

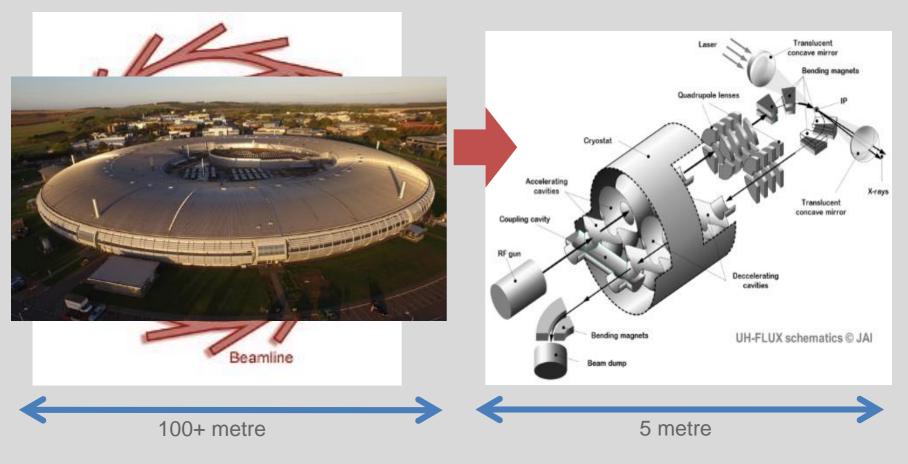
Industry Projects and Applications

Phillip Tait STFC Innovation Partnership Fellow at Oxford

7th March 2019

Summary of some of the industry projects

- 1. Ultra High Flux (UHF) compact X-ray source
- 2. Laser based synchrotron sources
- 3. Cavity based BPM
- 4. FONT with Industry
- 5. Precision Metrology
- 6. Low Cost Medical LINACs


1.Ultra high flux (UHF) compact x-ray sources (Ivan Konoplev)

Industry Projects and Applications

Very large current designs

Compact Oxford

Industry Projects and Applications

- Shakespeare Engineering & Oxford Physics mechanical workshop manufacture asymmetric dual RF Cavity prototypes in AL & Cu
- JAI at Oxford and RHUL have been RF test these prototypes
- Aluminium prototype successfully tested at Oxford
- UCSF (University Challenge Seed Fund) and OIF (Oxford Innovation Fund) gave financial support (£120k)
- OSI (Oxford Science Innovation = venture capital) provided industry contacts

X-ray Application:

- Non-destructive sources and material/medical diagnostics research market
- £332 billion Semiconductor Industry: \$7 billion lithography market
- Long term production of medical isotopes by photo fission: The global radioisotope market - \$8 billion

THz Application

- Cargo Screening: World Market for Explosives, Weapons & Contraband Detection Equipment (EWC) estimated at \$2.1 billion
- Replacing X-ray scanners: The global security screening market estimated at \$9.10 billion
- Imaging of coatings, composites, drug formulation

2. Laser based synchrotron sources (Lead Dan Symes)

Aim: Use laser driven sources to provide industrial imaging capability that cannot be achieved with current commercial technology.

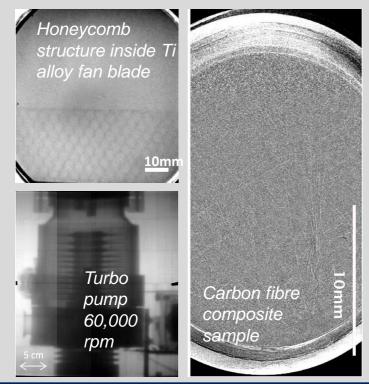
14.5 day mouse embryo μCT scan

1mm

10 - 50 keV laser-betatron source with sub-micron source size

Development of high resolution, phase enhanced imaging for healthcare applications

Collaborating with MRC Harwell to conduct μ CT for phenotyping.


Working with Imperial College NHS Trust to demonstrate phase enhanced imaging of soft tissues.

Laser-based instruments offer synchrotronstyle capability in laboratory-scale environments.

Cole et al, PNAS 115, 6335 (2018)

Engaging with industrial partners to explore applications in advanced manufacturing

Directional, small source, tuneable x-ray sources 50 keV – multi-MeV

Gruse et al, in preparation; Brenner et al, PPCF **58**, 014039 (2016) Proof-of-principle experiments with HVM Catapult, DSTL, Rolls Royce and other companies.

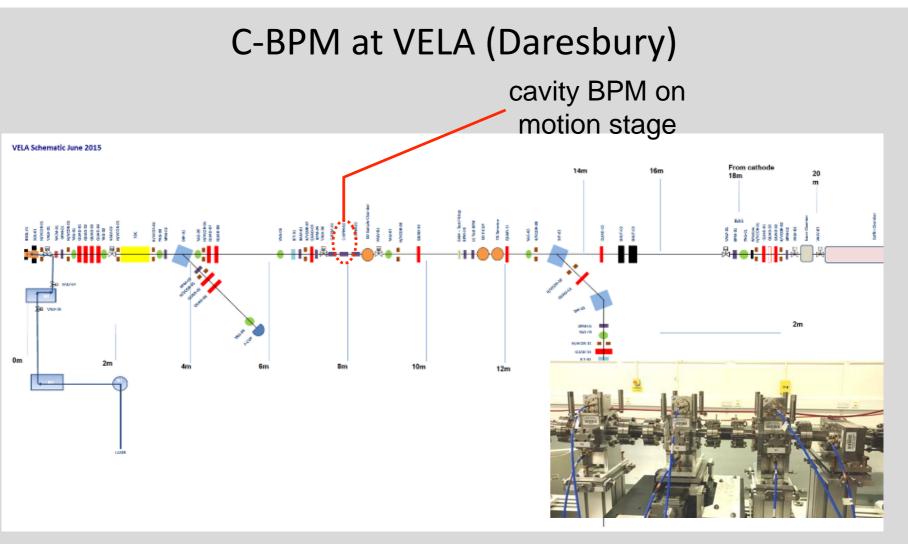
Demonstrated capabilities for non-destructive evaluation

- \rightarrow Phase imaging
- \rightarrow MeV radiography
- \rightarrow Dynamic imaging

Science & Technology Facilities Council

UK Research and Innovation

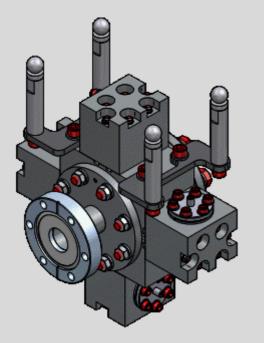
3. Cavity based BPM (Alexey Lyapin)



Aim

- Industrialise cavity BPMs, developed for ILC, in partnership with FMB-Oxford,
- Develop full system that can be easy to manufacture and commercialised
- Beam tests at VELA facility (Daresbury)
- Supported by STFC IPS grant with FMB

Industry Projects and Applications



Cavities industrialised and manufactured by FMB-Oxford

Industry Projects and Applications

Cavity Design

- 6.5 GHz cavities, aperture up to 20 mm
- Proven common mode rejection method
- Weld/braze-free assembly for cost reduction and reparability

- UHV compatible
- Optimised tolerances to avoid frequency tuning and reduce cost

Current Status

- 2 reference cavities manufactured and tested, one installed in VELA
- 3 position cavities manufactured, RF parameters ok, variation from cavity to cavity – excellent, vacuum tested, now to be aligned and installed
- Preparations for vacuum installation in progress
- RF modules tested as prototypes, now are being replicated and packaged
- Tests at VELA being carried out

4. FONT with Industry (Phil Burrows)

Aim: Commercialise fast RF amplifiers and beam diagnostics

We have won 4 industrial STFC CASE studentship awards :

- Advanced RF devices (TMD Technologies) *Christine Clarke*
- RF devices for particle accelerators (TMD Technologies) Neven Blaskovic
- Accelerator beam diagnostics (FMB Oxford) Talitha Bromwich
- Radio frequency amplifiers (TMD Technologies) *Rebecca Ramjiawan*
- The high-power amplifier developed with TMD would not have been possible without this 2-way dialogue
- Following collaboration with JAI, TMD Technologies how won a large contract to fabricate RF accelerating cavities for CLIC. This enables TMD to develop capability for designing and manufacturing products for additional markets in scientific, medical and communications systems.

5. Precision Metrology (Armin Reichold)

Aim: Commercially produce interferometric distance sensors – A technology from ILC to industry applications

- FSI = Frequency Scanning Interferometry
- Up to 100 simultaneous absolute distance scans
- Range 0.1m to 100m
- Scan parameters
 - position resolution < \pm 0.1 μ m
 - time resolution 2.77 MHz
 - repetition rate 0.1 to 10 Hz
 - dead time > 0.1 s
 - Analysis latency > 1s
- Target motion < 19 mm/s
- Vacuum & cryogenic environments
- One fibre per channel

Commercialisation So Far

- Base-technology Patent (dFSI) applied 2011, granted 2015
- Four licenses to Etalon AG for patent and know how (2012)
- 1st generation sales of Etalon's "Absolute Multiline™" start in 2013
- 2nd generation (µTCA) orders started 2016
- Sales and orders to date approx. £1.4M
- Orders expected in 2019: £0.5M

Customers so far inc:

- CERN, SLAC
- GMTO (Giant Magellan Telescope)
- General Electric
- E-ELT

High probability sales inc:

- Porsche
- UK national satellite test facility
- National Metrology Institute Spain

What is missing in dFSI ?

- No real time measurement due to latency
- No continuous measurements at full time resolution
- No fast moving targets
- Not useable in fast feedback systems for:
 - machine tools (CNC mills, lathes) and Coordinate Measurement Machines.
 - stabilisation of accelerators, telescopes, space simulators, etc.

Next step = PaMIr (Phase Modulation Interferometry)

- Full technique expected to give:
 - 1m/s target motion @ 0.1 ms latency, continuous observation
- 3-year IPS project started Feb 2019 (£600k total)
- Etalon AG co-fund
 - 30k€ cash + 3 FTE yrs. in kind)
- VadaTech Ltd. co-fund
 - 0.5 engineering FTE years cash
 - permanent position for engineer afterwards
 - in kind engineering support
- New staff hired PDRA + senior FPGA engineer

6. Low Cost Medical LINACs (Suzie Sheehy and others)

Radiotherapy is used in half of all cancer cases (when available)

- The annual global incidence of cancer is expected to rise from 15 million cases in 2015 to as many as 25 million cases in 2035.
- Of these, it is estimated that 65–70% will occur in low-and middleincome countries (LMICs)
- "There is a shortfall of more than 5000 radiotherapy machines in LMICS, with patients in some countries in Africa and Asia having almost no access to radiation therapy"
- Can we made a medical LINAC that is: cheaper, more robust, easier to maintain, modular, reliable while providing state-of-the-art treatment?

- CERN hosted workshop on: "Design Characteristics of a Novel Linear Accelerator for Challenging Environments"
- Funded projects on:
 - 1. Study of Accelerator Technology Options P. McIntosh, DL/STFC
 - 2. Robust permanent magnet beam delivery systems S. Sheehy, Oxford/JAI

3. RF Power Systems and Optimized RF Structures for Electron Beam Acceleration – I. Konoplev, Oxford/JAI

4. Linear Accelerator Simulations for Stable and Sustainable Operation of Developing Country Radiotherapy Linear Accelerators – S. Boogert, RHUL/JAI

5. Cloud-based Electronic Infrastructure in Support of Linac-based Radiotherapy in Challenging Environments, A. Aggarwal, KCL/Guys

Additional News

- STFC have awarded 2019 round of Impact Acceleration Accounts (IAA) approx. £70k
- STFC have announced (this week) Capital Funding available for IPS/FoF grants from May 2019 details tbc
- STFC have announced (this week) Additional Capital fund for current holders of IPS Grants details tbc
- JAI sits on the High Powered Radio Frequency Forum Members inc. TMD, Qinetiq, Home Office, Leonardo, e2v, Elekta, AWE, and ASTeC
 - Members want to work together to influence UK Gov Industrial Strategy Challenge Fund

Industry Projects and Applications

Thank you

phillip.tait@physics.ox.ac.uk