ttbar and W+jet Background Estimate for Hadronic SUSY Searches @ CMS

Jan Thomsen

University of Hamburg

CHIPP winter school

GEFÖRDERT VOM

Outline

- Short introduction to LHC, CMS and Supersymmetry
- Standard model backgrounds for hadronic SUSY searches
- Description of data-driven background estimation method
- Closure test
- Summary

LHC and CMS

Some basic facts: LHC:

- pp-accelerator
- \sqrt{s} = 14 TeV (design)
 - = 7 TeV this year
 - = 2.3 TeV last year

CMS:

- Multi-purpose-detector
- Large (3.8 T) magnetic field
- Weight = 12500 T
- Length = 21m
- Width = 18m

Supersymmetry

- Supersymmetry (SUSY) is a symmetry between bosons and fermions
- It solves many problems of the standard model (e.g. hierarchy problem
- It provides a dark matter candidate (lightest SUSY particle (LSP))

- R-parity conservation
- pair/associated SUSY production
- → stable LSP
- Cascade decay of primary produced SUSY particles
- → Missing E_T
- many Jets
- possibly leptons

Supersymmetry @ CMS

Reach for 10 TeV is reduced

- With ~ 10 pb⁻¹ reach beyond Tevatron limits (14 TeV)
- The inclusive search has the best reach for mSUGRA

Supersymmetry @ CMS

For the inclusive Njet SUSY search following cuts are applied:

 P_{τ} (Jet1) > 180 GeV, P_{τ} (Jet2) > 150 GeV, P_{τ} (Jet3) > 50 GeV missing E_{τ} > 150 GeV min Delta (Jet1/2/3, missing E_{τ}) > 0.3 Direct Lepton Veto (= no isolated lepton allowed)

Direct Lepton Veto (DLV) mainly rejects leptonic ttbar and W+jet events

Background Properties

Background estimates should be data driven as simulations have large uncertainties – especially with early data

- ttbar and W+jet events have real missing E_⊤ in leptonic channel
- This lepton is not identified
- It is difficult to seperate ttbar and W+jet events completely
- Combine ttbar and W+jet

Hadronic tau background is cared for by a different approach

Fraction of ttbar background

Background Properties

Problem:

<u>Different topology in ttbar and W+jet events:</u>

- Boosted top emits W (and therefore lepton) and b close to each other
- Closest jet is in most cases the associated b-jet
- Isolation efficiency lower for ttbar events
- \rightarrow Efficiency in bins of ΔR
 - In very hard pp-collisions more w produced
 - W polarization
- More low P_⊤ leptons in high missing E_⊤ events
- Increases syst. uncertainty

Idea of DLV-Cut Inversion

Direct Lepton Veto: no lepton in event with: $P_{\tau} > 15$, rel isolation < 0.1 (muon) / 0.5 (electron), passed quality cuts

	In acceptance	Out of acceptance
Isolated	Background C	Control Sample
Not Isolated	Background B	Background A (most im- portant)

A = Control * (1 - Iso Eff)/Iso Eff B = A * acceptance Ratio C = Control * acceptance Ratio Total Background: A + B + C (corrected with RECO Eff)

Reconstruction efficiencies as a function of $\,P_{\scriptscriptstyle T}$ are found from tag and probe method $\,Z \to \mu \,\mu$

Isolation efficiencies as a function of DR and $P_{\scriptscriptstyle T}$ from tool similar to tag and probe method usable on ttbar & W+Jet. Plan to move to $Z \to \mu \, \mu$

P_⊤ distribution and ratio of ttbar to W+jet from simulation as these information are quite reliable

Closure Test

- Work in progress. Result preliminary!
- Shape and predicted number of events agree within uncertainties
- Statistical uncertainties quite large as some events enter the prediction with large weights

Summary

- For a large part of the parameter space the inclusive search with no leptons yields the highest significance of signal vs. background
- A precise data-driven estimate for all standard model backgrounds is crucial for a discovery or exclusion limit
- W+jet and ttbar background are estimated together
- Closure test gives promising results
- A combination of all background predictions with a combined analysis of the uncertainties is in preparation