Radiation to electronics aspects for SPS gamma-factory

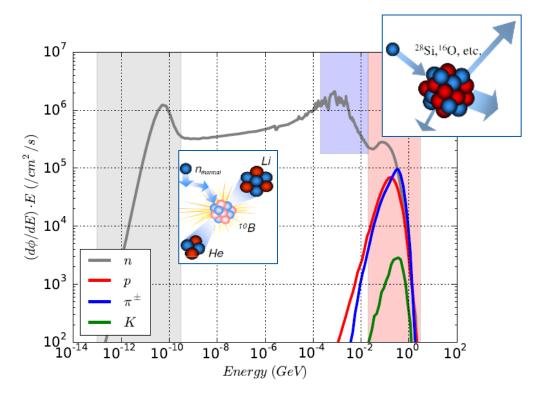
Gamma Factory meeting (25-28 March 2019) Indico link: <u>https://indico.cern.ch/event/802131/</u>

Rubén García Alía, Salvatore Danzeca With input from: R2E

- SMM-RME/RadMON: Matteo Brucoli
- MCWG: Yacine Kadi, Oliver Stein, Kacper Bilko, Diego Di Francesca, Giuseppe Lerner
- FLUKA team: Francesco Cerutti, Luigi Esposito, Anton Lechner

Outline

- Introduction to R2E challenges for accelerators
- R2E radiation monitors
- SPS LSS4/LSS6 radiation levels
- LHC radiation levels for ion operation



Outline

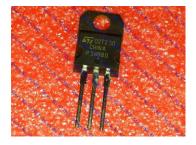
- Introduction to R2E challenges for accelerators
- R2E radiation monitors
- SPS LSS4/LSS6 radiation levels
- LHC radiation levels for ion operation

Introduction: mixed field environment and SEEs

- **SEEs** are induced by indirect energy deposition (nuclear reactions) from hadrons
- Two main intervals can be distinguished: **thermal neutrons** (causing SEEs through ¹⁰B capture) and **high-energy hadrons (HEH,** defined as hadrons above 20 MeV + intermediate energy neutron contribution)
- Therefore, the HEH and thermal neutron (if relevant) sensitivities need to be qualified
- Annual levels in areas with COTS-based systems range from 10⁵ (ground-level) to 10⁹ HEH/cm² (LEO-orbit)
- **Cumulative radiation effects:** Total Ionizing Dose (main contributions: electromagnetic showers, charged hadrons) and Displacement Damage (main contributors: neutrons)

Introduction to R2E problematic and approach

- For critical LHC systems (e.g. power converters, quench protection system, beam instrumentation, vacuum, cryogenics...) and areas with radiation levels above 10⁷ HEH/cm²/yr:
 - The use of commercial modules with active electronics is (as a general principle) excluded
 - Rad-tol approach relies on in-house custom COTS-based design and qualification (typically requiring 3-5 year timeframe, from conception up to machine installation)
 - For complex/high-performance systems (e.g. cameras, high-power DCDC converters) an inhouse solution might not be possible, and the alternative is (i) to use rad-hard modules (e.g. for space, very expensive!) or (ii) to partner with industry for rad-tol solution
- For areas with lower radiation levels, or **non-critical applications**, "black-box" modules can be used, however the information gained from their radiation testing is limited, as:
 - There is no traceability of the individual components used
 - The test is purely functional (it works or it doesn't), with no option of selecting alternative references or redesigning
 - (Rare) exceptions: companies willing to share Bill-Of-Materials and schematics, and to adapt proposed BOM/layout changes to R2E recommendations
- Main Gamma Factory R2E concern: laser system (only commercial solutions available? Possible rad-hard option from e.g. electron machines?)

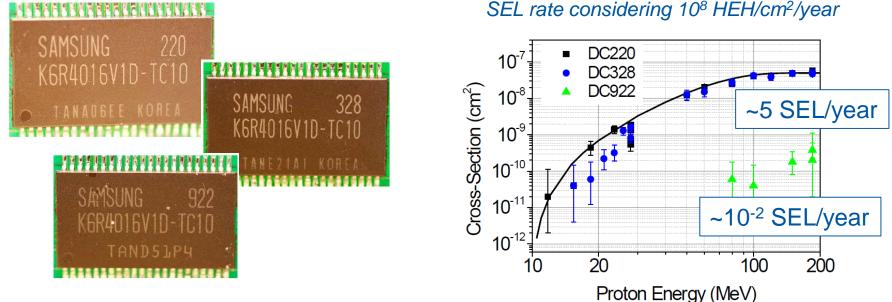


Risks linked to box-level testing

SE PULS SL5.300 unit

Conclusion: for rad-tol design, being in control of **individual part selection** is **essential**, also linked to **re-design options**

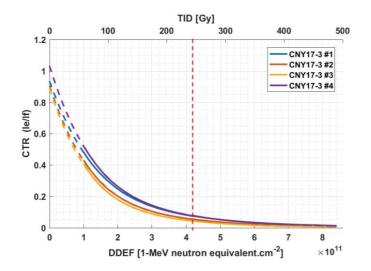
STP3NV80 (N-channel, 800V) 22 destructive events in LHC before 2015


IRFBE30 (N-channel, 800V)

One destructive event in LHC before 2015

Risks linked to lot-to-lot variability

- Same reference and different date code with SEL sensitivity difference of factor ~500
- Importance of lot/batch traceability and common component purchase ٠



R2E component level testing

- Typically carried out at PSI, with **200 MeV protons**, capable of inducing:
 - TID effects: common targeted lifetimes for COTS are 200 Gy – 1 kGy
 - Can also be tested in a more accessible manner through cobalt-60 source at CERN
 - Displacement damage effects: common targeted lifetimes for COTS are 2.10¹²-10¹³ n_{eq}/cm²
 - Single Event Effects: common target is SEE free for a proton fluence of ~10¹²-10¹³ cm⁻²
- Results reported and structured in on-line database (very useful for rad-tol COTS-based system designers)

PSI test example: Current Transfer Ratio (CTR) degradation of optocoupler, mainly due to displacement damage (Rudy Ferraro, EDMS 2002401)

R2E component level testing (II)

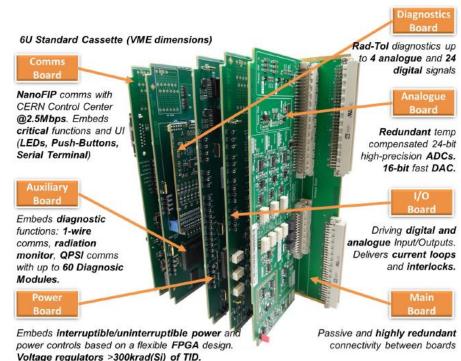
http://radwg.web.cern.ch/content/ radiation-test-database

This is the RADWG test database maintened by the EN-SMM-RME Section. Click on 'Add filter' to refine your search.

For more details contact : Salvatore Danzeca List (302)

302) Add Filter -

LIST (302)						
	Reference	Туре	Device Function	Test Date ▲	Test Characteristics	Edms Report Number
۲	TPS7B6850	Voltage Regulator	High-Voltage Ultralow Quiescent- Current Watchdog LDO Voltage Regulaor	2019- 02-16	ΔVOut,Icc, SEL, SET	2112895
۲	TL1431	Precision Programmable Reference	Precision Programmable Reference	2019- 02-16	ΔVOut,Icc, SEL, SET	2113396
۲	74HC74D	D Flip Flop	D-type flip flop	2019- 02-15		2100780

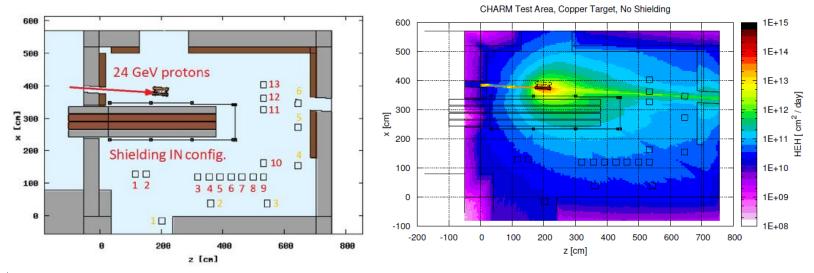

Gamma Factory Meeting – 25-28 March, 2019

Radiation to Electronics aspects 9

Admin

R2E system level testing

- Efficiently combining top-down (from system to subsystem/component) and bottomup (discrete testing of critical components) approaches
- Importance of intelligent design of experiment in order to enhance failure observability (e.g. selfdiagnose systems, system modularity)
- Importance of defining failure modes and associated criticality
- Importance of common component qualification and sub-system development (e.g. versatile communication link)


FGClite system for LHC power converter controls (S. Uznanski, TE-EPC), qualified for HL-LHC ARC and shielded alcove levels, in operation since 2017

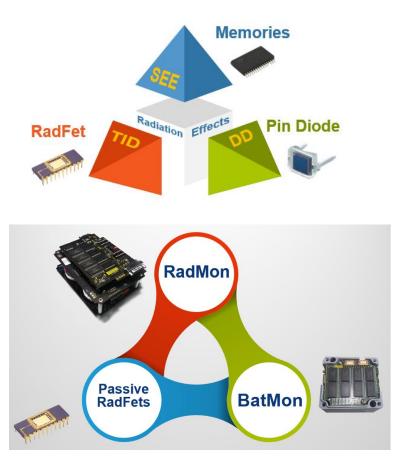
Radiation to Electronics aspects

R2E system level testing: CHARM

- Radiation field generated by interaction of 24 GeV proton beam with 50 cm copper target
- Highly unique, at it provides:
 - A radiation environment closely resembling that of the accelerator (different particle energy spectra possible by combining location, target and shielding)
 - A very large irradiation volume, enabling the qualification of large quantities of components and boards in parallel, and of full systems

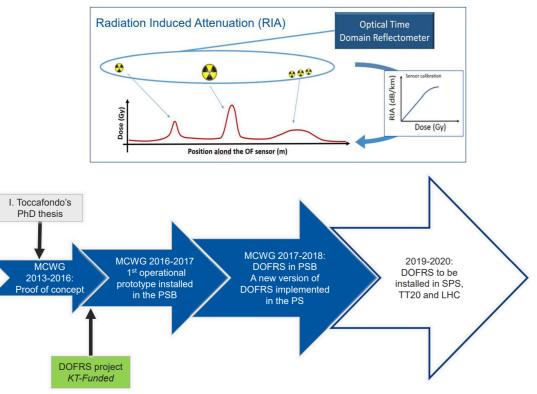
R2E system level testing: CHARM (II)

- Automatic conveyer with cable chain for connection, capable of transporting a full rack
- Movable shielding system to modulate radiation environment
- Test carried out in operational conditions for systems under qualification

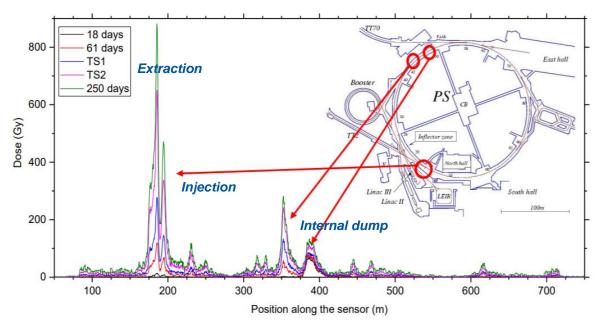

Outline

- Introduction to R2E challenges for accelerators
- R2E radiation monitors
- SPS LSS4/LSS6 radiation levels
- LHC radiation levels for ion operation

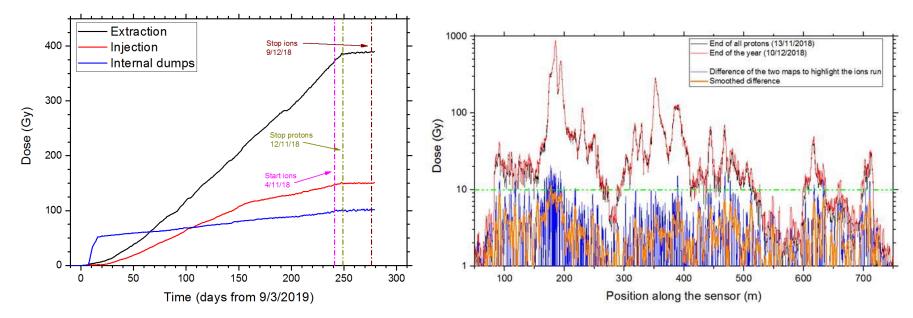
RadMON monitoring system


- Full in-house design, production and calibration/qualification
- Based on COTS components; capable of actively measuring HEH fluence, 1-MeV neutron equivalent fluence and Total Ionizing Dose (TID)
- 392 RadMONs in LHC; in critical areas (+ more in injectors and experimental areas), deported modules (active RadFET) placed at equipment location
- v6 upgraded version almost fully deployed in LHC for 2018 operation
 - Enhanced TID and HEH fluence sensitivity
 - Direct thermal neutron fluence measurement
 - TID lifetime improved from 80 to 250 Gy
 - Reprogrammable, modular and upgradable

Optical fiber dosimetry at CERN


- Provides online 1D radiation maps of accelerators with single (or limited amount) of interrogators
- Future LS2 installations:
 - SPS and TT20 (ECR EDMS 1969746)
 - DS regions of IP1, IP5 and IP7 (ECR EDMS 1978574)
- Applications go beyond R2E (e.g. high-resolution spatial distribution of losses in SPS and TT20 for extraction optimization)

Optical fiber dosimetry at CERN (II)


- Example of operation: 2018 in PS
- To be installed in SPS (and parts of LHC) during LS2

Gamma Factory Meeting – 25-28 March, 2019

Optical fiber dosimetry at CERN (III)

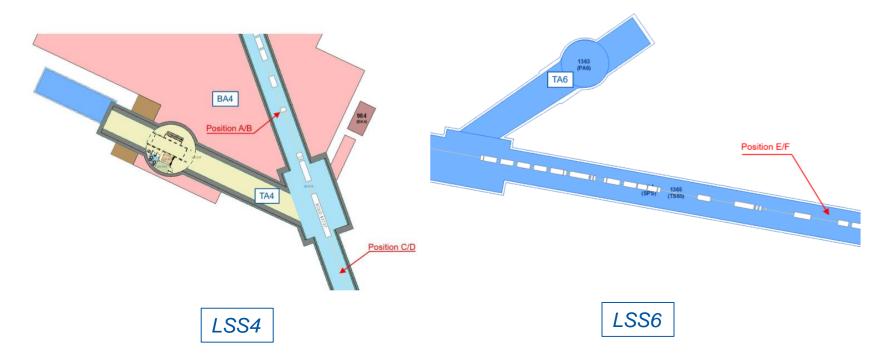
 Negligible contribution to PS dose from 2018 ion run (right plot: ion measurements below green line sensitivity limit of 10 Gy)

Outline

- Introduction to R2E challenges for accelerators
- R2E radiation monitors
- SPS LSS4/LSS6 radiation levels
- LHC radiation levels for ion operation

"Report on the Radiation on Electronics measurements for Gamma Factory in SPS LSS4 and LSS6", M. Brucoli (EDMS 2080251)

Run 2 BLM levels in SPS LSS4 and LSS6


SPS BLM "LOSS_CYCLE" data, excluding negative values; <u>data processing needs to be validated</u> in terms of noise and offset

	BLM name	TID 2016 (Gy)	TID 2017 (Gy)	TID 2018 (Gy)	TID total (Gy)
0	SPS.BLM.61631.MKE1	<10	62	18	81
1	SPS.BLM.61634.MKE2	<10	128	81	211
2	SPS.BLM.61637.MKE3	<10	64	12	77
3	SPS.BLM.61651	<10	57	<10	61
4	SPS.BLM.616	42	143	102	289
5	SPS.BLM.415	<10	32	<10	34
6	SPS.BLM.416	<10	94	21	120
7	SPS.BLM.417	42	71	153	266

- High radiation level area for commercial electronics, with annual TID values for 2017 in **30-140 Gy** range
- 2018 ion levels for LSS4/LSS6 below BLM sensitivity

BatMON/RadFET radiation monitor locations

Gamma Factory Meeting – 25-28 March, 2019

BatMON/RadFET radiation monitor locations (II)

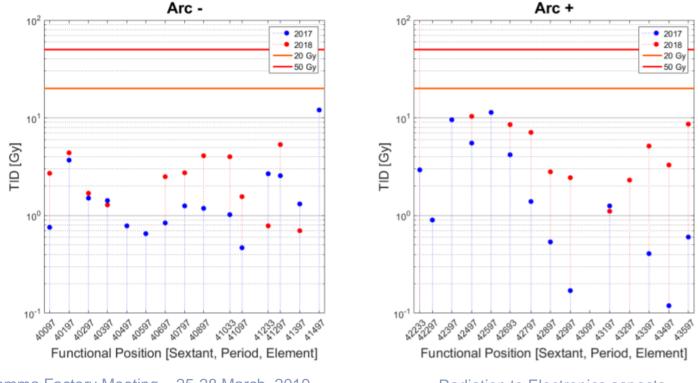
Gamma Factory Meeting – 25-28 March, 2019

Summary of SPS LSS4/LSS6 radiation level measurements

Location	Start date	End date	
LSS4	18/09/2018 (TS2)	17/01/2019	
LSS6	18/09/2018 (TS2)	17/01/2019	

Long Straight Section	Position	Height	R-factor	Ф _{нен} [pp/cm²]	Φ _{τhN} [pp/cm ²]
LSS4	А	Beam	0.1	8.88 x 10 ⁹	8.30 x 10 ⁸
LS54	В	Floor	1.9	8.80 x 10 ⁸	1.64 x 10 ⁹
	E	Beam	0.1*	1.50 x 10 ¹⁰	1.40 x 10 ⁹
LSS6	F	Floor	1.9*	2.04 x 10 ⁹	3.81 x 10 ⁹

- LSS4/LSS6 BatMON/RadFET measurement summary (2018 TS2 – end of run*):
 - At beam height:
 - ~10¹⁰ HEH/cm², ~10 Gy
 - At floor level:
 - ~10⁹ HEH/cm², ~5 Gy

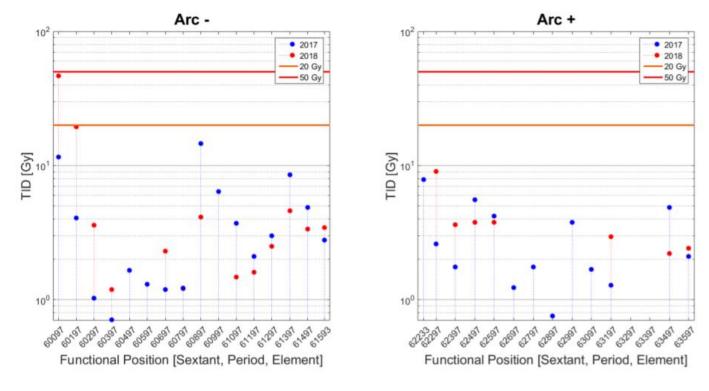


*including both protons and ions (after 12.11.18) Gamma Factory Meeting – 25-28 March, 2019

Long Straight Section	Position	Height	TID [Gy]
1554	А	Beam	10.5
LSS4	В	Floor	4.8
LSS4	С	Beam	5.4
L334	D	Floor	3.9
LSS6	E	Beam	9.8
L330	F	Floor	4.0

Radiation levels in nearby SPS ARCs (Sextant 4)

Slightly lower but similar levels in ARC than in LSS [as opposed to "hot" LSSs such as LSS1 (dump) or LSS2 (NA extraction)]



Gamma Factory Meeting – 25-28 March, 2019

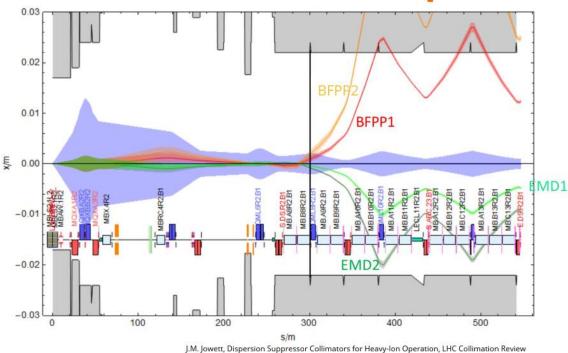
Radiation levels in nearby SPS ARCs (Sextant 6)

Slightly lower but similar levels in ARC than in LSS [as opposed to "hot" LSSs such as LSS1 (dump) or LSS2 (NA extraction)]

Implications of LSS4/LSS6 radiation levels

- For ion operation:
 - Losses are expected to be much smaller than for protons (<1 Gy/ion operation period), and therefore not an issue in terms of cumulative effects on commercial electronics
 - Single Event Effects (SEEs) could still be a concern, especially in terms of soft errors in digital electronics
 - Further analysis: RadMON values (i.e. online measurements) for ion operation in SPS arc are under investigation in the MCWG
- For proton operation:
 - Levels of ~5-10 Gy and ~10⁹-10¹⁰ HEH/cm² are clearly a threat for commercial electronics, both in terms of SEEs and cumulative (i.e. lifetime) effects
 - Keeping Gamma Factory electronics off (i.e. unbiased) during proton operation would spare it from SEEs and (most) TID effects, but would still induce significant displacement damage effects (bipolar transistors, opto-electronics, sensors, LEDs...)
 - Optimal solution would be not to have it in tunnel during proton operation

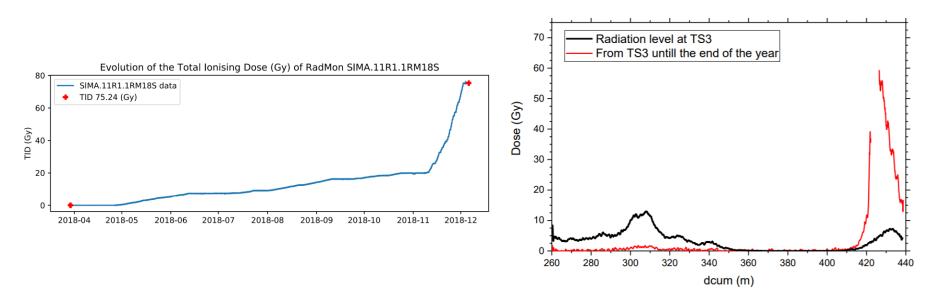
Outline


- Introduction to R2E challenges for accelerators
- R2E radiation monitors
- SPS LSS4/LSS6 radiation levels
- LHC radiation levels for ion operation

BFPP losses in LHC

²⁰⁸Pb⁸²⁺ +²⁰⁸ Pb⁸²⁺ \longrightarrow ²⁰⁸ Pb⁸²⁺ +²⁰⁸ Pb⁸¹⁺ + e⁺ 281 barns at HL-LHC (7*Z* TeV) [1]

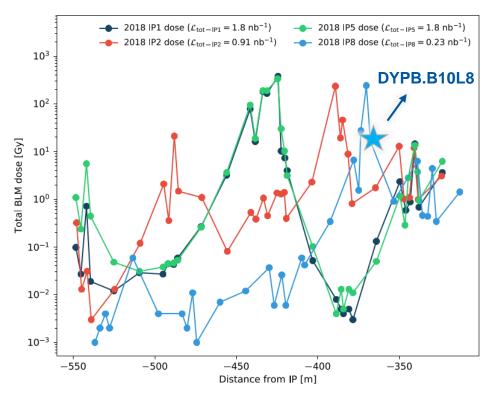
[1] Meier, H. et al., "Bound-Free Electron-Positron Pair Production in Relativistic Heavy Ion Collisions", Phys. Rev. A, 63:032713, 2001.



J.M. Jowett, Dispersion Suppressor Collimators for Heavy-Ion Operation, LHC Collimation Review 2013

Gamma Factory Meeting – 25-28 March, 2019

Ion dominance of 2018 LHC losses in IP1/5 DS


RadMON (left) and optical fiber (right) DS losses for 2018, showing overall dominance of ion losses with respect to protons, having however a limited impact on operation as they are shifted to connection cryostat (no equipment racks below it)

2018 ion run: IP1/2/5/8

- Large integrated luminosities, leading to peak BLM levels of ~500 Gy in all experiment IPs
- QPS failures during ion run: B10L8 (x3), B8R1, B9R5, B9L2
- Not critical for operation, but further analysis and relocation required for Run 3, which plans to accumulate a significant fraction of the 10 nb⁻¹ HL-LHC ion luminosity target

2018 BLM doses in cells 9-13 of different IRs, left side

Radiation to Electronics aspects 29

Summary and Outlook

- Radiation levels in the LHC injector chain for ion operation are low (typically below radiation monitor sensitivity*)
 - Possible additional radiation source terms for gamma factory operation?
- Such levels are not expected to be a threat to electronics in terms of cumulative effects (TID, DD) but if above ~10⁷ HEH/cm²/year could cause SEE issues, especially in terms of soft errors in digital electronics
- Laser systems (e.g. opto-electronics) can be highly sensitive to displacement damage, which will also induce degradation even if the components are unbiased (i.e. non-active) → possible issue if equipment is left in SPS during proton operation
- Radiation qualification of commercial modules ("black-boxes", with no control of individual part selection and traceability) is highly challenging (especially for distributed systems) and only provides a very limited amount of information

(*) Improved sensitivity of SPS ARC measurements for ion run will be achieved through RadMONs after 2018 analysis

30

Thank you for your attention!

Gamma Factory Meeting – 25-28 March, 2019