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Linac4 → Booster → PS → SPS → LHC → FCC-hh

Future of Particle Physics

• LHC: 14TeV

• FCC-hh: 100TeV

– Higgs boson couplings

– Top quark decays

– Quark substructure?

– Supersymmetry?

Linac4 → Booster → PS → scSPS→ FCC-hh
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• SPS

– 6.9km circumference

– 26GeV to 450GeV

• scSPS

– Same tunnel

– 26GeV to 1.3TeV

• Previous study: basic machine parameters

• Our study:

– Lattice

– Magnets

– RF cavities

scSPS General Parameters
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• Investigation of first scSPS design report

• scSPS lattice developed and comparisons made

• Developed dispersion suppressor schemes

• First chromaticity and sextupoles studies

• Global lattice parameters investigated 

• Options for alternative machine lattice considered

Overview
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First Lattice Generation

• Obtained Lattice from 

scSPS parameters [1]

• Calculated Bending 

Magnets and 

Quadrupoles constraints

• Maximum Dispersion 

~ 4.1 m

• Min Betas ~ 20 m

• Max Betas ~107 m

Red – Beta y

Black – Beta x

Green – Dispersion x
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Global Comparison

Tevatron Two Cells 

SPS Lattice – Single Arc

Generated Lattice for three 

circular accelerators:

• SPS

• scSPS

• Tevatron



Student Design Project 2019 - scSPS 8

Calculated Parameters



Student Design Project 2019 - scSPS 9

Dispersion suppressor: reduced field

Three different suppressors:

• Reduced field

• Trimmer quadrupoles

• Singularly powered 

quadrupoles

Reduced Field Suppressor:

• Reduced the field in one of

the dipoles close to the IP->reduced 

bending  angle.

• Reached 0 dispersion at IP.

• Slightly changed the geometry

of the lattice.

Reduced Field Suppressor
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Dispersion suppressor: singularly 

powered quadrupoles

Singularly Powered Quads

Singularly powered quadrupoles:

• Changed the field in two of

the dipoles close to the IP->increased            

focusing strength.

• Reached 0 dispersion at IP.

• Slightly changes the betas in the arcs 

and tune of the machine.

• Would not need to change the confi-

guration of the magnets. 

Three different suppressors:

• Reduced field

• Trimmer quadrupoles

• Singularly powered 

quadrupoles
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Dispersion suppressor: trimmer 

quadrupoles

Trimmer Quads Suppressor

Trimmer quadrupoles:

• Added 6 quadrupoles called “trimmers”.

• Reached 0 dispersion at IP.

• Slightly changes the betas at the IP.

• Need to insert more magnets.

Three different suppressors:

• Reduced field

• Trimmer quadrupoles

• Singularly powered 

quadrupoles
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Chromaticity Studies 

Chromaticity can be expressed as

• N,  number of cells,

• fQ , focal length of the 

quadrupoles

• L , length of the cell

• φ , phase advance of the 

cell. 

• Calculated Q’= -34.64. 

• For alternating-gradient 

machines Q’~ -1.3Q*.

• As the tune is 27.5, 

expected Q’~-35.75.

• Chromaticity from simulation 

is Q’=-35.30

*E.Wilson, an introduction to Particle Accelerators, Oxford University Press
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Sextupoles

The Sextupoles correct a term of:

• Assuming D=4m, N=216, 

Bmax=107 and L=0.4 m: 

B’’= 25.85 T*m^-2

• With and aperture of 4 cm radius

B=(B’’a2)/2

B~ 0.2 T.

• Low field, might lower number of    

sextupoles

• Madx simulations show   

that with these values -> 

Vertical and Horizontal 

Chromaticity can reach 

~0.02.

• Considering the working 

point this would grant a non 

resonant system.

1

4𝜋

′′𝐵 𝑠 𝛽 𝑠 𝐷 𝑠 𝑑𝑠

𝐵𝜌
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Survey

• Extended Optics to full ring 

• R(s) for dipole’s length of 12.12 m 

and 12 m (both mentioned in the 

paper), B=6 T

• Max deviation 8cm for the 12.12 m 
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Global Lattice parameters

• Different cells’ length limited by 

tunnels’ circumference (0.5 m radius 

tolerance)

• Phase advance VS quads strength 

• Resulting Betas for 64 m



Student Design Project 2019 - scSPS 16

Global Lattice parameters: Dipoles

• Fixing different B field values

• Range of lengths and resulting number of dipoles required 

for the full ring

• Fill factor from this

1) 2π=N*θ

2)   Bρ=3.33p

3)   θ=Bl/Bρ
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Cell Length

Cell Length

[m]

Cell

Number

K,Quads

[m^-2]

Dipole

Length [m]

Dipole B

peak [T]

α, Dipoles 

[rad]

Max

Betas [m]

Max

Deviation [m]

57.6 20 0.036 10.52 6.16 0.014 98 0.5

64 18 0.033 12.12 6 0.016 107 0.08

72 16 0.029 14.12 5.82 0.019 122 1

Different Cell’s Lengths:

• Fixed Drifts length

• Fixed phase advance – 89.96°

• 6 arcs and even number of cells 

per arc (respecting symmetry)
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Conclusions

• Starting from a single arc for the scSPS lattice compared this to 

the SPS and Tevatron.

• 3 dispersion suppressors examined – that generate 0 dispersion at 

interaction point. 

• Chromaticity calculated as Q’=-35.30 and correcting sextupole

peak field strength calculated as B~0.2 T which leads to Q’~0.02.

• Extended the optics to the full ring – checked physical geometry 

aligns – max deviation 8cm found

• Investigated other lattice options than the SPS cell length –

primary look at parameters for 3 cell length options; 57.6 m, 64 m, 

and 72 m.
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Future Work

• Develop dispersion suppressor and chromaticity studies for each of the 

alternative lattice designs.

• Compare the advantages and disadvantages for the 3 dispersion 

suppressor options to choose the optimal design

• Consider having a higher sextupole field but fewer – i.e. do not place 

one after every quadrupole. This reduces cost but impacts the optics 

quite heavily.
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• scSPS requirements

• SIS300 fast ramping magnets

• Dipole Magnets

• Quadrupole Magnets

• Sextupole Magnets

• Conclusions

• Outlook

Outline
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• Inner coil radius  45 mm

• Operating temp 1.9 K or 4.2 K

• Dipoles

– Magnetic field inj – ext  0.12 – 6.1 T

– Fast Ramping  0.35 – 0.5 T/s

• Quadrupoles

– Gradient inj – ext  2.8 – 146 T/m

– Pole tip Field  6.58 T

– Fast Ramping  8.5 – 12.2 T/m/s

• Sextupoles

– Horizontal correction  0.17 T

– Vertical correction  0.33 T

– Resistive magnet 

scSPS Requirements
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• Fast ramping sc magnets designed and tested

• Operating temp.  4.2 K

• Dipoles

– Magnetic field inj – ext  1.6 – 4.5 T

– Ramp rate ~ 1 T/s (LHC ~ 7 mT/s)

• Quadrupoles

– Gradient inj – ext  16 – 45 T/m

– Pole tip field  2.25 T

– Ramp rate  10 - 20 T/m/s

• Cables

– NbTi Rutherford cables

– Main design work to reduce AC losses

– 2 layers of 0.825 mm diameter wires

– Ratio Cu to Nb = 1.5

SIS300 Magnets

[2,3]
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 Cos(𝛳) magnet design

 Based on preliminary designs

 Rutherford cables based on SIS300

• 3 dipole designs

– Single layer 11 mm wide cables

– Single layer 15 mm wide cables

– Double layer graded cable

• 1/4th symmetry

• Sector approximation

• Modelled magnets in OPERA 2D

– Field strength

– Field quality

– Current Densities

Dipoles

[3]
Initial scSPS Dipole Design
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Single Layer – 11 mm Cables

2 5
9

12

● Extraction current  12119 A

● Injection current  214 A

● B peak  7.16 T

Iext

● Load margin  84 % @ 1.9 K

• Harmonics ~ 10-2 - 10-4

I = 214 A I = 12119 A

b1 [1e-4] 10,000 10,000

b3 [1e-4] -178.84 -40.68

b5 [1e-4] 82.07 90.16

b7 [1e-4] 4.17 5.57

b9 [1e-4] 6.09 6.68

b11 [1e-4] -0.46 -0.49
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Single Layer – 15 mm Cables

2 5
9

12

● Extraction current  12500A

● Injection current  224 A

● B peak  6.95 T

Iext

● Load margin  74 % @ 1.9 K

I = 224 A I = 12500 A

b1 [1e-4] 10,000 10,000

b3 [1e-4] -138.50 -34.04

b5 [1e-4] 70.64 77.23

b7 [1e-4] 3.75 4.56

b9 [1e-4] 4.88 5.33

b11 [1e-4] -0.39 -0.42

• Harmonics ~ 10-2 - 10-4



Student Design Project 2019 - scSPS 27

Double Layer Graded

2 5
9

12

16

9

● Inner layer 15 mm cables

● Outer layer 11 mm cables

● Grading  1.36

● Extraction current  6068 A

● Injection current  107 A

● B peak  6.77 T

Iext

● Load margin  84 % @ 4.2 K

 62 % @1.9 K

• Harmonics ~ 10-2 - 10-4

I = 107 A I = 6068 A

b1 [1e-4] 10,000 10,000

b3 [1e-4] -89.50 -57.85

b5 [1e-4] 64.93 75.56

b7 [1e-4] -4.19 -4.90

b9 [1e-4] -3.35 -3.78

b11 [1e-4] -0.49 -0.55
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• Cos(2Θ) coil layout gives quadrupole field

• 3 quadrupole designs

– Single layer 11 mm wide cables

– Single layer 15 mm wide cables

– Double layer graded cable

• 1/8th symmetry

• Sector approximation

• Modelled magnets in OPERA 2D

– Field strength

– Field quality

– Current Densities

Quadrupole Magnets
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Single Layer – 11 mm Cables

2

5

7

● Extraction current  15697 A

● Injection current  276 A

● B peak  7.27 T

● Load margin  95 % @ 1.9 K

• Harmonics ~ 10-4 - 10-3

I = 276 A I = 15697

b2 [1e-4] 10,000 10,000

b6 [1e-4] -9.92 7.41

b10 [1e-4] 1.79 2.31

b14 [1e-4] 0.02 0.03

b18 [1e-4] 0.09 0.10
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Single Layer – 15 mm Cables

2

5

7

● Extraction current  17500 A

● Injection current  305 A

● B peak  7.24 T

● Load margin  86 % @ 1.9 K

• Harmonics ~ 10-4 - 10-3

I = 305 A I = 17,500

b2 [1e-4] 10,000 10,000

b6 [1e-4] -9.08 2.08

b10 [1e-4] 1.55 1.86

b14 [1e-4] 0.01 0.02

b18 [1e-4] 0.07 0.08
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Double Layer Graded

6

12
16

● Inner layer 15 mm cables

● Outer layer 11 mm cables

● Grading  1.36

● Load margin  96 % @ 4.2 K

 69 % @1.9 K

• Harmonics ~ 10-4 - 10-3

I = 305 A I = 17,500

b2 [1e-4] 10,000 10,000

b6 [1e-4] -9.24 -8.67

b10 [1e-4] 5.28 5.95

b14 [1e-4] -0.86 -0.96

b18 [1e-4] 0.04 0.04

● Extraction current  8865 A

● Injection current  161 A

● B peak  7.6 T
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• Iron dominated resistive magnet

• 2 sextupole designs

– Air cooled cables

– Water cooled cables

• 1/12th symmetry

• Sector approximation

• Modelled magnets in OPERA 2D

– Field strength

– Field quality

– Current Densities

Sextupole Magnets
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Yoke geometry
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Copper wires

1-1.5Amm-2

Liquid cooled 

wires

10Amm-2

Superconducting

0.6T

0.2T

Given reasonable 

yoke geometries, 

the peak field is 

limited by the wire 

type. 

Field thresholds
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0.17T design

Achievable with 

1Amm-2 (non-liquid 

cooled wires)

Coefficient Value (10^-4)

b3 10000

b9 3.8

b15 2.7

b21 1.7

b27 1.4



Student Design Project 2019 - scSPS 36

0.33T design

Current density of 

3.2Amm-2 requires 

liquid cooled cables

Coefficient Value (MOD, 10^-4)

b3 10000

b9 7.9

b15 5.7

b21 1.7

b27 1.4
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• Dipoles and quadrupoles must be superconducting

• Use similar Rutherford cables to SIS300

• Single layer 11 mm design for dipole @ 1.9 K

• 40 mm aperture of magnet makes 11 mm quadrupole 

challenging

• Single layer 15 mm design adequate for both @ 1.9 K

• Double layer may be improved to operate at 4.2K

• Weigh up cryogenic vs. cabling costs.

• Chromaticity correction achievable with resistive 

magnets

Conclusions
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• Further improve quality and load 

limit

• Investigate low field losses

• Calculate mechanical stresses

• Calculate thermal properties

• 3D magnet design

• Investigate 50 GeV injection

• Reduce number of sextupoles and 

increase field, possibly SC

Outlook
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David Posthuma de Boer and Aimee Ross
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• Choose between NC and SC cavities

• Decide on a frequency, voltage and 

shape of cavity

• Optimise characteristics using 

Superfish and CST Microwave studio

Our objectives
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• Must capture beam from PS

– 4.2 ns bunch length

– 26 GeV energy

• Must accelerate to 1.3 TeV

– Ramp rate of dipoles ( ሶ𝑩𝒎𝒂𝒙 = 𝟎. 𝟓 T/s)

– Energy increase of ~2.5 MeV per turn

– Cavity field at 11 MV/m

• FCC requires 25 ns bunch spacing

scSPS RF design constraints
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• High voltage, high energy 

machine

• Other advantages of sc

cavities:

– Low power losses

– Allows larger aperture

• Disadvantages of sc

cavities:

– Cryogenic cooling required

– Very small natural frequency 

bandwidth

Super-Conducting vs Normal-Conducting

[5]

[6]

SPS Cavity 

LHC Cavity
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• Advantages of 200 MHz vs 400 

MHz

– Better beam capture efficiency

– Reduced bandwidth requirements

• Disadvantages of 200 MHz vs 

400 MHz

– Larger diameter (1.4 m) ⇒ larger 

cryogenics, waveguides

– Very little experience with 

200MHz sc

• A 200 MHz sc cavity has been 

prototyped at CERN

200 MHz vs 400 MHz

[7]

[8]
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• sc cavities have natural bandwidth of order 

few Hz

• Tuners are used to vary bandwidth:

– Fast, small bandwidth - piezo tuner 3 kHz

– Slow, large bandwidth - for LHC 180 kHz, 9 kHz/s

• Such a tuner should be possible, but 

requires R&D

Constraints on bandwidth
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Parameter Study

• Parameters that we have to 
vary
– Dome vertical radius
– Dome radius ratio (A/B)
– Wall angle
– Iris radius ratio
– Aperture radius

• Aim
– Optimise r/Q
– Minimise peak fields
– Suppress Higher Order 

Modes
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Parameter Study

Beam Pipe Aperture
– As large as possible for HOM 

suppression

– Fields to “leak” into beam pipe

Transit Time Factor (TTF) Limit
– Max field and acceleration rate limit 

the TTF

– Previous 200 MHz cavity reached 
11MV/m

– Taking that as limit gives 𝑇 > 0.6
– The radius of 22cm was investigated
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Parameter Study

Iris A/B
– Small Transit Time Factor 

(TTF) change

– Large variation in 𝑬𝒑𝒆𝒂𝒌

Other parameters chosen 

to
– Maintain required TTF

– Reduce peak fields

– Increase HOM frequencies

Would also need to consider engineering and material 

constraints



Student Design Project 2019 - scSPS 48

The final model

Our cavity CERN’s prototype

𝐸𝑝𝑒𝑎𝑘/𝐸𝑎𝑐𝑐 1.07 1.69

𝐵𝑝𝑒𝑎𝑘/𝐸𝑎𝑐𝑐 3.24 mT/(MV/m) 4.34 mT/(MV/m)

𝑟/𝑄 106 Ω 121 Ω

CST E-field animation for TM010 Superfish half-cavity
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• Fundamental properties of the required cavity have been calculated.

• A 200 MHz single cell superconducting elliptical cavity has been 

optimized with SUPERFISH and validated with CST.

• Practical realization would require R&D into tuning techniques for 

bandwidth & swing rate.

• Future work could look at:

– Adding asymmetric pipes to improve the transit-time factor

– Higher order mode suppression by increasing cut-off pipe apertures

• If a shorter bunch could be injected at 50 GeV from an upgraded PS 

• then it could be possible to use a 400 MHz cavity and reduce the 

required frequency swing and swing rate.

Conclusion



Student Design Project 2019 - scSPS 50

• Dispersion suppressors and chromaticity studies 

conducted for existing scSPS lattice design. 

Alternative lattices proposed.

• Superconducting dipole and quadrupole designed with 

different cable and temperature parameters. Resistive 

sextupoles designed.

• A single-cell superconducting cavity is proposed, with 

considerations of tuning bandwidth and HOM 

suppression.

• PS upgrade would make many of these challenges 

more manageable (higher energy, shorter bunch).

Summary of scSPS design project
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Thank you for listening
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Back up slide - tuner

[8]


