Model-independent cosmological constraints from the CMB.

Marc Vonlanthen, Ruth Durrer, Syksy Rasänen

University of Geneva

Ascona, January 20th 2010

Motivations

Cosmic Microwave Background (CMB): basic ideas

The Cosmic Microwave Background CMB anisotropies

Model-independent analyze of the CMB

Sensitivity of the CMB to the cosmological parameters Methodology Results

Conclusion

What we want to study and why it is interesting...

- 1. The standard model of cosmology in which $\Omega_m \sim 0.3$ and $\Omega_{\Lambda} \sim 0.7$ seems to fit an impressive variety of data.
- 2. However, Λ in $\Omega_{\Lambda} = \frac{\Lambda}{3H_0^2} = \frac{\rho_{\Lambda}}{\rho_c}$ faces many problems:
 - why is ρ_{Λ} so much smaller than we expect (120 order of magnitudes) ?
 - what is the origin of the small nonzero energy that comprises 70% of the universe today?
 - why is the current value of the vacuum energy of the same order of magnitude as the matter density $\frac{\Omega_{\Lambda}}{\Omega_{m}} \sim a^{3} \sim \mathcal{O}(1)$ today?
- 3. Answers are model-dependent and uncertain, it is therefore worthwhile to study model-independently our universe.

Dynamics of a Friedmann-Lemaître universe

Recombination and photon decoupling

▶ Before recombination ($T_{rec} = 3700K = 0.3eV$), the cosmic fluid is in thermal equilibrium through the reaction

$$e^- + p \longleftrightarrow H + \gamma \quad (13.6 \text{eV})$$

- ▶ After recombination, the free electrons density and photons interacting rate drop until the reaction stops (decoupling).
- ▶ Decoupling takes place at $T \sim 2970K = 0.26eV$ and redshift $z_{dec} \sim 1089$.

CMB spectrum

▶ After decoupling, photons propagate freely, remarkably isotropic spectrum following Planck's law with T = 2.725K:

$$\frac{\Delta T}{T} \simeq 10^{-5}.$$

Durrer, The Cosmic Microwave Background (Cambridge, 2008)

CMB anisotropies

▶ CMB anisotropies have mostly been produced at the last scattering surface (LSS) at $z = z_{rec}$ via the coupling between matter and radiation.

Physics at decoupling (1)

- ► We assume that the physics up to and including decoupling is completely standard :
 - 1. normal 4-dimensional General Relativity
 - 2. perturbed FL universe
 - 3. standard Model particle physics and dark matter

Late time evolution (1)

- 1. Badly understood, highly model-dependent:
 - deviation of gravity from GR
 - exotic matter component with negative pressure
 - breakdown of the homogeneous and isotropic approximation
- 2. reionization

Late time evolution (2)

Late time evolution (3)

Rescaling (1)

▶ Rescaling of the angular scale has to be taken into account by adding a new parameter *S*.

Rescaling (2)

How to extract the model-independent informations of the CMB?

- ▶ Discard the low multipoles, up to $\ell = 40$.
- ▶ At high multipoles, the effect of reionization is absorbed in A_s. No pertinent constraints are therefore expected for A_s.
- ▶ We want to know the deviation of D_A from the simplest cosmological model, the Einstein-de Sitter model $(\Omega_m = 1)$ by introducing the scale parameter S defined as

$$S \equiv \frac{D_A(z^*)}{D_{A,EdS}(z^*)}.$$

- ► Therefore, our new set of parameters (5) is $S' = \{\omega_b, \omega_c, S, n_s, A_s\}.$
- Finally, modify and use CAMB code and Monte Carlo Markov Chain to obtain model-independent constraints on S'.

Results (1)

Results (2)

► Constraints on cosmological parameters including statistical and systematic errors :

$$100\omega_b = 2.13^{+0.1}_{-0.06} \qquad \omega_c = 0.124^{+0.003}_{-0.006}$$
 $n_s = 0.93^{+0.03}_{-0.02} \qquad S = 0.913^{+0.01}_{-0.01}$.

$$lacksquare$$
 $\Delta = 2 \left(\log(\mathcal{L}_{\Lambda \mathrm{C}DM}) - \log(\mathcal{L}_{\mathrm{s}\mathit{hift}}) \right) \simeq 1$

Conclusion

- ▶ We have analyzed the CMB data in a way which is independent of late time cosmology.
- ▶ An EdS model shifted by S = 0.913 is a good fit to the present CMB data, apart from the low multipoles.
- ▶ No significant improvement of our analyze is expected from Planck data because of lensing.
- Our results are valid for all models of late time dark energy (quintessence models, modified gravity and back-reaction).