerator Science Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

Chirp pulse amplification at Petra-III laserwire

Laser oscillator is a Nd:YVO4 solid state mode-locked oscillator emitting laser light at 1064 nm

Master oscillator

Parameter	Value
Wavelength	1064 nm
Pulse Duration (FWHM)	10 ps
Repetition Rate	62.45 MHz
Average Power	850 mW
Pulse Energy	13.5 nJ
Peak Power	1.3 kW

After *pulse stretching* and *4 stage fibre amplification*

Parameter	Value
Wavelength	1064 nm
Pulse Duration (FWHM)	200 ps
Repetition Rate	520 kHz
Average Power	1.5 W
Pulse Energy	2.9 uJ
Peak Power	14 kW

A. Bosco et al, RHUL/DESY

cience Stephen Gibson – Laser for single bunch 'photon production'– Gamma Factory, 28 March2019

	-	-					
Laser	Wavelength	Pulse width	Rep rate	Avg power	Peak Power	Pulse energy	Cost (ex VAT)
Manlight ML-30-PL-R-TKS	1064nm	80 ns	<30 kHz	30 W	6.7 kW	1mJ @ 30 kHz	£13,000
V-GEN VPFL-ISP-1-40-50	1060 - 1080nm	1 - 300 ns	35-1000 kHz	50 W	40 kW	1.5 mJ	£14,471
LDH-P-FA-1060	1064nm	60 ps	1 - 80 MHz	1.4 - 55 mW	8.4 - 14 W	0.76 - 1.5 nJ	£18,641
LDH-P-FA-1060L	1064nm	64 ps	1 - 80 MHz	14 - 427mW	66 - 183W	5.6 - 16 nJ	£28,431
HighQ-2	1045nm	250 fs	63 MHz	1.5 W	92 kW	23 nJ	£36,000
FemtoTrain 1040-5	1040nm	220 fs	10 MHz	5W	2 MW	500 nJ	£53,000
Spirit One ps 1040-10	1040nm	13 ps	200kHz - 1MHz	10W	3.8 MW	50 microJ @ 200 kHz	£93,000
3960C-15HP Tsunami	800nm - 1040nm	5ps	80 MHz	300 - 800 mW	760 - 2000 W	50 nJ	£121,000

A. Bosco et al, RHUL/DESY