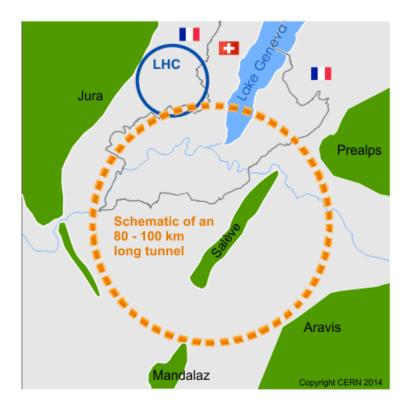


scSPS Design Project

7th March 2019


University of Oxford

Luke Dyks David Posthuma de Boer Aimee Ross

Royal Holloway

Daniel Harryman Gian Luigi D'Alessandro Siobhan Alden Imperial College Michael Backhouse

Future of Particle Physics

- LHC: 14TeV
- FCC-hh: 100TeV
 - Higgs boson couplings
 - Top quark decays
 - Quark substructure?
 - Supersymmetry?

$Linac4 \rightarrow Booster \rightarrow PS \rightarrow \text{Sesp} + \text{HFCC-hHCC-hh}$

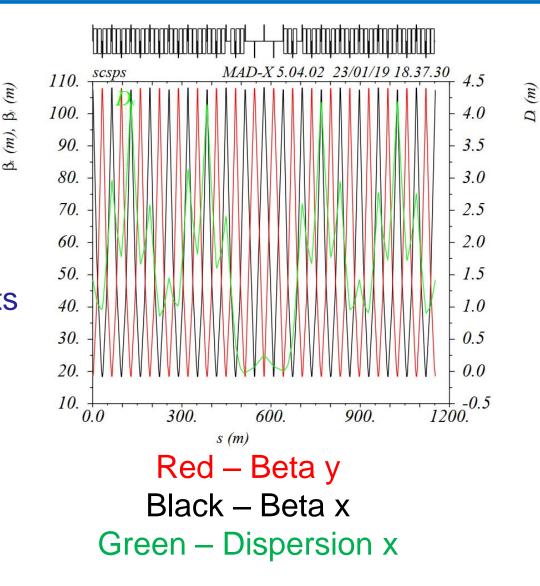
scSPS General Parameters

- SPS
 - 6.9km circumference
 - 26GeV to 450GeV
- scSPS
 - Same tunnel
 - 26GeV to 1.3TeV

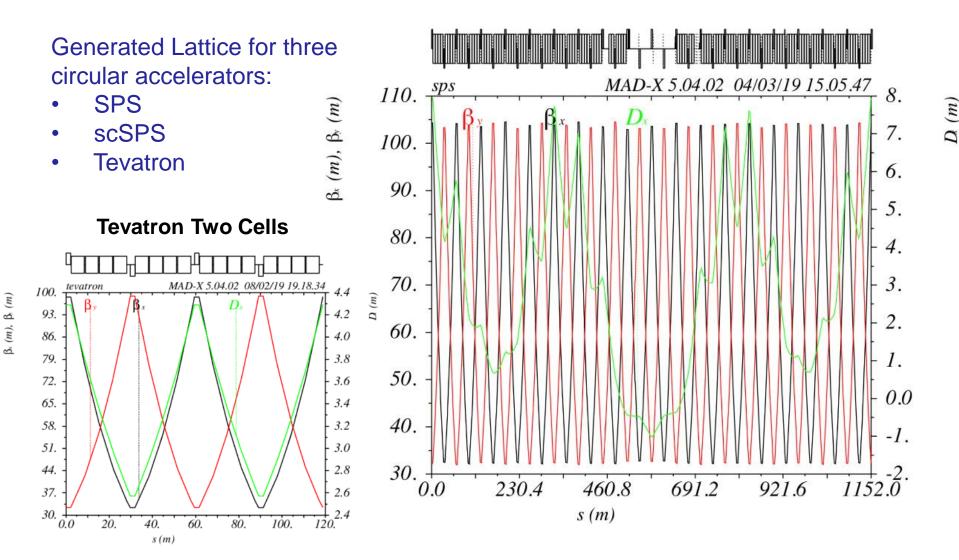
- Previous study: basic machine parameters
- Our study:
 - Lattice
 - Magnets
 - RF cavities

scSPS Lattice Design Student Design Project

Gian Luigi D'Alessandro Siobhan Alden


- Investigation of first scSPS design report
- scSPS lattice developed and comparisons made
- Developed dispersion suppressor schemes
- First chromaticity and sextupoles studies
- Global lattice parameters investigated
- Options for alternative machine lattice considered

First Lattice Generation


 Obtained Lattice from scSPS parameters [1] ⁽²⁾/_a

- Calculated Bending Magnets and Quadrupoles constraints
- Maximum Dispersion
 ~ 4.1 m
- Min Betas ~ 20 m
- Max Betas ~107 m

Global Comparison

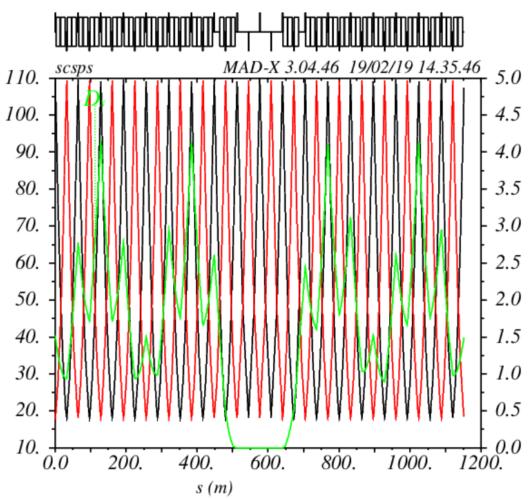
SPS Lattice – Single Arc

Calculated Parameters

Parameter	SPS (Q=20)	scSPS (Q=26)	Tevatron
β_{max}	107 m	107 m	100 m
Length of Quad – I _Q	3.1 m	1.35 m	2.13 m
Length of cell - L_{cell}	64 m	64 m	59.4 m
Phase advance per cell - μ	71 °	89.96°	68°
Quad strength - k_Q	0.0112 m ⁻²	0.033 m ⁻²	0.018 m ⁻²
Dipole length - I _D	6.26 m	12.12 m	6.1 m
Dipole strength	2.02 T	6 T	4.33 T
Max momentum	450 GeV	1300 GeV	980 GeV
Total Length	6900 m	6900 m	6280 m
Min no. dipole per cell	7	4	7

H

ROYAL HOLLOWAY HOLLOWAY UNIVERSITY CREDNOON **Dispersion suppressor: reduced field**

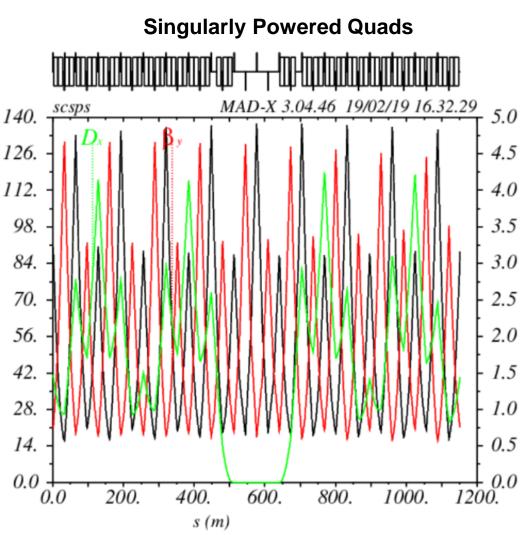

Three different suppressors:

- Reduced field
- Trimmer quadrupoles
- Singularly powered quadrupoles

Reduced Field Suppressor:

- Reduced the field in one of the dipoles close to the IP->reduced bending angle.
- Reached 0 dispersion at IP.
- Slightly changed the geometry of the lattice.

Reduced Field Suppressor


Dispersion suppressor: singularly powered quadrupoles

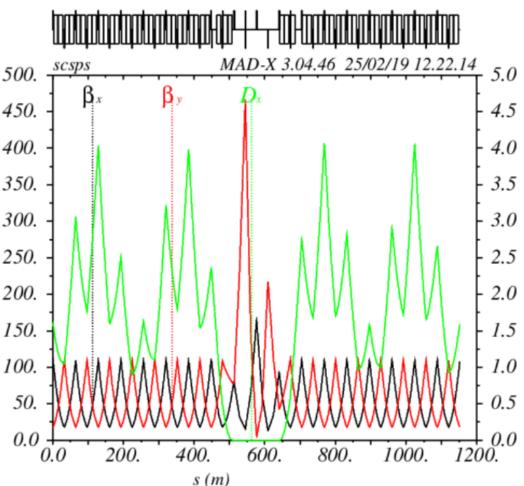
Three different suppressors:

- Reduced field
- Trimmer quadrupoles
- <u>Singularly powered</u>
 <u>quadrupoles</u>

Singularly powered quadrupoles:

- Changed the field in two of the dipoles close to the IP->increased focusing strength.
- Reached 0 dispersion at IP.
- Slightly changes the betas in the arcs and tune of the machine.
- Would not need to change the configuration of the magnets.

Dispersion suppressor: trimmer quadrupoles


Three different suppressors:

- Reduced field
- <u>Trimmer quadrupoles</u>
- Singularly powered
 quadrupoles

Trimmer quadrupoles:

- Added 6 quadrupoles called "trimmers". 300.
- Reached 0 dispersion at IP.
- Slightly changes the betas at the IP.
- Need to insert more magnets.

Trimmer Quads Suppressor

Chromaticity can be expressed as

$$Q' = \frac{-1}{4\pi} N \frac{1}{f_{Q}} \left\{ \frac{L \cdot \sin(\varphi/2)}{\sin(\varphi/2)\cos(\varphi/2)} \right\}$$

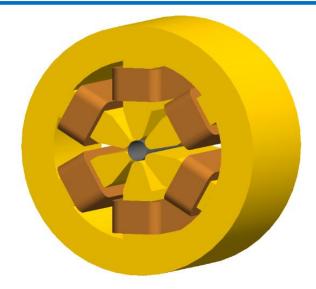
- N, number of cells,
- f_Q, focal length of the quadrupoles
- L, length of the cell
- φ , phase advance of the cell.

- Calculated Q'= -34.64.
- For alternating-gradient machines Q'~ -1.3Q*.

• As the tune is 27.5, expected Q'~-35.75.

• Chromaticity from simulation is Q'=-35.30

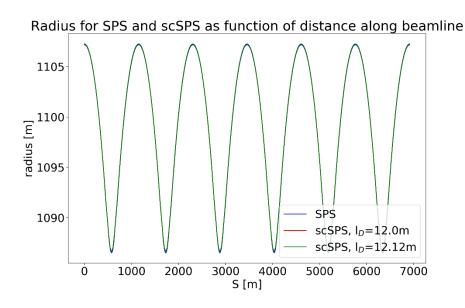
*E.Wilson, an introduction to Particle Accelerators, Oxford University Press

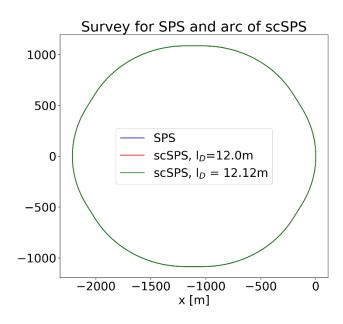


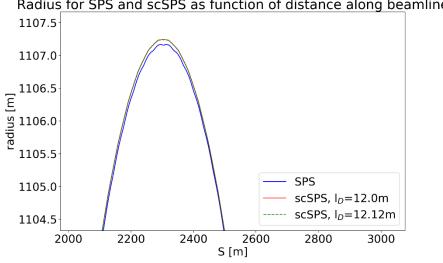
Sextupoles

The Sextupoles correct a term of:

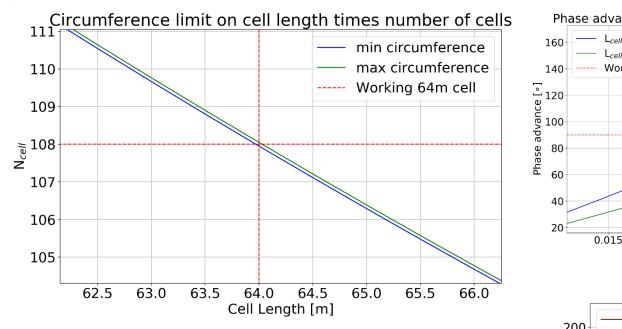
1	$\int B''(s)\beta(s)D(s)ds$
$\overline{4\pi}$	Βρ

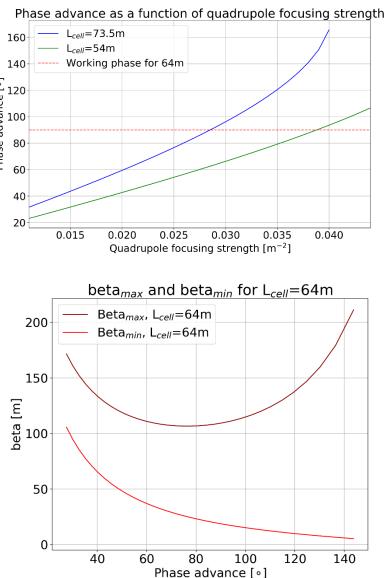

- Assuming D=4m, N=216, Bmax=107 and L=0.4 m: B"= 25.85 T*m^-2
- With and aperture of 4 cm radius B=(B"a²)/2 B~ 0.2 T.
- Low field, might lower number of sextupoles




- Madx simulations show that with these values -> Vertical and Horizontal Chromaticity can reach ~0.02.
- Considering the working point this would grant a non resonant system.

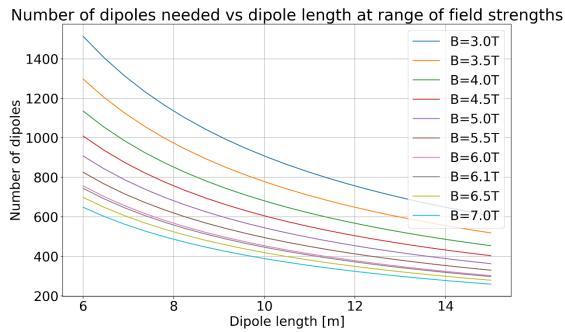
- Extended Optics to full ring •
- R(s) for dipole's length of 12.12 m ۲ and 12 m (both mentioned in the paper), B=6 T
- Max deviation 8cm for the 12.12 m ۲





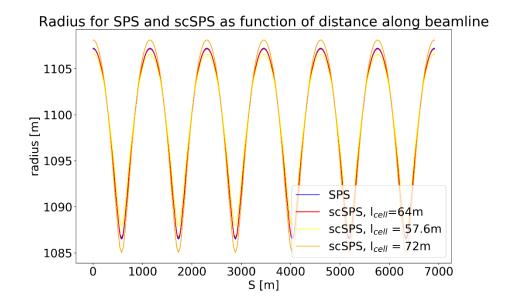
Radius for SPS and scSPS as function of distance along beamline

Global Lattice parameters



- Different cells' length limited by tunnels' circumference (0.5 m radius tolerance)
- Phase advance VS quads strength
- Resulting Betas for 64 m

- Fixing different B field values
- Range of lengths and resulting number of dipoles required for the full ring
- Fill factor from this
 - 2π=N*θ
 - 2) Bp=3.33p
 - θ=BI/Bρ



Cell Length

Different Cell's Lengths:

- Fixed Drifts length
- Fixed phase advance 89.96°
- 6 arcs and even number of cells per arc (respecting symmetry)

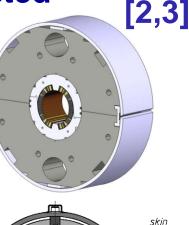
Cell Length [m]	Cell Number	K,Quads [m^-2]	Dipole Length [m]	Dipole B peak [T]	α, Dipoles [rad]	Max Betas [m]	Max Deviation [m]
57.6	20	0.036	10.52	6.16	0.014	98	0.5
64	18	0.033	12.12	6	0.016	107	0.08
72	16	0.029	14.12	5.82	0.019	122	1

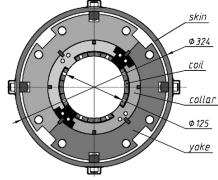
- Starting from a single arc for the scSPS lattice compared this to the SPS and Tevatron.
- 3 dispersion suppressors examined that generate 0 dispersion at interaction point.
- Chromaticity calculated as Q'=-35.30 and correcting sextupole peak field strength calculated as B~0.2 T which leads to Q'~0.02.
- Extended the optics to the full ring checked physical geometry aligns max deviation 8cm found
- Investigated other lattice options than the SPS cell length primary look at parameters for 3 cell length options; 57.6 m, 64 m, and 72 m.

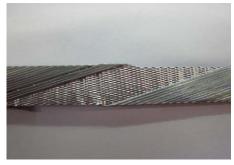
- Develop dispersion suppressor and chromaticity studies for each of the alternative lattice designs.
- Compare the advantages and disadvantages for the 3 dispersion suppressor options to choose the optimal design
- Consider having a higher sextupole field but fewer i.e. do not place one after every quadrupole. This reduces cost but impacts the optics quite heavily.

scSPS Magnet Design

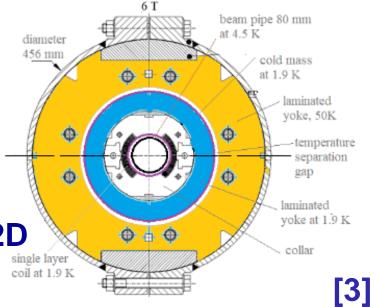
Luke Dyks Daniel Harryman Michael Backhouse

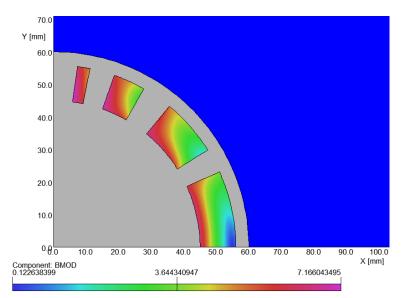

- scSPS requirements
- SIS300 fast ramping magnets
- Dipole Magnets
- Quadrupole Magnets
- Sextupole Magnets
- Conclusions
- Outlook




- Inner coil radius → 45 mm
- Operating temp 1.9 K or 4.2 K
- Dipoles
 - Magnetic field inj ext \rightarrow 0.12 6.1 T
 - Fast Ramping \rightarrow 0.35 0.5 T/s
- Quadrupoles
 - Gradient inj ext \rightarrow 2.8 146 T/m
 - Pole tip Field \rightarrow 6.58 T
 - Fast Ramping \rightarrow 8.5 12.2 T/m/s
- Sextupoles
 - Horizontal correction \rightarrow 0.17 T
 - Vertical correction → 0.33 T
 - Resistive magnet

- Fast ramping sc magnets designed and tested
- Operating temp. \rightarrow 4.2 K
- Dipoles
 - Magnetic field inj ext → 1.6 4.5 T
 - Ramp rate ~ 1 T/s (LHC ~ 7 mT/s)
- Quadrupoles
 - Gradient inj ext → 16 45 T/m
 - Pole tip field \rightarrow 2.25 T
 - Ramp rate \rightarrow 10 20 T/m/s
- Cables
 - NbTi Rutherford cables
 - Main design work to reduce AC losses
 - 2 layers of 0.825 mm diameter wires
 - Ratio Cu to Nb = 1.5

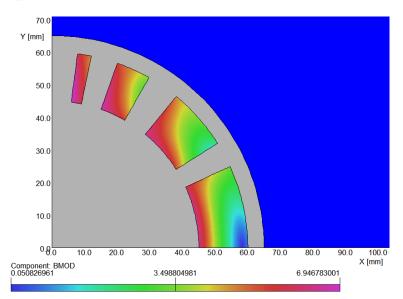




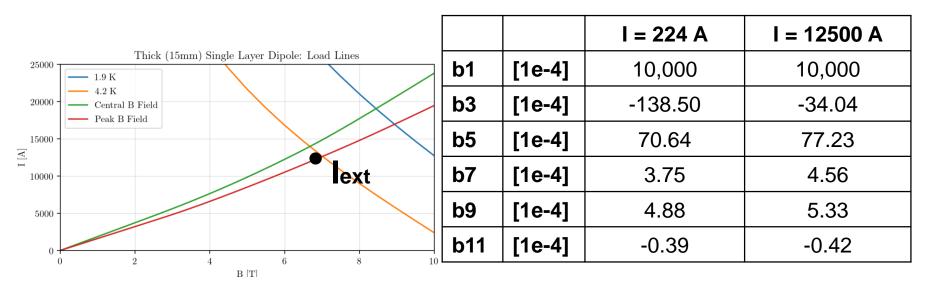
- Cos(θ) magnet design
- Based on preliminary designs
- Rutherford cables based on SIS300
- 3 dipole designs
 - Single layer 11 mm wide cables
 - Single layer 15 mm wide cables
 - Double layer graded cable
- 1/4th symmetry
- Sector approximation
- Modelled magnets in OPERA 2D
 - Field strength
 - Field quality
 - Current Densities

Initial scSPS Dipole Design

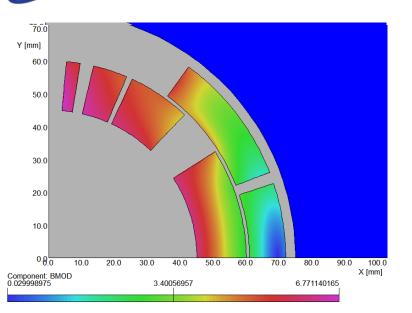
Single Layer – 11 mm Cables



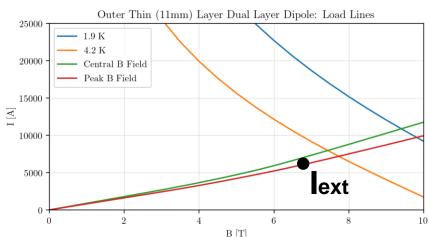
- . Extraction current \rightarrow 12119 A
- . Injection current \rightarrow 214 A
- . B peak \rightarrow 7.16 T
- Load margin \rightarrow 84 % @ 1.9 K
- Harmonics ~ 10⁻² 10⁻⁴


25000 1.9 K 4.2 K 20000 Central 1 Peak B 1 15000 10000		Layer Dipole: Load	Lines
	2 4	6 3 [T]	8 10

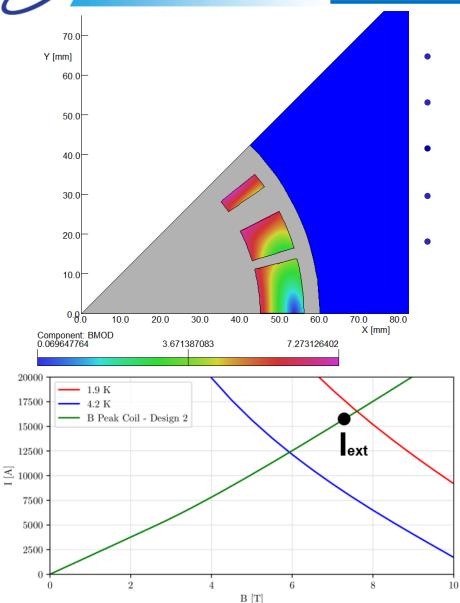
		l = 214 A	l = 12119 A
b1	[1e-4]	10,000	10,000
b3	[1e-4]	-178.84	-40.68
b5	[1e-4]	82.07	90.16
b7	[1e-4]	4.17	5.57
b9	[1e-4]	6.09	6.68
b11	[1e-4]	-0.46	-0.49


Single Layer – 15 mm Cables

- . Extraction current \rightarrow 12500A
- . Injection current \rightarrow 224 A
- . B peak \rightarrow 6.95 T
- Load margin \rightarrow 74 % @ 1.9 K
- Harmonics ~ 10⁻² 10⁻⁴

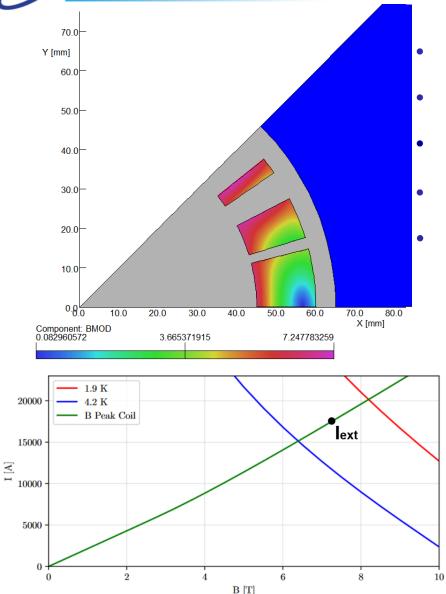

Double Layer Graded

- . Outer layer 11 mm cables
- Grading \rightarrow 1.36
- Extraction current \rightarrow 6068 A
- Injection current \rightarrow 107 A
- B peak \rightarrow 6.77 T
- Load margin → 84 % @ 4.2 K
 → 62 % @1.9 K
- Harmonics ~ 10⁻² 10⁻⁴


		l = 107 A	I = 6068 A
b1	[1e-4]	10,000	10,000
b3	[1e-4]	-89.50	-57.85
b5	[1e-4]	64.93	75.56
b7	[1e-4]	-4.19	-4.90
b9	[1e-4]	-3.35	-3.78
b11	[1e-4]	-0.49	-0.55

- Cos(2Θ) coil layout gives quadrupole field
- 3 quadrupole designs
 - Single layer 11 mm wide cables
 - Single layer 15 mm wide cables
 - Double layer graded cable
- 1/8th symmetry
- Sector approximation
- Modelled magnets in OPERA 2D
 - Field strength
 - Field quality
 - Current Densities

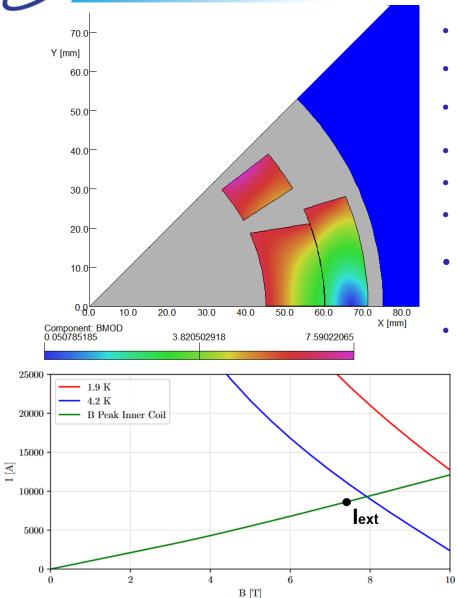
Single Layer – 11 mm Cables


- Extraction current \rightarrow 15697 A
- Injection current \rightarrow 276 A
- . B peak \rightarrow 7.27 T
- Load margin \rightarrow 95 % @ 1.9 K
- Harmonics ~ 10⁻⁴ 10⁻³

		l = 276 A	l = 15697
b2	[1e-4]	10,000	10,000
b6	[1e-4]	-9.92	7.41
b10	[1e-4]	1.79	2.31
b14	[1e-4]	0.02	0.03
b18	[1e-4]	0.09	0.10

London

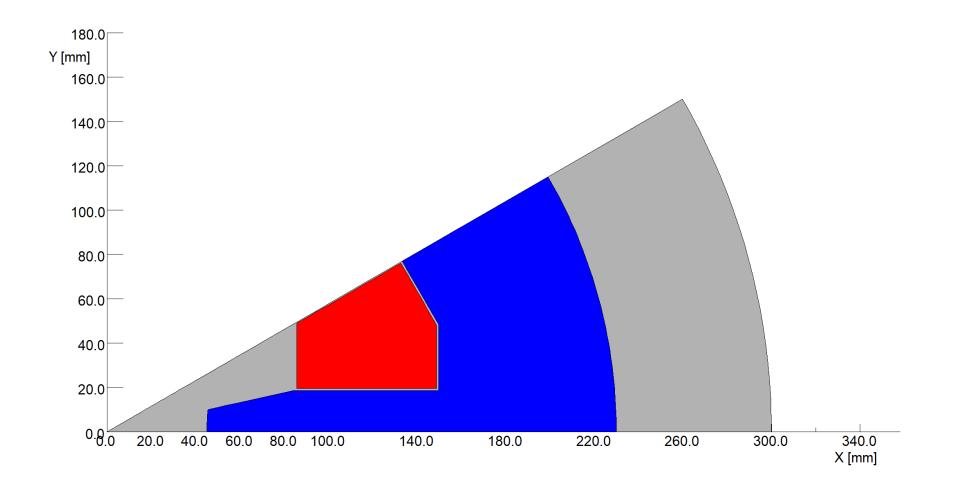
HI Student Design Project 2019 - scSPS


Single Layer – 15 mm Cables

- Extraction current \rightarrow 17500 A
- Injection current \rightarrow 305 A
- B peak → 7.24 T
- Load margin → 86 % @ 1.9 K
- Harmonics ~ 10⁻⁴ 10⁻³

		l = 305 A	l = 17,500
b2	[1e-4]	10,000	10,000
b6	[1e-4]	-9.08	2.08
b10	[1e-4]	1.55	1.86
b14	[1e-4]	0.01	0.02
b18	[1e-4]	0.07	0.08

Double Layer Graded



- . Inner layer 15 mm cables
- Outer layer 11 mm cables
- Grading \rightarrow 1.36
- Extraction current \rightarrow 8865 A
- Injection current \rightarrow 161 A
- B peak \rightarrow 7.6 T
- Load margin → 96 % @ 4.2 K → 69 % @1.9 K
- Harmonics ~ 10⁻⁴ 10⁻³

		l = 305 A	l = 17,500
b2	[1e-4]	10,000	10,000
b6	[1e-4]	-9.24	-8.67
b10	[1e-4]	5.28	5.95
b14	[1e-4]	-0.86	-0.96
b18	[1e-4]	0.04	0.04

- Iron dominated resistive magnet
- 2 sextupole designs
 - Air cooled cables
 - Water cooled cables
- 1/12th symmetry
- Sector approximation
- Modelled magnets in OPERA 2D
 - Field strength
 - Field quality
 - Current Densities

ROYAL HOLLOWAY

Given reasonable yoke geometries, the peak field is limited by the wire type.

Superconducting

0.6T

Liquid cooled wires 10Amm⁻²

0.2T

Copper wires 1-1.5Amm⁻²

Achievable with 1Amm⁻² (non-liquid cooled wires)

Coefficient	Value (10^-4)
b3	10000
b9	3.8
b15	2.7
b21	1.7
b27	1.4

Current density of 3.2Amm⁻² requires liquid cooled cables

Coefficient	Value (MOD, 10^-4)
b3	10000
b9	7.9
b15	5.7
b21	1.7
b27	1.4

- Dipoles and quadrupoles must be superconducting
- Use similar Rutherford cables to SIS300
- Single layer 11 mm design for dipole @ 1.9 K
- 40 mm aperture of magnet makes 11 mm quadrupole challenging
- Single layer 15 mm design adequate for both @ 1.9 K
- Double layer may be improved to operate at 4.2K
- Weigh up cryogenic vs. cabling costs.
- Chromaticity correction achievable with resistive magnets

- Further improve quality and load limit
- Investigate low field losses
- Calculate mechanical stresses
- Calculate thermal properties
- 3D magnet design
- Investigate 50 GeV injection
- Reduce number of sextupoles and increase field, possibly SC

scSPS RF cavity design considerations

David Posthuma de Boer and Aimee Ross

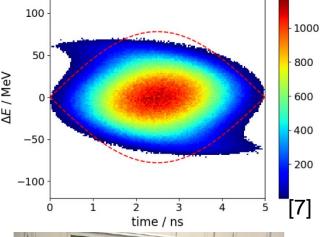
- Choose between NC and SC cavities
- Decide on a frequency, voltage and shape of cavity
- Optimise characteristics using
 Superfish and CST Microwave studio

- Must capture beam from PS
 - -4.2 ns bunch length
 - 26 GeV energy
- Must accelerate to 1.3 TeV
 - Ramp rate of dipoles ($\dot{B}_{max} = 0.5$ T/s)
 - Energy increase of ~2.5 MeV per turn
 - Cavity field at 11 MV/m
- FCC requires 25 ns bunch spacing

JAI Super-Conducting vs Normal-Conducting

- High voltage, high energy machine
- Other advantages of sc cavities:
 - Low power losses
 - Allows larger aperture
- Disadvantages of sc cavities:
 - Cryogenic cooling required
 - Very small natural frequency bandwidth

SPS Cavity

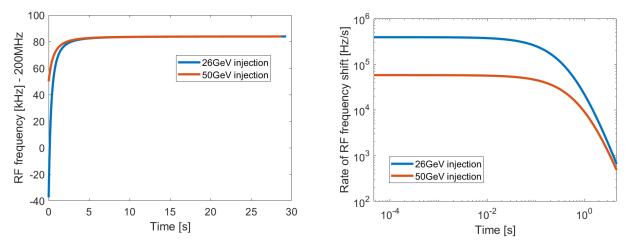


Londor

KI Student Design Project 2019 - scSPS

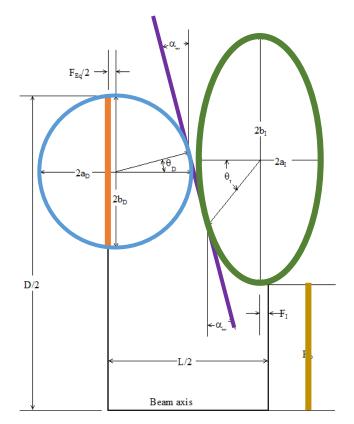
200 MHz vs 400 MHz

- Advantages of 200 MHz vs 400 MHz
 - Better beam capture efficiency
 - Reduced bandwidth requirements
- Disadvantages of 200 MHz vs 400 MHz
 - Larger diameter (1.4 m) ⇒ larger cryogenics, waveguides
 - Very little experience with 200MHz sc
- A 200 MHz sc cavity has been prototyped at CERN



Constraints on bandwidth

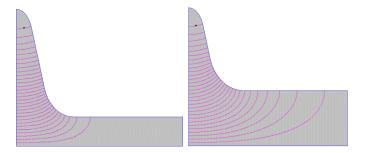
- sc cavities have natural bandwidth of order few Hz
- Tuners are used to vary bandwidth:
 - Fast, small bandwidth piezo tuner 3 kHz

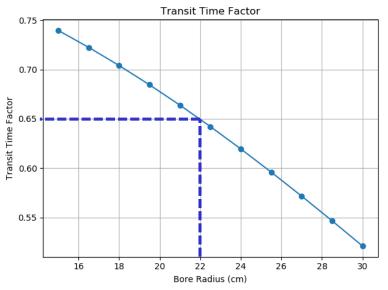

- Slow, large bandwidth - for LHC 180 kHz, 9 kHz/s

 Such a tuner should be possible, but requires R&D

- Parameters that we have to vary
 - Dome vertical radius
 - Dome radius ratio (A/B)
 - Wall angle
 - Iris radius ratio
 - Aperture radius
- Aim
 - Optimise r/Q
 - Minimise peak fields
 - Suppress Higher Order Modes

Parameter Study


46

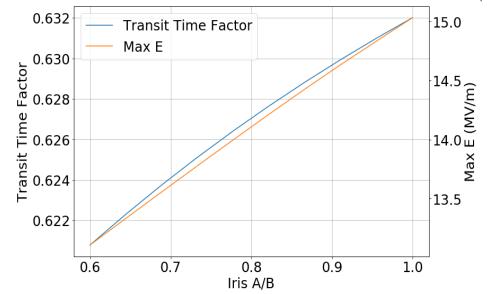

Beam Pipe Aperture

- As large as possible for HOM suppression
- Fields to "leak" into beam pipe

Transit Time Factor (TTF) Limit

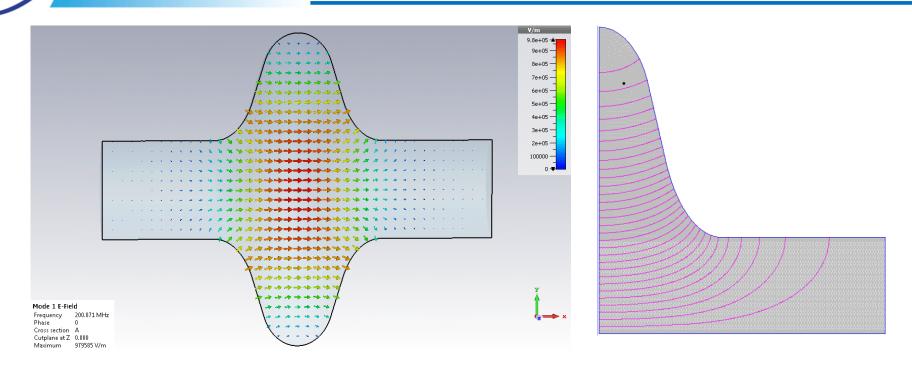
- Max field and acceleration rate limit the TTF
- Previous 200 MHz cavity reached 11MV/m
- Taking that as limit gives T > 0.6
- The radius of 22cm was investigated

OXFORD


Parameter Study

Iris A/B

- Small Transit Time Factor (TTF) change
- Large variation in *E*_{peak}


Other parameters chosen to

- Maintain required TTF
- Reduce peak fields
- Increase HOM frequencies

Would also need to consider engineering and material constraints

The final model

CST E-field animation for TM010

Superfish half-cavity

	Our cavity	CERN's prototype
E_{peak}/E_{acc}	1.07	1.69
B_{peak}/E_{acc}	3.24 mT/(MV/m)	4.34 mT/(MV/m)
r/Q	106 Ω	121 Ω

- Fundamental properties of the required cavity have been calculated.
- A 200 MHz single cell superconducting elliptical cavity has been optimized with SUPERFISH and validated with CST.
- Practical realization would require R&D into tuning techniques for bandwidth & swing rate.
- Future work could look at:
 - Adding asymmetric pipes to improve the transit-time factor
 - Higher order mode suppression by increasing cut-off pipe apertures
- If a shorter bunch could be injected at 50 GeV from an upgraded PS
- then it could be possible to use a 400 MHz cavity and reduce the required frequency swing and swing rate.

Summary of scSPS design project

- Dispersion suppressors and chromaticity studies conducted for existing scSPS lattice design. Alternative lattices proposed.
- Superconducting dipole and quadrupole designed with different cable and temperature parameters. Resistive sextupoles designed.
- A single-cell superconducting cavity is proposed, with considerations of tuning bandwidth and HOM suppression.
- PS upgrade would make many of these challenges more manageable (higher energy, shorter bunch).

Thank you for listening

References

- 1. F.Burkart et al, Conceptional Design Consideration for a 1.3 TeV Superconducting SPS (scSPS)
- 2. H. Mueller et al., "Next Generation of Fast-Cycled Dipoles for SIS300 Synchrotron," IEEE Trans. Appl. Superc., v. 24, n. 3, Jun. 2014.
- 3. S. Kozub et al., "SIS 300 Fast-Cycling Superconducting Quadrupole Prototype," in IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, Jun. 2012.
- 4. A. Kovalenko, "6 T Pulsed Dipole for the SPS Upgrade," FCC week, 2018
- 5. https://home.cern/news/news/accelerators/ls2-report-technological-leap-sps-acceleration
- 6. https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.rf_cavities
- M. Schwarz, H. Bartosik, E. Chapochnikova, A. Lasheen, J. Repond, and H. Timko, "Studies of Capture and Flat-Bottom Losses in the SPS", in Proc. 61st ICFA ABDW on High-Intensity and High-Brightness Hadron Beams (HB'18), Daejeon, Korea, June 2018, pp. 180-185, doi:10.18429/JACoW-HB2018-TUP2WA03
- 8. L. Geng, R & Barnes, P & Hartill, D & Padamsee, Hasan & Sears, Jhane & Calatroni, Sergio & Chiaveri, E & Losito, Roberto & Preis, H. (2019). 200MHZ NB-CU CAVITIES FOR MUON ACCELERATION.
- Boussard, D & Chiaveri, E & Haebel, E & Kindermann, H.P. & Losito, Roberto & Marque, S & Rodel, V & Stirbet, Mircea. (1999). The LHC superconducting cavities. 2. 946 - 948 vol.2. 10.1109/PAC.1999.795409.
- 10. RF superconductivity, Hasan Padamsee 2009 WILEY-VCH
- 11. J. Tuckmantel (2005) New RF systems for the super-SPS and super-ISR C05-08-31 p.91-102
- 12. Kashikhin, V & Borissov, E & W. Foster, G & Makulski, A & Pischalnikov, Y & Khabiboulline, T. (2019). Electromagnetic SCRF Cavity Tuner.

Back up slide - tuner

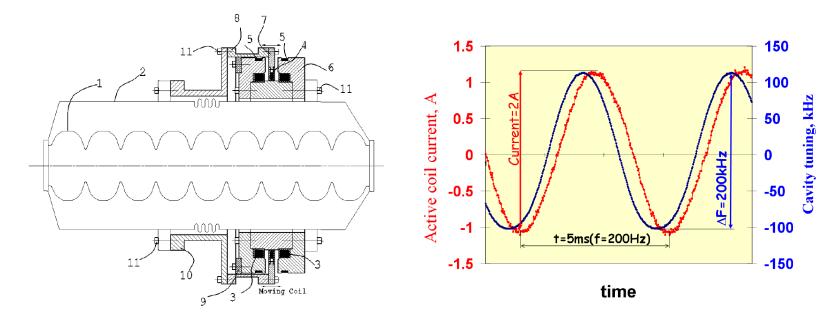


Figure 1: Electromagnetic Tuner cross-section.

[8]