Gamma Factory PoP experiment

Interaction Point for GammaFactory POP

2019 03 28

LAL group & more

Outline

- 1. Design guidelines where we are
- 2. Optical cavity
- 3. Laser system
- 4. Interaction point
- 5. Possible immediate R&D

Design Guidelines and integration strategies

- High stability 2 mirrors Fabry-Pérot resonant cavity 40MHz
- High power Yb-doped fiber laser system seeded by a low-phase noise mode lock laser oscillator
- Laser system and locking electronic integrated inside the IP module in SPS with possibility of moving power unit part at least depending on radiation feedback
- Interaction module comes as a **block** already commissioned in LAL at high power with easily removable laser and electronics parts and with diagnostic of current status respect to radiation potential damage
- UHV 10⁻⁹ mbar nominal vacuum
- Fully remotely controlled apparatus within Tango / FESA interface or directly in FESA ?
- Ease integration in the SPS constraints environment.
- By design a day-zero time/spatial overlap of the beams

In the meantime

- build up a test-bench 2 mirrors cavity in the lab before end of 2019 with a high power laser to address the bottleneck of the system.
- Study of rad hard alternative to integrated standard electronics
- Investigate the possibility of testing radiation hardness on the PSI proton test facility

Status

- Converging status for the simulation for the definition of the laser parameters.
- Contacts with almost all the industrial suppliers for the foreseen design of the interaction point have been contact
- Ongoing completion of the list of all foreseen integrated electronics and radiation sensitive element
- Slow ongoing preparation of NDA between CNRS supplier + CERN supplier for complete review of the electronics from radiation hardness study
- Mechanical design started in the LAL design Office Y. Peinaud.
- Ongoing preparation of test of 2 mirrors optical cavity to address bottlenecks

Missing input for design

- 1. Synchronisation scheme
- 2. Phase delay setting. Beam arrival time synchronization signal
- 3. Radiation level, Radiation shielding relevance
- 4. Accuracy of the SPS fiducial network.

Laser parameters

• From simulations, the preliminary laser parameters are:

Parameters	Values	Unit	Comment	
central wavelength	1030-1040	nm	On wavelength fixed in this range	
Central wavelength tunability	0.2	nm		
spectral bandwidth (a)	0.1-0.5	nm	FTL pulse or chirped pulse possible	
Pulse length	8-11	ps	Spectrum shap dependent, Gaussian assumption	
Frep ^(b)	40	MHz		
Phase jitter	<10	fs	10Hz-10MHz, strongly limit possible supplier	
average Power	40-50	W	vary vs the spectral setting / vs TBC	
Energy/pulse	>1	uJ	vary vs the spectral setting	
polarisation	circular	-		
beam diameter	1 - 2	mm	Ajustment with telescope for coupling optimization to OC	
beam quality, M ²	<1.2	-		

^(a) possibly tunable but easier operation at fix value. Spectral shaping with sharp edge in the blue

^(b) with a coarse (+/- 15kHz) and fine tuning with a piezo stack

• Feasible custom commercial laser.

Laser System

- > Low phase noise laser oscillator with rad hard component (not the electronics)
- > First stage with bandwidth control with 2 FBG (LP, HP) and a chirped fiber Bragg grating temperature controlled and pre-amplifier to compensate for circulator losses. Micro controller for dispersion tuning and stabilization. Qualified space components ...
- > First amplifier stage to ~5 W,
- > Second amplifier stage to ~ 50 W
- > Rack 19" system with full safety interlock and status of components
- > HR spectrometer (10pm resolution) based on SWIFTS technologies STmicroelectronics. Qualified space components ...
- > Agreement for NDA components on most of the components except laser diode but easy to test on radiation test facility

Spectral shaping and control

- > From 6-7nm femtosecond laser spectrum we keep 0.3-2nm around a central wavelength
- > Double FBG temperature controlled
- > CFBG dispersion temperature controlled

Optical cavity proposal (see Aurélien's talk)

AM shows that a most simpler design with 2 mirrors (plan-concave) cavity is giving us :

Parameters	Values 2- mirrors OC	Unit	Comment
Crossing angle	2,6	0	
waist_x @ IP	~1.4	mm	
waist_y @ IP	~1.4	mm	
Minimum waist	1.25	mm	On the coupling mirror
FSR = c/2L	40	MHz	
length L	3747,405	mm	
Beam diameter M1	1.25	mm	
Mirror diameter Dm	25.4	mm	
Coupling	~ 70	%	
Gain	> 5000		Limited by oscillator phase noise

The 2 mirrors OC has many advantages:

- simple design possible (cost-efficient solution for PoP experiment)
- easier alignment can be made without breaking vacuum
- easy integration with full remote control of the cavity possible.
- minimized opto mechanics under vacuum

Integration of the interaction point

LSS6.616: Stay-clear for IR elements

Integration foreseen constraints

First list of the integration constraints :

- radiations
- limited integration time
- dirty air environment
- handling up to the LSS6-616
- fiducial network accuracy of the SPS

Assumptions:

- Good temperature (+/-0.5°K) and RH(40%-60%) stability in SPS tunnel
- Optical Cavity will not be opened on the SPS except for maintenance
- Rad hard issue : Laser an electronics are for the moment on the IP module

- +/-0.2 mm mechanical alignment of the IP considering a state of the art fiducial network and laser tracker alignment

3D view LSS6 optical cavity

IP module mechanical integration

Some numbers

- length ~600cm
- width ~80 cm

- weight ~ 10 -11T epoxy granite with possible integration of radiation shielding (<u>https://www.microplan-group.com/images/pdf/Schede%20tecniche/materials/celith-granito-composito-granit-reconstitue-polymerbeton.pdf</u>)

- manually handle in the SPS tunnel / air lifting cushion for final installation on predefine sorting pin. Preparation of the ground and laser tracker alignment of ground support

Beam impedance

3 differents sections

conic section are 40cm long INOX 316LN => asymmetrical conic shape on the vertical axis only

UHV mirror mount

UHV mirror mount

- piezo-motorized gimbal mirror mount with 2 tilts
- axial synchronization annular piezo
- Side ejection of the transmitted laser beam

Development of a 62 MHz test cavity for GFPop @ LAL

- > The 75 MHz PLIC cavity can be upgraded: 2 new mirror HR (<1k€) @ 1030nm + 40cm CF tube (<1k€)
- > Laser system : Onefive low phase noise oscillator + CFBG (TEC) + Mighty laser 50 W YDFA + (CVBG
 ?). On going quotation for the CPA elements.
- > Diagnostic : HR spectrometer (18k€)
- => Demonstrate >150kW? with 2-mirror FP cavity and spectral control

Next step in coming weeks

- > YELLOW REPORT ...
- > Data collection for NDA for all the electronics.
- > Iteration and meetings with laser manufacturers to freeze a possible design
- > From the GF POP experiment march meeting discussion list of actions and update
 - 1.2 BPMs will be added to the IP module => if have model please send it (80mm aperture possible rescaling at 150mm aperture ?)
 - 2. The inner shape of the shielding will be modified following Aaron suggestion => updated drawing will be send with asymmetric section and RF coper finger
 - 3. Synchronization scheme proposal from W. Höfle => write down page on requirement and foreseen operation and interface with the cavity locking
 - 4. Integrate a first version of IP UV photons imaging system FS corning and UV sCMOS
 - 5. Radiation / EEE : risk of damage during proton operation : installation of laser and electronics in 24hours slot.
 - 6. SPS visit : crab cavity pumping system close to LSS6.616 ... bad news for vibration / **BUT :** visiting the downstream part a section MBB62150 and QF62210 is close to (~5-8m laser transport line) the old TI18 tunnel with a potential more radiation safe place for the laser see next slide...

CERN Geographic Information System

CNRS | IN2P3 | 2019/03/28 | Page 19

SPS visit

Questions are:

- Beam sizes ?
- Radiation level?
- Any issue being after extraction for LHC ?
- Or other reason if I well remember Valentine mentioned this place in January

Mètres

SPS visit

LSS6 616

Vacuum group of the crab cavity

